
The expressive power of

two-variable least fixed-point logics

Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt

Institut für Informatik, Humboldt-Universität, Berlin
{grohe,kreutzer,schweika}@informatik.hu-berlin.de

Abstract. The present paper gives a classification of the expressive
power of two-variable least fixed-point logics. The main results are:
1. The two-variable fragment of monadic least fixed-point logic with

parameters is as expressive as full monadic least fixed-point logic
(on binary structures).

2. The two-variable fragment of monadic least fixed-point logic without
parameters is as expressive as the two-variable fragment of binary
least fixed-point logic without parameters.

3. The two-variable fragment of binary least fixed-point logic with pa-
rameters is strictly more expressive than the two-variable fragment
of monadic least fixed-point logic with parameters (even on finite
strings).

1. Introduction

In the fields of mathematical logic and finite model theory it has always been
an important issue to compare the expressive power of different logics. Among
the logics that received particular attention in theoretical computer science,
extensions of first-order logic by mechanisms that allow to define relations by in-
duction play a prominent role. Formalising such inductive definitions in a logical
language usually involves some kind of fixed-point construction. In particular,
least fixed-point logic, LFP, is the extension of first-order logic by least fixed-point
operators, whereas M-LFP is the fragment of LFP where fixed-point operators
are monadic, i.e., have arity at most 1.

From a well-known theorem due to Immerman and Vardi [13, 19] it is known
that on ordered finite structures the logic LFP precisely characterises the com-
plexity class Ptime. Apart from describing complexity classes, logics – and in
particular fixed-point logics – are used, e.g., as languages for hardware and pro-
cess specification and verification, and as query languages for expressing queries
against databases. As observed, e.g., in [2, 18], the size of intermediate results
that occur while evaluating a query (i.e., a logical formula) over a database (i.e.,
a finite structure) crucially depends on the number of first-order variables that
occur in the formula. If the number of such variables is bounded by a constant
k, the size of intermediate results remains polynomial in the size of the input
structure. Therefore, the combined complexity of the model checking problem
apparently is much smaller when considering the k-variable fragment of a logic
instead of the entire logic.

The research community’s considerable interest in bounded variable logics
(cf., e.g., [3, 12, 18, 4, 6, 14, 16, 10, 9, 8]) can partly be explained by the compa-
rably low combined complexity of the model checking problem for these logics.
Further motivations for studying, in particular, two-variable logics are the decid-
ability of FO2 and the fact that modal logics can be embedded into two-variable
logics. For example, plain modal logic ML can be embedded into the two-variable
fragment of first-order logic, FO2, the modal iteration calculus MIC [5] can be em-
bedded into the two-variable fragment of monadic inflationary fixed-point logic,
and the modal µ-calculus Lµ can be embedded into the two-variable fragment of
monadic least fixed-point logic, M-LFP2, which, in turn, can be embedded into
two-variable infinitary logic L2

∞ω. In particular the logics FO2 and M-LFP2 have
received a lot of attention in the past (cf., [9, 8, 16]) in an attempt to explain
the nice model-theoretical and computational properties of modal logics such as
ML and Lµ. An overview of what is known about bounded variable logics and,
in particular, two-variable logics, can be found in [8, 16].

The present paper’s aim is to study the expressive power of two-variable frag-
ments of least fixed-point logic LFP. As observed in [6, 9], defining these frag-
ments requires some care, because allowing or forbidding the use of parameters
(i.e., free first-order variables) in least fixed-point operators crucially changes the
expressive power of the logic under consideration. In the literature, LFPk usually
refers to the parameter-free fragment of LFP where k first-order variables and
second-order variables of arity at most k are available, cf. [8].
The logics we consider are

– M-LFP2

param and LFP2

param, the two-variable fragments of monadic and binary
least fixed-point logic, respectively, where the use of parameters is allowed in
fixed-point operators, and

– M-LFP2 and LFP2, the two-variable fragments of monadic and binary least
fixed-point logic, respectively, where least fixed-point operators are not al-
lowed to have parameters.

We only consider fixed-point operators of arity at most two, since fixed-point
definitions of higher arity already syntactically involve more than just two first-
order variables. The presence of only two first-order variables furthermore ren-
ders it reasonable to restrict attention to binary structures, i.e., structures over
a signature that consists of constant symbols and of relation symbols of arity at
most two.

The logics M-LFP, M-LFP2 and M-LFP2

param, in particular, have explicitly been
considered before [6, 8, 9, 17, 11]. E.g., M-LFP2 coincides with the logic called FP2

in [8, 9] and F̂P2 in [6], whereas M-LFP2

param coincides with the logic called FP2

in [6].

It is known that on finite structures (or, more generally, on classes of struc-
tures of bounded cardinality), LFP2 can be embedded into infinitary logic L2

∞ω

[9, 16]. Furthermore, it has been observed in various places (cf., e.g., [16, 7]) that
M-LFP2

param can express the transitive closure of a binary relation and therefore
cannot be embedded into L2

∞ω. Consequently, one obtains that already on the
class of finite graphs, M-LFP2 � M-LFP2

param and M-LFP2

param 6≤ LFP2. (Here we

2

write L � L′ to denote that a logic L is strictly less expressive than a logic L′,
and we write L 6≤ L′ to denote that there are problems that can be expressed in
L, but not in L′.)

From [6] it is known that the combined complexity of the model checking
problem for M-LFP2

param and LFP2

param is Pspace-complete, whereas the combined
complexity of the model checking problem for LFP2 is closely related to that of
the modal µ-calculus and therefore belongs to NP ∩Co-NP and is Ptime-hard.

When restricting attention to the class of finite strings, one obtains an entirely
different picture. Due to Büchi’s theorem (cf., e.g., [7]), monadic second-order
logic MSO can describe exactly the regular string languages which, in turn, can
already be described by the modal µ-calculus Lµ. Consequently, on finite strings
the logics MSO, M-LFP, M-LFP2

param, and Lµ all have the same expressive power.
Furthermore, it is known (cf., [9, 7]) that the two-variable fragment of monadic
inflationary fixed-point logic, M-IFP2, is capable of describing non-regular string-
languages, and therefore M-LFP2 � M-IFP2.

The present paper’s contribution is to complete the picture of the expressive
power of the two-variable fragments of least fixed-point logics. Our main results
are

1. M-LFP2

param = M-LFPparam on binary structures. I.e. the two-variable frag-
ment of monadic least fixed-point logic with parameters is as expressive as
full monadic least fixed-point logic with parameters. Here, of course, the
restriction to binary structures is crucial, as M-LFP contains full first-order
logic.

2. LFP2 = M-LFP2, i.e., parameter-free two-variable binary least fixed-point
logic has the same expressive power as parameter-free two-variable monadic
least fixed-point logic.

3. M-LFP2

param � LFP2

param, and the inclusion is strict already on the class of
finite strings. We prove this result by showing that the non-regular string-
language {anbn | n ∈ N} is expressible in LFP2

param.

Altogether this leads to the following inclusion structure of the expressive
power of the two-variable fragments of least fixed-point logic:

M-LFP2 = LFP2 � M-LFP2

param = M-LFPparam � LFP2

param

on the class of binary structures,

and

M-LFP2 = LFP2 = M-LFP2

param = M-LFPparam � LFP2

param

on the class of finite strings.

Fig. 1. Expressive power of the two-variable fragments of least fixed-point logic

The paper is organised as follows: After fixing some basic notation in sec-
tion 2, we formally introduce the two-variable fragments of least fixed-point logic

3

in section 3. The equivalence of M-LFP2

param and M-LFPparam is proved in sec-
tion 4. Afterwards, in section 5 we show that LFP2 is equivalent to M-LFP2 and
that LFP2

param can express non-regular string-languages and therefore is strictly
more expressive than M-LFP2

param. Detailed proofs of the results presented here
can be found in the full version of the paper.

2. Preliminaries

As usual, we write Ord for the class of ordinals and ω for the set of finite ordinals
(i.e., non-negative integers). By Pow(S) we denote the power set of a set S. A
signature is a finite set of relation and constant symbols. We call a signature τ
binary if the arity of every relation symbol occurring in τ is at most two. Thus,
structures of a binary signature are essentially coloured graphs.

In this paper we deal primarily with two-variable logics – logics that only
allow for two distinct first-order variables. As with only two variables we cannot
take advantage of relations of higher arity, we will only consider binary signatures
throughout this paper. In most cases, this restriction has no impact on the
validity of our statements. In the few places where it does, we will state this
explicitly.

We use German letters A,B, . . . to denote structures and the corresponding
Roman letters A,B, . . . to denote their universes.

We assume that the reader is familiar with first-order logic (FO). We use
FO(τ) to denote the class of all first-order formulae of signature τ . Besides
first-order variables we also allow free second-order variables in the formulae
(but no second-order quantification). We write ϕ(R1, . . . , Rk,x1, . . . , xn) to in-
dicate that the free first-order variables of the formula ϕ are x1, . . . , xn and the
free relation variables are R1, . . . , Rk. We use x̄ and R̄ as abbreviations for se-
quences x1, . . . , xn and R1, . . . , Rk of variables. Finally, we write ϕ(R1, . . . , Rk,
x̄1, . . . , x̄k, z̄) to indicate that the free first-order variables of ϕ are the variables
in the tuples x̄i and z̄ and that the arity of a tuple x̄i is the same as the arity of
the relation variable Ri.

3. Finite variable fragments of least fixed-point logic

In this section we give a brief introduction to least fixed-point logic and its
two-variable fragments. For a detailed exposition see [7].

Least and greatest fixed points of monotone operators. Let τ be a
signature and let ϕ(R, x̄) be a formula of signature τ which is positive in the
k-ary relation variable R, i.e. every atom of the form Rt̄ in ϕ occurs within the
scope of an even number of negation symbols. ϕ defines for every τ -structure A

a monotone operator1FA,ϕ : Pow(Ak) → Pow(Ak) via FA,ϕ(P) := {ā ∈ Ak :
(A, P) |= ϕ[ā]}, for every P ⊆ Ak. In cases where A is understood from the
context, we simply write Fϕ for FA,ϕ.

A set P is called a fixed point (a pre fixed point) of ϕ in A if, and only if,
FA,ϕ(P) = P (FA,ϕ(P) ⊆ P). P is called the least fixed point of ϕ if P is a fixed
point of ϕ and P ⊆ Q for every fixed point Q of Fϕ. We write lfp(FA,ϕ) for the
least fixed point of FA,ϕ. Further, as the intersection of all pre fixed points is

4

itself a fixed point, we get the following characterisation of least fixed points:

lfp(FA,ϕ) =
⋂
{Q : FA,ϕ(Q) = Q} =

⋂
{Q : FA,ϕ(Q) ⊆ Q} (1)

There is also the corresponding notion of a greatest fixed point of ϕ which is
the fixed point that contains all other fixed points. Least and greatest fixed
points are dual to each other, in the sense that for every monotone operator

F : Pow(M) → Pow(M) we have lfp(F) = gfp(F), where F is defined as
F (U) := (F (U c))c (where U c denotes the complement of U).

Least (and also greatest) fixed points of monotone operators can also be built
up inductively. For this we define for all ordinals α sets Rα

A,ϕ ⊆ Ak inductively

as R0
A,ϕ := ∅, Rα+1

A,ϕ := FA,ϕ(Rα
A,ϕ), and Rλ

A,ϕ :=
⋃

γ<λR
γ
A,ϕ for infinite limit

ordinals λ. In cases where A and ϕ are understood, we simply write Rα. Since
FA,ϕ is monotone we have Rα ⊆ Rα+1 for all α. Hence the sequence (Rα)α∈Ord

eventually reaches a fixed point, i.e. there is an ordinal α such that Rα = Rα+1 =
Rγ for all γ > α. We refer to this fixed point as R∞. It is easily seen that if the
structure A is finite then α is finite too. A theorem due to Knaster and Tarski
establishes the equivalence R∞

A,ϕ = lfp(FA,ϕ) for all structures A and formulae
ϕ positive in the variable R. Thus, the sequence (Rα

A,ϕ)α∈Ord approximates the
least fixed point of FA,ϕ from below. The sets Rα

A,ϕ are called the stages of
the least fixed-point induction on ϕ in A. A similar induction can be used to
define greatest fixed points, where we start with R0 := Ak and take intersections
instead of unions to define the higher stages.

Least fixed-point logic. The logic LFP(τ) is the extension of FO(τ) by
least fixed-point operators. Precisely: LFP(τ) contains FO(τ) and is closed un-
der Boolean connectives and first-order quantification; and if ϕ(R, x̄, z̄, Q̄) is an
LFP(τ)-formula which is positive in the k-ary relation variable R then for ev-
ery k-tuple t̄ of terms [lfpR,x̄ ϕ](t̄) is an LFP(τ)-formula such that for every(
τ ∪̇ {z̄, Q̄}

)
-structure A and every tuple ā ∈ Ak we have A |= [lfpR,x̄ ϕ](ā) if,

and only if, ā ∈ lfp(FA,ϕ). Similarly, we allow formulae [gfpR,x̄ ϕ](t̄) defining
the greatest fixed point of FA,ϕ. The variables in z̄ that are not contained in x̄ are
called the parameters of the fixed-point induction. They will play an important
role in later sections.

Due to the above mentioned duality of least and greatest fixed points, gfp-
operators can easily be replaced by lfp-operators with additional negation sym-
bols. On the other hand, the use of lfp- and gfp-operators allows to transform
every formula into a formula in negation normal form, i.e., a formula where
negation symbols only occur directly in front of atomic sub-formulae.

We continue with the definition of some important fragments of least fixed-
point logic. The monadic least fixed-point logic (M-LFP) is defined as the frag-
ment of LFP where all fixed-point variables are unary, i.e. of arity ≤ 1. Analo-
gously we define binary least fixed-point logic (Bin-LFP) as the fragment of LFP

where all fixed-point variables are of arity ≤ 2.

1 An operator F : Pow(M) → Pow(M) is monotone iff F (A) ⊆ F (B) for all A ⊆
B ⊆ M .

5

We are primarily interested in fragments of M-LFP and Bin-LFP where the
number of available first-order variables is restricted to two. Recall from above
that the variables z̄ occurring free in ϕ(R, x̄, z̄) other than x̄ are called parameters
of the fixed-point formula [lfpR,x̄ ϕ](t̄). It is well know in finite model theory
that parameters can be eliminated by increasing the arity of the fixed-point
variables, i.e. for every LFP-formula [lfpR,x̄ ϕ(R, x̄, z̄)](t̄) there is an equivalent
LFP-formula [lfpR′,x̄′ ϕ′(R′, x̄′)](t̄′) which is parameter-free. However, this trans-
lation does not only require fixed-point variables of higher arity, it also requires
the introduction of fresh first-order variables. Thus the standard translation of
formulae with parameters into formulae without parameters does not apply to
the two-variable fragments defined above. And indeed, as we will see later on, in
this restricted setting, parameters increase the expressive power of the logics. We
therefore introduce a separate notation for logics with and without parameters.

The logics M-LFP2 and LFP2 are defined as the parameter-free fragment of
M-LFP and Bin-LFP resp. where only two distinct first-order variables may be
used in the formulae. Analogously, the logics M-LFP2

param and LFP2

param are defined
as the fragment of M-LFP and Bin-LFP resp. where only two distinct first-order
variables may be used in the formulae but where the fixed-point operators may
have parameters.

Simultaneous fixed-point inductions. Simultaneous inductions can simplify
the formalisation of properties significantly, but as we will see below, they do
not add to the expressive power of the logics.

Definition 1 (Simultaneous least fixed-point logic). LetR1, . . . , Rk be re-
lation symbols of arity r1, . . . , rk, respectively. Simultaneous formulae are for-
mulae of the form ψ(x̄) := [lfp Ri : S](x̄), where

S :=






R1x̄1 ← ϕ1(R1, . . . , Rk, x̄1)
...

Rkx̄k ← ϕk(R1, . . . , Rk, x̄k)

is a system of LFP-formulae ϕi which are positive in all variables R1, . . . , Rk.
On any structure A, the system S induces an operator

FS : Pow(Ar1)× · · · × Pow(Ark)→ Pow(Ar1)× · · · × Pow(Ark)

defined as FS(P1, . . . , Pk) = (Fϕ1
(P̄), . . . , Fϕk

(P̄)), where Fϕi
is the operator

induced by ϕi in S defined as

Fϕi
: Pow(Ar1)× · · · × Pow(Ark) −→ Pow(Ari)

(R1, . . . , Rk) 7−→ {ā : (A, R1, . . . , Rk) |= ϕi[ā]}.

The stages Sα of an induction on such a system S of formulae are k-tuples of
sets (Rα

1 , . . . , R
α
k) defined as R0

i := ∅, Rα+1
i := Fϕi

(Rα
1 , . . . , R

α
k), and Rλ

i :=⋃
ξ<λ R

ξ for infinite limit ordinals λ.
For every structure A and any tuple ā from A, A |= ψ[ā] if, and only if,

ā ∈ R∞

i , where R∞

i denotes the i-th component of the simultaneous least fixed
point of S.

Let S-LFP denote the class of LFP-formulae with simultaneous inductions.

6

We show next that allowing simultaneous fixed points does not increase the
expressive power of LFP, i.e. S-LFP = LFP.

Theorem 2. For any parameter-free system S of formulae in LFP, positive in
their free fixed-point variables, ϕ := [lfp Ri : S](t̄) is equivalent to a formula
ϕ∗in LFP (without simultaneous inductions). Further, ϕ and ϕ∗ use the same
set of first and second-order variables. In particular, the arity of the involved
fixed-point operators does not increase.

The theorem follows immediately from the following lemma – sometimes
called the Bekič-principle – which is part of the folklore of the community. (See
e.g. [1, Lemma 1.4.2], [15, Lemma 10.9].)

Lemma 3. Let

S :=






R1x̄1 ← ϕ1(R1, . . . , Rk, x̄1)
...

Rk−1x̄k−1 ← ϕk−1(R1, . . . , Rk, x̄k−1)
Rkx̄k ← ϕk(R1, . . . , Rk, x̄k)

be a system of formulae in LFP such that [lfp R1 : S](x̄1) is parameter-free.
Then [lfp R1 : S] is equivalent to the parameter-free formula [lfp R1 : T], where

T :=






R1x̄1 ← ϕ′

1(R1, . . . , Rk−1, x̄1)
...

Rk−1x̄k−1 ← ϕ′

k−1(R1, . . . , Rk−1, x̄k).

Here ϕ′

i := ϕi(R1, . . . , Rk−1, Rkū/[lfpRk,x̄k
ϕk](ū), x̄1) is obtained from ϕi by

replacing every occurrence of an atom Rkū by the formula [lfpRk,x̄k
ϕk](ū).

Note that this lemma cannot be applied in cases where parameters are allowed.

4. Monadic two-variable fixed-point logic

As already mentioned in section 1, it is known that M-LFP2 is strictly less ex-
pressive than M-LFP2

param on the class of finite graphs. In fact, M-LFP2 can be
embedded into two-variable infinitary logic L2

∞ω, whereas M-LFP2

param can not.
Due to this, it has been claimed by several authors that allowing parameters in
a two-variable fixed-point logic does not yield a logic that behaves as a “proper
two-variable logic” (cf., [9, 8, 6]) . The next theorem gives additional backup
to this claim by showing that – subject to the obvious restriction to binary
structures – the two-variable fragment of monadic least fixed-point logic with
parameters is as expressive as full monadic least fixed-point logic.

Theorem 4. M-LFP2

param = M-LFPparam on binary structures. That is, for every
binary signature τ the following is true: For every M-LFP(τ)-sentence ϕ there is
an M-LFP2

param(τ)-sentence ϕ′ that is equivalent to ϕ on all τ-structures.

The proof is based on the simple idea of replacing every first-order quantification
by a new monadic second-order variable and a fixed point construction.

7

5. Binary two-variable fixed-point logic

In this section we concentrate on the expressive power of two-variable binary
least fixed-point logic with and without parameters, respectively. First we show
that parameter-free two-variable binary least fixed-point logic is no more ex-
pressive than parameter-free two-variable monadic least fixed-point logic. Af-
terwards, we prove that (already on the class of finite strings) two-variable bi-
nary least fixed-point logic with parameters is strictly more expressive than
two-variable monadic least fixed-point logic with parameters.

Parameter-free two-variable binary least fixed-point logic.

Theorem 5. LFP2 = M-LFP2 on binary structures. That is, for every binary
signature τ the following is true: For every LFP2(τ)-formula ϕ there is an
M-LFP2(τ)-formula ϕ′ that is equivalent to ϕ on all τ-structures.

Proof. By definition, every M-LFP2-formula is also a valid formula in LFP2.
Hence, M-LFP2 ≤ LFP2. Towards the converse, we show by induction on the
number n of binary fixed-point operators that every formula in LFP2 is equivalent
to a formula in M-LFP2. For n = 0 this is trivial. Let λ′ be a formula with n > 0
binary fixed-point operators and let λ(x, y) be a sub-formula of λ′ of the form
λ(x, y) := [lfpR,x,y ϕ](t1, t2) such that ϕ is in M-LFP2. ϕ can be decomposed into
a positive Boolean combination of the following formulae:
– A quantifier-free formula θ(x, y) with free variables x and y. Here, by “quan-

tifier-free” we mean absence of fixed-point operators too.
– Formulae ψ1(x), . . . , ψs(x) where x and only x occurs as a free variable.
– Formulae χ1(y), . . . , χr(y) where y and only y occurs as a free variable.
– A formula ϑ without any free variables

The crucial observation is that as ϕ is in M-LFP2 and we do not allow parameters
to the fixed-point operators, the only sub-formulae with two free variables are
atoms or negated atoms.

The formula ϕ is a positive Boolean combination of the sub-formulae de-
scribed above and all sub-formulae are positive in the fixed-point variable R.
Hence, the system

S :=






Rxy ← ϕ̂(R, x, y, X̄, Ȳ , T)
Xix ← ψi(x) for all i ∈ {1, . . . , s}
Yiy ← χi(y) for all i ∈ {1, . . . , r}
T ← ϑ

is positive in all fixed-point variables. Here ϕ̂ is obtained from ϕ by replacing
the sub-formulae ψi(x) by Xix, the χi(y) by Yiy and ϑ by T . Note that T is a
nullary second-order variable, i.e. it can only take the values ∅ or {()}. A simple
induction on the stages of the fixed-point induction establishes the next lemma.

Lemma 6. λ(x, y) ≡ [lfp R : S](x, y). ⊓⊔

Now we can treat [lfpR,x,y ϕ̂](x, y) as a fixed-point formula over the ex-

tended signature τ ∪̇ {X̄, Ȳ , T } and consider the formulae ϕ̂α of the unravelling

8

of ϕ̂ defined as ϕ̂0(x) := ¬x = x and ϕ̂n+1(x) := ϕ̂(Rt1t2/ϕ̂
n(t1, t2)). Here,

ϕ̂(Rt1t2/ϕ̂
n(t1, t2)) is the formula obtained from ϕ̂ by replacing every occur-

rence of an atom Rt1t2 by the result of substituting in ϕ̂n x by t1 and y by t2.
As ϕ̂ is quantifier-free the formulae ϕ̂n are quantifier-free as well. Further, there
are (up to equivalence) only finitely many quantifier-free formulae for a fixed
(and finite) relational signature. Thus, there is an n < ω which only depends
on the signature and not on a particular interpretation of the relation variables
Xi, Yi, and T such that ϕ̂n ≡ ϕ̂n+1. (Precisely, there are n, q < ω such that
ϕ̂n ≡ ϕ̂n+q. But as ϕ̂ is monotone in R, this implies ϕ̂n ≡ ϕ̂n+1.) Consequently,

for ˆ̂ϕ := ϕ̂n,

[lfpR,x,y ϕ̂](x, y) ≡ ˆ̂ϕ (∗)

on all structures over the signature τ ∪̇ {Xi, Yi, T }. Note that in ˆ̂ϕ the variable
R does no longer occur.

The next step is to (a) eliminate in S the rule Rxy ← ϕ̂ by applying the
construction of Lemma 3 and (b) to replace every occurrence of [lfpR,x,y ϕ̂](t1, t2)

by ˆ̂ϕ(t1, t2). This construction yields the system

S′ :=






Xix ← ψi(Rt1t2/ ˆ̂ϕ(t1, t2)) for all i ∈ {1, . . . , s}

Yix ← χi(Rt1t2/ ˆ̂ϕ(t1, t2)) for all i ∈ {1, . . . , r}

T ← ϑ(Rt1t2/ ˆ̂ϕ(t1, t2))

where ψi(Rt1t2/ ˆ̂ϕ(t1, t2)) denotes the formula obtained from ψi by replacing

every occurrence of an atom Rt1t2 by the formula ˆ̂ϕ(t1, t2) – the result of sub-

stituting in ˆ̂ϕ t1 for x and t2 for y. By Lemma 3 and the equivalence (∗), the
systems S and S′ are equivalent in the sense that for all i ∈ {1, . . . , s} we have

[lfp Xi : S](x) ≡ [lfp Xi : S′](x) (∗∗)

and likewise for T and all Yi. Let (R∞, X∞

i , Y∞

i , T∞) be the simultaneous least
fixed point of FS . Further, (∗∗) implies that (X∞

i , Y∞

i , T∞) is also the simultane-
ous least fixed point of FS′ . By definition,R∞ = {(a, b) : (A, R∞, X∞

i , Y∞

i , T∞) |=
ϕ̂(a, b)}. We claim that

R∞ = {(a, b) : (A, X∞

i , Y∞

i , T∞) |= [lfpR,x,y ϕ̂](a, b)}. (∗∗∗)

We let R′∞ := {(a, b) : (A, X∞

i , Y∞

i , T∞) |= [lfpR,x,y ϕ̂](a, b)}. Clearly, R′∞ ⊆
R∞, as R∞ is a fixed point of ϕ̂ (with the given interpretation X∞

i , Y∞

i , T∞ of
the other free variables) and R′∞ is its least fixed point. Conversely, the sequence
(R′∞, X∞

i , Y∞

i , T∞) is a fixed point of FS and thus R∞ ⊆ R′∞.
Now we can put the various parts together to obtain the following chain of

equalities:

R∞ = {(a, b) : (A, X∞

i , Y∞

i , T∞) |= [lfpR,x,y ϕ̂](a, b)} (by (∗∗∗))

= {(a, b) : (A, X∞

i , Y∞

i , T∞) |= ˆ̂ϕ(a, b)} (by (∗))
= {(a, b) : A |= ϕ∗(a, b)},

9

where ϕ∗ is the formula derived from ˆ̂ϕ by replacing every occurrence of an atom
Xit by [lfp Xi : S′](t) and likewise for the relations Yi and T . By construction,
the formula ϕ∗ only contains monadic fixed-point operators and is equivalent
to the formula λ(x, y) from the beginning of the proof. Thus, we can replace
the occurrence of λ in λ′ by ϕ∗. The resulting formula has fewer binary fixed-
point operators as λ′ and, by induction hypothesis, is therefore equivalent to a
formula without any binary fixed-point operators. This concludes the proof of
the theorem. ⊓⊔

Remark. The theorem naturally extends to the k-variable fragment of LFP,
that is, every parameter-free formula of LFP with at most k distinct first-order
variables and k-ary fixed-point operators is equivalent to a parameter-free k-
variable formula of LFP with fixed-point relations of arity at most k − 1.

Two-variable binary least fixed-point logic with parameters. We show
next that LFP2

param is strictly more expressive than M-LFP2

param. We prove this by
showing that the non-regular string-language {anbn | n ∈ N} can be defined by
an LFP2

param-sentence. In order to give a detailed proof, we need some additional
notation: A non-empty string w over an alphabet Σ is represented by a structure
W over the binary signature τΣ := {min,max, succ, <} ∪ {Qσ | σ ∈ Σ} in the
usual way: If w = w1 · · ·wn with wi ∈ Σ, then W is the τΣ-structure with
universe W = {1, . . , n}, minW = 1, maxW = n, succW = {(i, i+1) | i < n}, <W

is the natural linear order on {1, . . , n}, and QW
σ = {i ≤ n | wi = σ}. We say that

a string-language L ⊆ Σ∗ is expressible in a logic L, if there is an L(τΣ)-sentence
ϕL such that for all non-empty strings w ∈ Σ∗ we have w ∈ L ⇐⇒ W |= ϕL .

Lemma 7. (i) {anbn | n ∈ N} is expressible in LFP2

param.
(ii) {anbncn | n ∈ N} is expressible in LFP2

param. In particular, LFP2

param is capable
of defining a non-context-free string-language.

Proof. We use x and y to denote the two first-order variables available in the
logic LFP2

param.
A binary relation E over {1, . . , n} is called a pairing iff the following is true

for all (i, j), (i′, j′) ∈ E: (1) i < j, (2) i = i′ ⇐⇒ j = j′, and (3) i < i′ ⇐⇒
j′ < j.
Let ϕy(x, y,R) be the following M-LFP2

param-formula

ϕy(x, y,R) :=
[
lfpX,x succ(y, x) ∨ ∃y

(
Xy ∧R(x, y)

)
∨

∃y
(
Xy ∧ succ(y, x) ∧ ∃x (Xx ∧R(y, x))

)]
(x) .

Claim 1: For every n ∈ N, every pairing E ⊆ {1, . . , n}2, and all i, j ∈
{1, . . , n} the following is true: 〈{1, . . , n}, succ〉 |= ϕy(i, j, E) if, and only if,
i ∈ {j+1, i′, i′+1 | (i′, j+1) ∈ E}. (An illustration is given in Figure 2.)

Due to space limitation, we have to omit the proof of this and the following
two claims.

Analogously to the formula ϕy(x, y,R) we define an M-LFP2

param-formula
ϕx(x, y,R) as follows:

ϕx(x, y,R) :=
[
lfpY,y succ(y, x) ∨ ∃x

(
Y x ∧R(x, y)

)
∨

∃x
(
Y x ∧ succ(y, x) ∧ ∃y (Y y ∧R(y, x))

)]
(y) .

10

i’ i’+ nj j+ 11 1

Fig. 2. The unary least fixed-point de-
fined by the formula ϕy in case that y is
interpreted by some j for which there ex-
ists an i′ such that (i′, j+1) ∈ E. The
nodes that belong to this fixed-point are
marked by black circles.

ni j’i− j’−1 11

Fig. 3. The unary least fixed-point de-
fined by the formula ϕx in case that x

is interpreted by some i for which there
exists a j′ such that (i−1, j′) ∈ E. The
nodes that belong to this fixed-point are
marked by black circles.

Claim 2: For every n ∈ N, every pairing E ⊆ {1, . . , n}2, and all i, j ∈
{1, . . , n} the following is true: 〈{1, . . , n}, succ〉 |= ϕx(i, j, E) if, and only if,
j ∈ {i−1, j′, j′−1 | (i−1, j′) ∈ E}. (An illustration is given in Figure 3.)

Finally, we define the LFP2

param-formulae χ(x, y,R) := x < y ∧
((
x = min ∧

y = max
)
∨

(
ϕx(x, y,R)∧ϕy(x, y,R)

))
and ψ(x, y) :=

[
lfpR,xy χ(x, y,R)

]
(x, y) .

Claim 3: For every n ∈ N and all i, j ∈ {1, . . , n}, the following is true:
〈{1, . . , n},min,max, succ, <〉 |= ψ(i, j) ⇐⇒ i < j and j = n− i+ 1 .

We are now ready to present the LFP2

param-sentence ϕanbn that defines the string-
language {anbn | n ∈ N} via

ϕanbn := ∃x∃y ψ(x, y) ∧ succ(x, y) ∧ Qa(x) ∧ Qb(y)∧
∀y

(
y < x→ Qa(y)

)
∧ ∀x

(
y < x→ Qb(x)

)
.

Using Claim 3 it is straightforward to see that ϕanbn indeed defines the language
{anbn | n ∈ N}. Thus, the proof of part (i) of Lemma 7 is complete.

The proof of part (ii) of Lemma 7 uses a similar construction. Now, however,
the formula ϕanbncn defining the string-language {anbncn | n ∈ N} is given via
ϕanbncn := ϕa∗b∗c∗ ∧ ϕanbnc∗ ∧ ϕa∗bncn where
– ϕa∗b∗c∗ is an FO2-sentence expressing that the underlying string belongs to

the language defined by the regular expression a∗b∗c∗.
– ϕanbnc∗ is a LFP2

param-sentence which, for an underlying string of the form
a∗b∗c∗ expresses that the number of as is equal to the number of bs. This
sentence can be obtained in a similar way as the sentence ϕanbn from the
proof of part (i) of Lemma 7.

– ϕa∗bncn is a LFP2

param-sentence which, for an underlying string of the form
a∗b∗c∗ expresses that the number of bs is equal to the number of cs. Again,
this sentence can be obtained in a similar way as the sentence ϕanbn from
the proof of part (i) of Lemma 7. ⊓⊔

Using Lemma 7, one easily obtains

Theorem 8. M-LFP2

param � LFP2

param on finite strings. That is, already on the
class of finite strings, the two-variable fragment of binary least fixed-point logic
where parameters are allowed is strictly more expressive than the two-variable
fragment of monadic least fixed-point logic where parameters are allowed.

11

Proof. It is well-known that the string-language {anbn | n ∈ N} is not regular,
i.e., due to Büchi’s theorem, not expressible in monadic second-order logic MSO.
As M-LFP2

param ≤ M-LFP ≤ MSO, we therefore obtain that {anbn | n ∈ N} is
not expressible in M-LFP2

param. From Lemma 7 we obtain that {anbn | n ∈ N} is
expressible in LFP2

param. ⊓⊔

References

1. A. Arnold and D. Niwiński. Rudiments of µ-calculus. North Holland, 2001.
2. S. S. Cosmadakis. The complexity of evaluating relational queries. Information

and Control, 58:101–112, 1983.
3. A. Dawar. Feasible computation through model theory. PhD thesis, Univ. of Penn-

sylvania, 1993.
4. A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definability

over finite structures. Information and Computation, 119:160 – 175, 1995.
5. A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in modal logic.

ACM Transactions on Computational Logic, 5:282–315, 2004.
6. S. Dziembowski. Bounded-variable fixpoint queries are pspace-complete. In Proc.

of CSL’96, volume 1258 of Lecture Notes in Computer Science, pages 89–105.
Springer, 1997.

7. H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer, New York, second
edition, 1999.

8. E. Grädel and M. Otto. On Logics with Two Variables. Theoretical Computer
Science, 224:73–113, 1999.

9. E. Grädel, M. Otto, and E. Rosen. Undecidability Results for Two-Variable Logics.
Archive for Mathematical Logic, 38:313–354, 1999. Journal version of STACS‘97
paper.

10. M. Grohe. Finite variable logics in descriptive complexity theory. Bulletin of
Symbolic Logic, 4:345–398, 1998.

11. M. Grohe and N. Schweikardt. Comparing the succinctness of monadic query
languages over finite trees. RAIRO - Theoretical Informatics and Applications
(ITA), 38:343–373, 2004. Journal version of CSL’03 paper.

12. I. Hodkinson. Finite variable logics. Bull. Europ. Assoc. Theor. Comp. Sci., 51:111–
140, 1993.

13. N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86–104, 1986.

14. Ph. Kolaitis and M. Vardi. On the expressive power of variable-confined logics. In
Proc. of LICS’96, pages 348–359, 1996.

15. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
16. M. Otto. Bounded variable logics and counting – A study in finite models, volume 9

of Lecture Notes in Logic. Springer-Verlag, 1997. IX+183 pages.
17. N. Schweikardt. On the expressive power of monadic least fixed point logic. In

Proc. of ICALP’04, Lecture Notes in Computer Science, pages 1123–1135. Springer,
2004.

18. M. Y. Vardi. On the complexity of bounded-variable queries. In PODS’95: 14th
ACM Symposium on Principles of Database Systems, pages 266–276, 1995.

19. M. Y. Vardi. The complexity of relational query languages. In STOC’82: 14th
Annual ACM Symposium on the Theory of Computing, pages 137–146, 1982.

12

