Skip to main content

ML-CIDIM: Multiple Layers of Multiple Classifier Systems Based on CIDIM

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3642))

Abstract

An active research area in Machine Learning is the construction of multiple classifier systems to increase learning accuracy of simple classifiers. In this paper we present a method to improve even more the accuracy: ML-CIDIM. This method has been developed by using a multiple classifier system which basic classifier is CIDIM, an algorithm that induces small and accurate decision trees. CIDIM makes a random division of the training set into two subsets and uses them to build an internal bound condition. ML-CIDIM induces some multiple classifier systems based on CIDIM and places them in different layers, trying to improve the accuracy of the previous layer with the following one. In this way, the accuracy obtained thanks to a unique multiple classifier system based on CIDIM can be improved. In reference to the accuracy of the classifier system built with ML-CIDIM, we can say that it competes well against bagging and boosting at statistically significant confidence levels.

This work has been partially supported by the MOISES project, number TIC2002-04019-C03-02, of the MCyT, Spain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  2. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Machine Learning 29, 5–44 (1997)

    Article  MATH  Google Scholar 

  5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. of the 6th Intern. Conf. on Knowledge Discovery and Data Mining, pp. 71–80. ACM Press, New York (2000)

    Google Scholar 

  6. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. of 13th Intern. Conf. on Machine Learning, pp. 146–148. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  8. Wolpert, D.: Stacked generalization. Neural Networks 5, 241–260 (1992)

    Article  Google Scholar 

  9. Gama, J., Brazdil, P.: Cascade generalization. Machine Learning 41, 315–343 (2000)

    Article  MATH  Google Scholar 

  10. Ferri, C., Flach, P., Hernández-Orallo, J.: Delegating classifiers. In: Proc. of the 21st International Conference on Machine Learning, Omnipress,

    Google Scholar 

  11. Ramos-Jiménez, G., Morales-Bueno, R., Villalba-Soria, A.: CIDIM. Control of induction by sample division methods. In: Proc. of the Intern. Conf. on Artificial Intelligence, pp. 1083–1087 (2000)

    Google Scholar 

  12. Ruiz-Gómez, J., Ramos-Jiménez, G., Villalba-Soria, A.: Modelling based on rule induction learning. In: Computers and Computacional Engineering in Control, pp. 158–163. World Scientific and Engineering Society Press, Greece (1999)

    Google Scholar 

  13. Jerez-Aragonés, J.M., Gómez-Ruiz, J.A., Ramos-Jiménez, G., Muñoz Pérez, J., Alba-Conejo, E.: A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine 27, 45–63 (2003)

    Article  Google Scholar 

  14. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  15. Freund, Y.: Boosting a weak learning algorithm by majority. Information and Computation 121, 256–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Freund, Y., Schapire, R.E.: The strength of weak learnability. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Aslam, J.A., Decatur, S.E.: General bounds on statistical query learning and PAC learning with noise via hypothesis boosting. Information and Computation 141, 85–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  19. Kearns, M.J., Vazirani, U.V.: On the boosting ability of top-down decision tree learning algorithms. Journal of Computer and System Sciences 58, 109–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Breiman, L.: Arcing classifiers. Technical report, Berkeley: Statistics Department. University of California (1996)

    Google Scholar 

  21. Stone, P.: Layered Learning in Multi-Agent Systems. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh (1998)

    Google Scholar 

  22. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Computation 14, 2497–2529 (2002)

    Article  MATH  Google Scholar 

  23. Stone, P., Veloso, M.: A Layered Approach to Learning Client Behaviors in the RoboCup Soccer Server. Applied Artificial Intelligence 12, 165–188 (1998)

    Article  Google Scholar 

  24. Takahashi, Y., Asada, M.: Multi-layered learning systems for vision-based behavior acquisition of a real mobile robot. In: Proc. of SICE Annual Conference, pp. 2937–2942 (2003)

    Google Scholar 

  25. Whiteson, S., Stone, P.: Concurrent layered learning. In: Second International Joint Conference on Autonomous Agents and Multiagent Systems (2003)

    Google Scholar 

  26. Blake, C., Merz, C.J.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science (2000)

    Google Scholar 

  27. Lin, T.Y., Cercone, N. (eds.): Rough Sets and Data Mining: Analysis of Imprecise Data. Kluwer Academic Publishers, Norwell (1996)

    Google Scholar 

  28. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  29. Predki, B., Slowinski, R., Stefanowski, J., Susmaga, R., Wilk, S.z.: ROSE - Software Implementation of the Rough Set Theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 605–608. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  30. Predki, B., Wilk, S.: Rough Set Based Data Exploration Using ROSE System. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 172–180. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Herrera, F., Hervás, C., Otero, J., Sánchez, L.: Un estudio empírico preliminar sobre los tests estadísticos más habituales en el aprendizaje automático. In: Tendencias de la Minería de Datos en España (2004)

    Google Scholar 

  32. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004), http://www.R-project.org 3-900051-07-0

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramos-Jiménez, G., del Campo-Ávila, J., Morales-Bueno, R. (2005). ML-CIDIM: Multiple Layers of Multiple Classifier Systems Based on CIDIM. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_15

Download citation

  • DOI: https://doi.org/10.1007/11548706_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics