Skip to main content

The Generalization of Dirac’s Theorem for Hypergraphs

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

  • 1368 Accesses

Abstract

A substantial amount of research in graph theory continues to concentrate on the existence of hamiltonian cycles and perfect matchings. A classic theorem of Dirac states that a sufficient condition for an n-vertex graph to be hamiltonian, and thus, for n even, to have a perfect matching, is that the minimum degree is at least n/2. Moreover, there are obvious counterexamples showing that this is best possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bermond, J.C., et al.: Hypergraphes hamiltoniens. Prob. Comb. Theorie Graph Orsay 260, 39–43 (1976)

    MathSciNet  Google Scholar 

  2. Demetrovics, J., Katona, G.O.H., Sali, A.: Design type problems motivated by database theory. Journal of Statistical Planning and Inference 72, 149–164 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dirac, G.A.: Some theorems for abstract graphs. Proc. London Math. Soc. 2(3), 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  4. Frankl, P., Rödl, V.: Extremal problems on set systems. Random Struct. Algorithms 20(2), 131–164 (2002)

    Article  MATH  Google Scholar 

  5. Katona, G.Y., Kierstead, H.A.: Hamiltonian chains in hypergraphs. J. Graph Theory 30, 205–212 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Komlós, J., Sárközy, G.N., Szemerédi, E.: On the Pósa-Seymour conjecture. J. Graph Theory 29, 167–176 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kuhn, D., Osthus, D.: Matchings in hypergraphs of large minimum degree (submited)

    Google Scholar 

  8. Lovász, L., Plummer, M.D.: Matching theory. North-Holland Mathematics Studies 121, Annals of Discrete Mathematics 29, North-Holland Publishing Co., Amsterdam; Akadémiai Kiadó, Budapest (1986)

    Google Scholar 

  9. Rödl, V., Ruciński, A., Szemerédi, E.: A Dirac-type theorem for 3-uniform hypergraphs, Combinatorics, Probability and Computing (to appear)

    Google Scholar 

  10. Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in uniform hypergraphs with large minimum degree (submitted)

    Google Scholar 

  11. Rödl, V., Ruciński, A., Szemerédi, E.: An approximative Dirac-type theorem for k-uniform hypergraphs (submitted)

    Google Scholar 

  12. Szemerédi, E.: Regular partitions of graphs. Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401, Colloq. Internat. CNRS, 260, CNRS, Paris (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szemerédi, E., Ruciński, A., Rödl, V. (2005). The Generalization of Dirac’s Theorem for Hypergraphs. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_5

Download citation

  • DOI: https://doi.org/10.1007/11549345_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics