Skip to main content

Modeling and Refining Directional Relations Based on Fuzzy Mathematical Morphology

  • Conference paper
  • 1253 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3641))

Abstract

In this paper, we investigate the deficiency of Goyal and Egenhofer’s method for modeling cardinal directional relations between simple regions and provide the computational model based on the concept of mathematical morphology, which can be a complement and refinement of Goyal and Egenhofer’s model for crisp regions. Based on fuzzy set theory, we extend Goyal and Egenhofer’s model to handle fuzziness and provide a computational model based on alpha-morphology, which combines fuzzy set theory and mathematical morphology, to refine the fuzzy cardinal directional relations. Then the computational problems are investigated. We also give an example of spatial configuration in 2-dimensional discrete space. The experiment results confirm the cognitive plausibility of our computational models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goyal, R., Egenhofer, M.: Similarity of Direction Relations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 36–55. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bloch, I.: Fuzzy Spatial Relationships from Mathematical Morphology for Model-based Pattern Recognition and Spatial Reasoning. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 16–33. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bloch, I.: Unifying Quantitative, Semi-quantitative and Qualitative Spatial Relation knowledge Representation Using Mathematical Morphology. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 153–164. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Erig, M., Schneider, M.: Vague Regions. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 298–320. Springer, Heidelberg (1997)

    Google Scholar 

  5. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Koppen, M., Franke, K., Unold, O.: A Tutorial on Fuzzy Morphology, http://visionic.fhg.de/ipk/publikationen/pdf/fmorph.pdf

  7. Bloch, I., Maitre, H.: Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition 28(9), 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  8. Gader, P.D.: Fuzzy Spatial Relations Based on Fuzzy Morphology. In: FUZZ-IEEE 1997 IEEE Int. Conf. on Fuzzy Systems, Barcelona, Spain, vol. 2, pp. 1179–1183 (1997)

    Google Scholar 

  9. Rosenfeld, A.: Fuzzy geometry: An overview. In: Proceedings of First IEEE Conference in Fuzzy Systems, San Diego, March 1992, pp. 113–118 (1992)

    Google Scholar 

  10. Dubois, D., Jaulent, M.C.: A general approach to parameter evaluation in fuzzy digital pictures. Pattern Recognition Lett. 6, 251–259 (1987)

    Article  MATH  Google Scholar 

  11. Schneider, M.: Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 330–351. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Graham, R.L.: An Efficient Algorithm for determining the Convex Hull of a Finite Planar Set. Information Processing Letters 1, 73–82 (1972)

    Article  Google Scholar 

  13. Zhan, F.B.: Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries. Soft Computing 2, 28–34 (1998)

    Google Scholar 

  14. Cicerone, S., Di Felice, P.: Cardinal Relations Between Regions with a Broad Boundary. In: 8th ACM Symposium on GIS, pp. 15–20 (2000)

    Google Scholar 

  15. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, H., Li, W. (2005). Modeling and Refining Directional Relations Based on Fuzzy Mathematical Morphology. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3641. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548669_62

Download citation

  • DOI: https://doi.org/10.1007/11548669_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28653-0

  • Online ISBN: 978-3-540-31825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics