
ar
X

iv
:0

70
4.

39
31

v1
 [

cs
.L

O
]

 3
0

A
pr

 2
00

7

THE COMPLEXITY OF MODEL CHECKING HIGHER-ORDER

FIXPOINT LOGIC

ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

Department of Computer Science, University of Munich, Germany

Department of Computer Science, University of Aarhus, Denmark

IT Department, Uppsala University, Sweden

Abstract. Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed λ-calculus
and the modal µ-calculus. This makes it a highly expressive temporal logic that is capable
of expressing various interesting correctness properties of programs that are not expressible
in the modal µ-calculus.

This paper provides complexity results for its model checking problem. In particular we
consider its fragments HFLk,m which are formed using types of bounded order k and arity
m only. We establish kExpTime-completeness for model checking each HFLk,m fragment.
For the upper bound we use fixpoint elimination to obtain reachability games that are
singly-exponential in the size of the formula and k-fold exponential in the size of the
underlying transition system. These games can be solved in deterministic linear time. As
a simple consequence we obtain an ExpTime upper bound on the expression complexity
of each HFLk,m.

The lower bound is established by a reduction from the word problem for alternating
(k − 1)-fold exponential space bounded Turing Machines. Since there are fixed machines
of that type whose word problems are kExpTime-hard already we obtain, as a corollary,
kExpTime-completeness for the data complexity of HFLk,m already when m ≥ 4. This
also yields a hierarchy result in expressive power.

1. Introduction

Temporal logics are well-established tools for the specification of correctness properties
and their verification in hard- and software design processes. One of the most famous
temporal logics is Kozen’s modal µ-calculus Lµ [15] which extends multi-modal logic with
extremal fixpoint quantifiers. Lµ subsumes many other temporal logics like PDL [11] as well
as CTL∗ [9], and with it CTL [8] and LTL [23]. It also has connections to other formalisms
like description logics for example.

Lµ is equi-expressive to the bisimulation-invariant fragment of Monadic Second Order
Logic over trees or graphs [10, 13]. Hence, properties expressed by formulas of the modal
µ-calculus are only regular. There are, however, many interesting correctness properties of
programs that are not regular. Examples include uniform inevitability [7] which states that

2000 ACM Subject Classification: 03B70,68Q60,03B44,68Q17.
Key words and phrases: µ-calculus, λ-calculus, model checking, complexity.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Roland Axelsson, Martin Lange, and Rafał Somla
Creative Commons

1

http://arxiv.org/abs/0704.3931v1

2 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

a certain event occurs globally at the same time in all possible runs of the system; counting
properties like “at any point in a run of a protocol there have never been more send- than
receive-actions”; formulas saying that an unbounded number of data does not lose its order
during a transmission process; or properties making structural assertions about their models
like being bisimilar to a linear time model.

When program verification was introduced to computer science, programs as well as
their correctness properties were mainly specified in temporal logics. Hence, verification
meant to check formulas of the form ϕ → ψ for validity, or equally formulas of the form
ϕ ∧ ψ for satisfiability. An intrinsic problem for this approach and non-regular properties
is undecidability. Note that the intersection problem for context-free languages is already
undecidable [1].

One of the earliest attempts at verifying non-regular properties of programs was Non-
Regular PDL [12] which enriches ordinary PDL by context-free programs. Non-Regular
PDL is highly undecidable, hence, the logic did not receive much attention for program
verification purposes. Its model checking problem, however, remains decidable on finite
transition systems – it is even in P [16].

Another example is Fixpoint Logic with Chop, FLC, [22] which extends Lµ with a
sequential composition operator. It is capable of expressing many non-regular – and even
non-context-free – properties, and its model checking problem on finite transition systems
is decidable in deterministic exponential time [21]. It also properly subsumes Non-Regular
PDL [20].

In order to achieve non-regular effects in FLC, the original Lµ semantics is lifted to a
function from sets of states to sets of states. This idea has been followed consequently in the
introduction of Higher-Order Fixpoint Logic, HFL, [28] which incorporates a simply typed
λ-calculus into the modal µ-calculus. This gives it even more expressive power than FLC.
HFL is, for example, capable of expressing assume-guarantee-properties. Still, HFL’s model
checking problem on finite transition systems remains decidable. This has been stated in
its introductory work [28]. It is also known that model checking HFL is non-elementary
with the following complexity bounds [19].

• When restricted to function types of order k, the model checking problem for this
fragment is hard for deterministic (k − 3)-fold exponential space and included in
determinisitic (k + 1)-fold exponential time. It is not made explicit, though, that
the arity of types needs to be fixed for that.

• The model checking problem is non-elementary on fixed (and very small) structures
already. However, unbounded type orders are needed for this result.

Our aim is to close this apparent gap and to provide an analysis of the model checking
problem for HFL and, thus, the problem of automatically verifying non-regular properties
on finite transition systems.

We start in Sect. 2 by recalling the logic and giving a few examples of HFL-expressible
properties. Sect. 3 contains a reduction from HFL’s model checking problem to the problem
of solving (rather large) reachability games. This improves the upper bound mentioned
above: these games can be solved in k-fold exponential time when type orders are bounded
by k and arities are fixed.

Sect. 4 presents a reduction from the word problem for alternating space-bounded
Turing Machines to HFL’s model checking problem. This improves on the lower bounds
mentioned above in two ways. For the fragment of type orders restricted to k we can
match the new upper bound and establish completeness for the class of k-fold deterministic

THE COMPLEXITY OF MODEL CHECKING HFL 3

exponential time. A slight modification produces formulas that are independent of the input
word to the Turing Machine. Hence, we get a result on the data complexity of HFL as a
simple corollary. This, in turn, yields a hierarchy result on expressive power within HFL.

A non-elementary lower complexity bound on the problem of a logic that incorporates
the simply typed λ-calculus is of course reminiscent of Statman’s result which states that
the normalisation problem in the simply typed λ-calculus is non-elementary [25]. But this is
rather related to the equivalence problem for HFL which is known to be highly undecidable
[12, 20, 28]. Since HFL is a branching time logic there is probably no simple reduction from
the equivalence problem to the model checking problem. Hence, the lower bounds presented
here do not necessarily follow from Statman’s result.

Furthermore, Statman’s result is of course irrelevant for the upper bounds presented
here. There is some work on upper bounds for the number of β-reduction steps in the
simply typed λ-calculus, c.f. [24]. However, this is not good enough to obtain the upper
bounds we are after, c.f. Sect. 3. It also does not deal with the propositional, modal and
fixpoint parts of HFL formulas.

2. Preliminaries

2.1. The Syntax of Formulas.

Definition 2.1. Let P = {p, q, . . .} be a set of atomic propositions, A = {a, b, . . .} be a
finite set of action names, and V = {X,Y, . . .} a set of variables. For simplicity, we fix P,
A, and V for the rest of the paper.

A v ∈ {−,+, 0} is called a variance. The set of HFL types is the smallest set containing
the atomic type Pr and being closed under function typing with variances, i.e. if σ and τ
are HFL types and v is a variance, then σv → τ is an HFL type.

Formulas of HFL are given by the following grammar:

ϕ ::= q | X | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | ϕ ϕ | λ(Xv : τ).ϕ | µ(X : τ).ϕ

where q ∈ P, X ∈ V, a ∈ A, v is a variance and τ is an HFL type.
An HFL formula ϕ is called fixpoint-free if it does not contain any subformula of the

form µX.ψ.

Throughout this paper we will adopt the convention given by the syntax of HFL and
write function application in the style f x rather than f(x).

We use the following standard abbreviations:

tt := q ∨ ¬q for some q ∈ P ff := ¬tt
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ) ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) νX.ϕ := ¬µX.¬ϕ[¬X/X]

[a]ψ := ¬〈a〉¬ψ 〈−〉ϕ :=
∨

a∈A〈a〉ϕ
[−]ϕ :=

∧

a∈A[a]ϕ

where ϕ[ψ/X] denotes the formula that results from ϕ by replacing simultaneously every
occurrence of X by ψ.

Definition 2.2. A sequence Γ of the form Xv1
1 : τ1, . . . ,X

vn
n : τn where Xi are variables, τi

are types and vi are variances is called a context (we assume all Xi are distinct). An HFL
formula ϕ has type τ in context Γ if the statement Γ ⊢ ϕ : τ can be inferred using the rules
of Fig. 1. We say that ϕ is well-formed if Γ ⊢ ϕ : τ for some Γ and τ .

4 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

Γ ⊢ q : Pr
v ∈ {0,+}

Γ,Xv : τ ⊢ X : τ
Γ− ⊢ ϕ : τ
Γ ⊢ ¬ϕ : τ

Γ ⊢ ϕ : Pr Γ ⊢ ψ : Pr
Γ ⊢ ϕ ∨ ψ : Pr

Γ ⊢ ϕ : Pr
Γ ⊢ 〈a〉ϕ : Pr

Γ,Xv : σ ⊢ ϕ : τ
Γ ⊢ λ(Xv : σ).ϕ : (σv → τ)

Γ ⊢ ϕ : (σ+ → τ) Γ ⊢ ψ : σ
Γ ⊢ (ϕ ψ) : τ

Γ ⊢ ϕ : (σ− → τ) Γ− ⊢ ψ : σ
Γ ⊢ (ϕ ψ) : τ

Γ ⊢ ϕ : (σ0 → τ) Γ ⊢ ψ : σ Γ− ⊢ ψ : σ
Γ ⊢ (ϕ ψ) : τ

Γ,X+ : τ ⊢ ϕ : τ
Γ ⊢ µ(X : τ).ϕ : τ

Figure 1: Type inference rules for HFL.

For a variance v, we define its complement v− as + if v = −, as − if v = +, and
0 otherwise. For a context Γ = Xv1

1 : τ1, . . . ,X
vn
n : τn, the complement Γ− is defined as

X
v−1
1 : τ1, . . . ,X

v−n
n : τn.

Definition 2.3. The Fischer-Ladner closure of an HFL formula ϕ0 is the least set FL(ϕ0)
that contains ϕ0 and satisfies the following.

• If ψ1 ∨ ψ2 ∈ FL(ϕ0) then {ψ1, ψ2} ⊆ FL(ϕ0).
• If ¬(ψ1 ∨ ψ2) ∈ FL(ϕ0) then {¬ψ1,¬ψ2} ⊆ FL(ϕ0).
• If 〈a〉ψ ∈ FL(ϕ0) then ψ ∈ FL(ϕ0).
• If ¬〈a〉ψ ∈ FL(ϕ0) then ¬ψ ∈ FL(ϕ0).
• If ϕ ψ ∈ FL(ϕ0) then {ϕ,ψ,¬ψ} ⊆ FL(ϕ0).
• If ¬(ϕ ψ) ∈ FL(ϕ0) then {¬ϕ,ψ,¬ψ} ⊆ FL(ϕ0).
• If λX.ψ ∈ FL(ϕ0) then ψ ∈ FL(ϕ0).
• If ¬(λX.ψ) ∈ FL(ϕ0) then ¬ψ ∈ FL(ϕ0).
• If µX.ψ ∈ FL(ϕ0) then ψ ∈ FL(ϕ0).
• If ¬(µX.ψ) ∈ FL(ϕ0) then ¬ψ[¬X/X] ∈ FL(ϕ0).
• If ¬¬ψ ∈ FL(ϕ0) then ψ ∈ FL(ϕ0).
• If ¬X ∈ FL(ϕ0) then X ∈ FL(ϕ0).
• If ¬q ∈ FL(ϕ0) then q ∈ FL(ϕ0).

Note that the size of FL(ϕ) as a set is at most twice the length of ϕ. We therefore
define |ϕ| := |FL(ϕ)|. Another measure for the complexity of a formula is the number v(ϕ)
of distinct λ-bound variables occurring in ϕ. Formally, let v(ϕ) := |{X | λX.ψ ∈ FL(ϕ) for
some ψ}|.1

When using least fixpoint quantifiers it is often beneficial to recall the Békic̀ principle
[2] which states that a simultaneously defined least fixpoint of a monotone function is the
same as a parametrised one. We will use this to allow formulas like

ϕ := µXi.






X1 . ϕ1(X1, . . . ,Xn)
...

Xn . ϕn(X1, . . . ,Xn)






1Note that we do not require α-equivalent formulas to have exactly the same computational measures.

THE COMPLEXITY OF MODEL CHECKING HFL 5

in the syntax of HFL. This abbreviates

ϕ′ := µXi.ϕi(µX1.ϕ1(X1, µX2.ϕ2(X1,X2, . . . ,Xi, . . .), . . . ,Xi, . . .), µX2 . . . , . . . ,Xi, . . .)

Note that the size of ϕ′ can be exponentially bigger than the size of ϕ, and this even
holds for the number of their subformulas. However, it is only exponential in n, not in |ϕ|:
|ϕ′| = O(|ϕ| · 2n).

2.2. The Semantics of Types and Formulas.

Definition 2.4. A (labeled) transition system is a structure T = (S, { a−→ | a ∈ A}, L)
where S is a finite non-empty set of states, a−→ is a binary relation on states for each a ∈ A,
and L : S → 2P is a function labeling each state with the set of propositional constants
that are true in it.

The semantics of a type w.r.t. a transition system T is a Boolean lattice2, inductively
defined on the type as

[[Pr]]T = (2S ,⊑Pr) , [[σv → τ]]T =
(
([[σ]]T)v → [[τ]]T ,⊑σv→τ

)
.

where ⊑Pr is simply the set inclusion order ⊆. For two partial orders τ̄ = (τ,⊑τ) and
σ̄ = (σ,⊑σ), σ̄ → τ̄ denotes the partial order of all monotone functions ordered pointwise.
I.e., in this case,

f ⊑σv→τ g iff for all x ∈ [[σ]]T : f x ⊑τ g x

Moreover, complements in these lattices are denoted by f̄ and defined on higher levels as
f̄ x = f x.

A positive variance leaves a partial order unchanged, τ̄+ = (τ,⊑τ), a negative variance
turns it upside-down to make antitone functions look well-behaved, τ̄− = (τ,⊒τ), and a
neutral variance flattens it, τ̄0 = (τ,⊑τ ∩ ⊒τ). This is not a complete lattice anymore
which does not matter since variances only occur on the left of a typing arrow. Note that
the space of monotone functions from a partial order to a Boolean lattice with pointwise
ordering forms a Boolean lattice again.

Definition 2.5. An environment η is a possibly partial map on the variable set V. For
a context Γ = Xv1

1 : τ1, . . . ,X
vn
n : τn, we say that η respects Γ, denoted by η |= Γ, if

η(Xi) ∈ [[τi]]
T for i ∈ {1, . . . , n}. We write η[X 7→ f] for the environment that maps X to

f and otherwise agrees with η. If η |= Γ and f ∈ [[τ]]T then η[X 7→ f] |= Γ,X : τ , where X
is a variable that does not appear in Γ.

For any well-typed term Γ ⊢ ϕ : τ and environment η |= Γ, Fig. 2 defines the semantics
of ϕ inductively to be an element of [[τ]]T . In the clause for function application (ϕ ψ) the
context Γ′ is Γ if v ∈ {+, 0}, and is Γ− if v = −.

The model checking problem for HFL is the following: Given an HFL sentence ϕ : Pr,
a transition system T and one of its states s, decide whether or not s ∈ [[ϕ]]T .

2In the original definition, the semantics is only said to be a complete lattice but it is in fact also
Boolean. The reason for this is that negation is only allowed on the ground type Pr anyway. The game-
based characterisation of HFL’s model checking problem in the following section benefits from a symmetric
definition w.r.t. negation. Hence, we allow negation in the syntax on arbitrary type levels. But then we
have to also use the property of being Boolean of the complete lattices that form the basis for the definition
of the semantics.

6 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

[[Γ ⊢ q : Pr]]Tη = {s ∈ S | q ∈ L(s)}

[[Γ ⊢ X : τ]]Tη = η(X)

[[Γ ⊢ ¬ϕ : Pr]]Tη = S \ [[Γ− ⊢ ϕ : Pr]]Tη

[[Γ ⊢ ¬ϕ : σv → τ]]Tη = f ∈ [[σv → τ]]T s.t. f̄ = [[Γ− ⊢ ϕ : σv → τ]]Tη

[[Γ ⊢ ϕ ∨ ψ : Pr]]Tη = [[Γ ⊢ ϕ : Pr]]Tη ∪ [[Γ ⊢ ψ : Pr]]Tη

[[Γ ⊢ 〈a〉ϕ : Pr]]Tη = {s ∈ S | s a−→ t for some t ∈ [[Γ ⊢ ϕ : Pr]]Tη }

[[Γ ⊢ λ(Xv : σ).ϕ : σv → τ]]Tη = f ∈ [[σv → τ]]T s.t. ∀x ∈ [[σ]]T

f x = [[Γ,Xv : σ ⊢ ϕ : τ]]T
η[X 7→x]

[[Γ ⊢ ϕ ψ : τ]]Tη = [[Γ ⊢ ϕ : σv → τ]]Tη [[Γ′ ⊢ ψ : σ]]Tη

[[Γ ⊢ µ(X : τ)ϕ : τ]]Tη =
d
{x ∈ [[τ]]T | [[Γ,X+ : τ ⊢ ϕ : τ]]T

η[X 7→x] ⊑τ x}

Figure 2: Semantics of HFL

In the following we will identify a type τ and its underlying complete lattice [[τ]]T

induced by a transition system T with state set S. In order to simplify notation we fix T
for the remainder of this section. We will also simply write |τ | instead of |[[τ]]T | for the size
of the lattice induced by τ .

Definition 2.6. We consider fragments of formulas that can be built using restricted types
only. Note that because of right-associativity of the function arrow, every HFL type is
isomorphic to a τ = τ1 → . . . → τm → Pr where m ∈ N. Clearly, for m = 0 we simply
have τ = Pr. We stratify types w.r.t. their order, i.e. the degree of using proper functions
as arguments to other functions, as well as maximal arity, i.e. the number of arguments a
function has. Order can be seen as depth, and maximal arity as the width of a type. Both
are defined recursively as follows.

ord(τ1 → . . . → τm → Pr) := max{1 + ord(τi) | i = 1, . . . ,m}

mar(τ1 → . . . → τm → Pr) := max({m} ∪ {mar (τi) | i = 1, . . . ,m})

where we assume max ∅ = 0. Now let, for k ≥ 1 and m ≥ 1,

HFLk,m := { ϕ ∈ HFL | ⊢ ϕ : Pr using types τ with ord(τ) ≤ k and mar (τ) ≤ m only }

HFLk :=
⋃

m∈N

HFLk,m

Note that no formula can have maximal type order k > 0 but maximal type arity m = 0.
The combination k = 0 and m > 0 is also impossible. Hence, we define

HFL0 = { ϕ ∈ HFL | ⊢ ϕ : Pr using types τ with ord(τ) = 0 only }

We extend these measures to formulas in a straightforward way: ord(ϕ) = k and mar (ϕ) =
m iff k and m are the least k′ and m′ s.t. ϕ can be shown to have some type using types τ
with ord(τ) ≤ k′ and mar (τ) ≤ m′ only.

Proposition 2.7. HFL0 = Lµ.

Proof. An HFL0 formula cannot have any subformula of the form λX.ψ or ϕ ψ. But deleting
these two clauses from the definition of HFL’s syntax yields exactly the syntax of Lµ. It is

THE COMPLEXITY OF MODEL CHECKING HFL 7

not hard to see that this is faithful, i.e. the semantics of this logic regarded as a fragment
of HFL is the same as the semantics of Lµ.

2.3. Examples of Properties Expressible in HFL.

Example 2.8. HFL can express the non-regular (but context-free) property “on any path
the number of out ’s seen at any time never exceeds the number of in’s seen so far.” Let

ϕ := µ(X : Pr → Pr).(λ(Z : Pr).〈out〉Z ∨ 〈in〉(X (X Z)))tt

This formula is best understood by comparing it to the CFG X → out | inXX. It generates
the language L of all words w ∈ {in , out}∗{out} s.t. |w|in = |w|out and for all prefixes v of
w we have: |v|in ≥ |v|out . This language contains exactly those prefixes of buffer runs that
are violating due to a buffer underflow. Then T , s |= ϕ iff there is a finite path through T
starting in s that is labeled with a word in L, and ¬ϕ consequently describes the property
mentioned above.

Example 2.9. Another property that is easily seen not to be expressible by a finite tree
automaton and, hence, not by a formula of the modal µ-calculus either is bisimilarity to a

word. Note that a transition system T with starting state s is not bisimilar to a linear word
model iff there are two distinct actions a and b s.t. there are two (not necessarily distinct)

states t1 and t2 at the same distance from s s.t. t1
a−→ t′1 and t2

b−→ t′2 for some t′1, t
′
2. This

is expressed by the HFL formula

¬
(∨

a6=b

(
µ(F : Pr → Pr → Pr).λ(X : Pr).λ(Y : Pr).(X ∧ Y) ∨ (F 〈−〉X 〈−〉Y)

)
〈a〉tt 〈b〉tt

)

This formula is best understood by regarding the least fixpoint definition F as a functional
program. It takes two arguments X and Y and checks whether both hold now or calls itself
recursively with the arguments being checked in two (possibly different) successors of the
state that it is evaluated in.

Note that here, bisimulation does not consider the labels of states but only the actions
along transitions. It is not hard to change the formula accordingly to incorporate state
labels as well.

Example 2.10. Let 2n0 := n and 2nm+1 := 22
n
m . For any m ∈ N, there is a short HFL

formula ϕm expressing the fact that there is a maximal path of length 21
m (number of states

on this path) through a transition system. It can be constructed using a typed version of
the Church numeral 2. Let τ0 = Pr and τi+1 = τi → τi. For i ≥ 1 define ψi of type τi+1 as
λ(F : τi).λ(X : τi−1).F (F X). Then

ϕm := ψm ψm−1 . . . ψ1

(
λ(X : Pr).〈−〉X

)
[−]ff .

Note that for any m ∈ N, ϕm is of size linear in m. This indicates that HFL is able to
express computations of Turing Machines of arbitrary elementary complexity. Sect. 4 will
show that this is indeed the case.

8 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

2.4. Complexity Classes and Alternating Turing Machines. We will assume famil-
iarity with the concept of a deterministic Turing Machine but quickly recall the less known
model of an alternating Turing Machine.

Let DTime(f(n)) be the class of languages that can be recognised by a deterministic
Turing Machine in at most f(n) many steps on any input of length n. The k-th level of the
exponential time hierarchy for k ∈ N is

kExpTime :=
⋃

p polynomial

DTime(2
p(n)
k)

Then Elementary :=
⋃

k∈N kExpTime is the class of problems that can be solved in
elementary time. Note that Elementary does not have complete problems because their
existence would lead to a collapse of the hierarchy which is not the case.

Definition 2.11. An alternating Turing Machine is a tuple M = (Q,Σ,Γ, q0, δ, qacc , qrej)
s.t. its state set Q is partitioned into existential states Q∃, universal states Q∀ and the
halting states {qacc , qrej }. The starting state q0 is either existential or universal. The input
alphabet Σ is a subset of the tape alphabet Γ containing a special blank symbol �. The
transition relation is of type Q× Γ×Q× Γ× {−1, 0,+1}.

M is called f(n)-space bounded for some function f(n) if it never uses more than f(n)
many tape cells in a computation on a word of length n. A configuration of such an M is a
triple C ∈ Q× {0, . . . , f(n)− 1} × Γf(n) representing the current state, the position of the
tape head and the content of the tape. The starting configuration is C0 := (q0, 0, w� . . .�).
A configuration (q, i, v) is called

• existential if q ∈ Q∃,
• universal if q ∈ Q∀,
• accepting if q = qacc,
• rejecting if q = qrej .

The computation of M on w is a tree whose root is C0 s.t. an existential configuration
has exactly one successor configuration in the tree, all possible successor configurations of a
universal configurations are present in the tree, and leaves are exactly those configurations
that are accepting or rejecting. The successor relation on configurations is the usual one
built on the transition relation δ.

W.l.o.g. we can assume that every path of any computation tree of M on any w will
eventually reach an accepting or rejecting configuration. I.e. computation trees are always
finite. This can be achieved for example by running an additional clock which causes a
transition to the rejecting state when a configuration has been reached repeatedly.

A computation is called accepting if all of its leaves are accepting. The machine M
accepts the word w ∈ L(M), if there is an accepting computation tree of M on w.

Let ASpace(f(n)) be the class of languages that can be recognised by an f(n)-space
bounded alternating Turing Machine.

kAExpSpace :=
⋃

p polynomial

ASpace(2
p(n)
k)

There is a direct correspondence between the levels of the elementary time hierarchy and
classes defined by alternating space-bounded Turing Machines. For all k ≥ 1 we have
kExpTime = (k − 1)AExpSpace [4]. We will make use of a related result.

THE COMPLEXITY OF MODEL CHECKING HFL 9

Theorem 2.12 ([4]). For every k ≥ 1 there is a polynomial p(n) and some alternating

2
p(n)
k−1-space bounded Turing Machine Ak s.t. L(Ak) over a binary alphabet is kExpTime-

hard.

Finally, we need to introduce the class UP – a subclass of NP. UP consists of all problems
that are solvable by a non-deterministic polynomial time bounded Turing Machine with at
most one accepting computation. As usual, co-UP denotes the complement of UP. Later
we will briefly mention the class UP∩co-UP. Note that UP∩co-UP does not have complete
problems either.

3. The Upper Bound

We will take two steps in order to obtain a kExpTime upper bound on the model
checking problem for HFLk,m for every m ∈ N. First we eliminate fixpoint constructs
from the formula w.r.t. the underlying transition system. This results in a possibly k-fold
exponentially larger modal formula with λ-abstractions and function applications. We then
reduce the model checking problem for such formulas to the reachability game problem in
graphs of roughly the same size.

The combination of the elimination step and the reduction step is necessary to achieve
the kExpTime upper bound. It would be easy to eliminate the λ-calculus part from a
fixpoint-free formula using β-reduction. However, the best known upper bounds on the
number of reduction steps in the simply typed λ-calculus are approximately of the order

2
O(n)
k+1 [24] which would only yield a (2k + 1)ExpTime upper bound.

The reason for avoiding the additional k + 1 exponents is that β-reduction is a purely
syntactical procedure. We incorporate semantics into these reachability games by evaluating
λ-bound variables to real functions of finite domain and co-domain rather than unwinding
the entire syntactical definition of that function as a program in the simply typed λ-calculus.
Note that such a function can be represented by more than one λ-term. Whereas equivalence
of fixpoint-free HFL formulas is difficult to decide – in fact, it is undecidable in general and
might require β-reduction on a fixed transition system – it is easy to decide for unique
semantical representations of these functions.

On the other hand, extending the reachability games to games that capture full HFL
formulas including fixpoint quantifiers and variables is not easy either, see the example after
the definition of the games below.

3.1. Fixpoint Elimination.

Lemma 3.1. For all HFL types τ and all transition systems T with n states we have:

|τ | ≤ 2
n·(mar(τ)+ord(τ))ord(τ)

ord(τ)+1
.

Proof. We prove this by induction on the structure of τ . Note that there are 2n many
different elements of type Pr, and ord(Pr) = 0 = mar (Pr) which immediately yields the
base case.

For the other cases let τ = τ1 → . . . → τm → Pr. With uncurrying it is easy to regard
this as a function that takes m arguments of corresponding type and delivers something of
type Pr. Then we have

|τ | = |τ1 → . . .→ τm → Pr| = |Pr|
Qm

i=1 |τi| = 2n·
Qm

i=1 |τi|

10 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

= 2
n·

m
Q

i=1
2
n·(mar(τi)+ord(τi))

ord(τi)

ord(τi)+1
by the hypothesis

≤ 2
n·

m
Q

i=1
2
n·(mar(τi)+ord(τ)−1)ord(τ)−1

ord(τ)
because of ord(τi) ≤ ord(τ)− 1

≤ 2
n·

m
Q

i=1
2
n·(mar(τ)+ord(τ)−1)ord(τ)−1

ord(τ)
because of mar (τi) ≤ mar (τ)

= 2
n·(2

n·(mar(τ)+ord(τ)−1)ord(τ)−1

ord(τ)
)m

= 2n·2
m·2

n·(mar(τ)+ord(τ)−1)ord(τ)−1

ord(τ)−1
because of ord(τ) ≥ 1

≤ 2n·2
2
n·m·(mar(τ)+ord(τ)−1)ord(τ)−1

ord(τ)−1

≤ 2n·2
2
n·(mar(τ)+ord(τ)−1)ord(τ)

ord(τ)−1
because of m ≤ mar (τ), ord (τ) ≥ 1

= 2
n·2

n·(mar(τ)+ord(τ)−1)ord(τ)

ord(τ)

≤ 2
2
n·(mar(τ)+ord(τ)−1)ord(τ)+log n

ord(τ) because of ord(τ) ≥ 1

≤ 2
2
n·((mar(τ)+ord(τ)−1)ord(τ)+1)
ord(τ)

≤ 2
2
n·(mar(τ)+ord(τ))ord(τ)

ord(τ) because of ord(τ) ≥ 1

= 2
n·(mar(τ)+ord (τ))ord(τ)

ord(τ)+1

which proves the claim.

Let types(k,m) := {τ | ord(τ) ≤ k,mar (τ) ≤ m} denote the set of types of restricted
order and maximal arity. As mentioned above we have |types(0, 0)| = 1, and |types(k, 0)| =
|types(0,m)| = 0 for any k,m ≥ 1.

Lemma 3.2. For all k ≥ 1 and m ≥ 1 we have |types(k,m)| ≤ mk·(mk−1).

Proof. By induction on k. First consider the case of k = 1. All types of order 1 and maximal
arity m are of the form

τ := Pr → . . .→ Pr
︸ ︷︷ ︸

i times

→ Pr

with 1 ≤ i ≤ m. Clearly, their number is bounded by m = m1·(m0).
Now consider any k > 1. Remember that any HFL type is isomorphic to one of the form

τ = τ1 → . . . → τi → Pr. Note that ord(τj) < ord(τ) for all j = 1, . . . , i, and 1 ≤ i ≤ m.
Then we have

|types(k,m)| =

m∑

i=1

|types(k − 1, i)|i ≤ m · |types(k − 1,m)|m ≤ m · (m(k−1)mk−2
)m

= m ·m(k−1)·m·mk−2
= m ·m(k−1)·mk−1

= m(k−1)·mk−1+1 ≤ mk·mk−1

using the hypothesis for k − 1.

THE COMPLEXITY OF MODEL CHECKING HFL 11

Lemma 3.3. For any k ≥ 1 and any m ≥ 1 there are at most mk·(mk−1) · 2
n·(k+m)k

k+1 many

different functions f of type τ with ord(τ) ≤ k and mar (τ) ≤ m over a transition system

with n states.

Proof. Immediately from Lemmas 3.1 and 3.2.

Definition 3.4. Let τ be any HFL type. We write h(τ) for the height of the lattice [[τ]]T

over a fixed transition system T . It is the length of a maximal chain

f0 ⊏τ f1 ⊏τ f2 ⊏τ . . .

of elements that are properly increasing w.r.t. ⊑τ . In general this is an ordinal number, but
if |T | <∞ then h(τ) ∈ N for all HFL types τ .

Lemma 3.5. For all HFL types τ and all transition systems T with n states we have:

h(τ) ≤ (n+ 1)(2
n(mar (τ)+ord (τ)−1)ord(τ)−1

ord (τ))mar (τ).

Proof. First consider the case of ord(τ) = 0. Then τ = Pr, and it is well-known that the

power set lattice of n elements has height n+ 1 = (n+ 1) · (2
n(0+0−1)0−1

0)0.
Now suppose ord(τ) > 0 and τ = τ1 → . . . → τm → Pr for some m ≥ 1. Let

N := (2
n(mar (τ)+ord (τ)−1)ord(τ)−1

ord (τ)
)mar(τ). According to Lemma 3.1 there are at most N many

different tuples x̄ ∈ [[τ1]]
T × . . . × [[τm]]T because ord(τi) ≤ ord(τ)− 1 for all i = 1, . . . ,m.

Using uncurrying we can regard each f ∈ [[τ]]T as a function that maps each such x̄ to
an element of Pr. Now suppose the claim is wrong. Then there is a chain

f0 ⊏τ f1 ⊏τ f2 ⊏τ . . . ⊏τ f(n+1)N+1

of functions of type τ . Since each one is strictly greater than the preceeding one there is a
sequence x̄i of tuples s.t. for i = 0, . . . , (n + 1)N we have fi x̄i (fi+1 x̄i. But remember
that there are only N tuples altogether. By the pidgeon hole principle, one of them must
occur at least (n+ 1) + 1 many times. Thus, there are 0 ≤ i1 < . . . < in+2 ≤ (n+ 1)N + 1
s.t. x̄i1 = x̄i2 = . . . = x̄in+2 . Let x̄ simply denote this element.

By transitivity of the partial order ⊑τ we then have

fi1 x̄ (fi2 x̄ (. . . (fin+2 x̄

which contradicts the fact that the height of Pr is only n+ 1. Hence, the height of τ must
be bounded by (n+ 1)N .

Definition 3.6. Let µX.ϕ be an HFL formula of type τ = τ1 → . . .→ τm → Pr. We define
finite approximants of this fixpoint formula for all α ∈ N as follows:

µ0X.ϕ := λ(Z1 : τ0
1) . . . λ(Zm : τ0

m).ff , µα+1X.ϕ := ϕ[µαX.ϕ/X]

The next result is an immediate consequence of the Knaster-Tarski theorem [27].

Lemma 3.7. Let T be a transition system with state set S s.t. |S| < ∞. For all HFL

formulas µ(X : τ).ϕ and all environments ρ we have: [[µ(X : τ).ϕ]]Tρ = [[µh(τ)X.ϕ]]Tρ .

The following lemma concerns the size of formulas after fixpoint elimination.

Lemma 3.8. Let T be a finite transition system with n states, k,m ≥ 1. For every closed

HFLk,m formula ϕ there is a fixpoint-free and closed ϕ′ ∈ HFLk,m s.t. [[ϕ]]T = [[ϕ′]]T ,

v(ϕ′) ≤ v(ϕ) +m, and |ϕ′| ≤ |ϕ| · (n+ 1)|ϕ| · (2
n(m+k−1)k−1

k)m·|ϕ|.

12 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

Proof. First we prove the existence of such a ϕ′ by induction on the number f of different
fixpoint subformulas of ϕ. If this is 0 then simply take ϕ′ := ϕ.

Suppose f > 0. Then ϕ contains at least one subformula µ(X : τ).ψ of some type τ s.t.

ψ is fixpoint-free. According to Lemma 3.7 this µ(X : τ).ψ is equivalent to µh(τ)X.ψ over
T . Furthermore, µh(τ)X.ψ is fixpoint-free. Let ϕ′′ := ϕ[µh(τ)X.ψ/µ(X : τ).ψ]. Since ϕ′′

contains less fixpoint subformulas as ϕ we can use the induction hypothesis to obtain a ϕ′

that is equivalent to ϕ′′ over T . Lemma 3.7 shows that ϕ′′ is equivalent to ϕ over T , hence
we have [[ϕ]]T = [[ϕ′]]T . Note that fixpoint elimination does not create free variables, i.e. ϕ′

is also closed.
What remains to be shown are the corresponding bounds on the size and number of

variables of ϕ′. First consider v(ϕ′). The only λ-bound variables in ϕ′ are those that
are already λ-bound in ϕ plus at most m variables for subformulas of the form µ0X.ψ =
λZ1 . . . λZm′ .ff for some m′ ≤ m. Note that the approximants reuse λ-bound variables
which is semantically sound because the value of an i-th approximant as a function cannot
depend on an argument of the j-th approximant for some j 6= i. The only free variables in
each approximant should be those that are free in µ(X : τ).ψ already.

Finally, let N := (n + 1)(2
n(m+k−1)k−1

k)m. We show by induction on the number f of

fixpoint subformulas in ϕ that the size of ϕ′ is bounded by (N +1)f · |ϕ|. It should be clear
that this implies the claim of the lemma.

This is clearly true for f = 0. Now let f > 0, and first consider the formula ϕ′′ =
ϕ[µh(τ)X.ψ/µ(X : τ).ψ] as constructed above. Note that ord(τ) ≤ k, and mar (τ) ≤ m,
and, according to Lemma 3.5, h(τ) ≤ N . Therefore, we can estimate the size of the

approximant that replaces the fixpoint formula as |µh(τ)X.ψ| ≤ N · |ψ| + m + 1. This is
because the size of the 0-th approximant is m+1 and the size of the (i+1)-st is always |ψ|
plus the size of the i-th. Then we have

|ϕ′′| = |ϕ|−|ψ|+N ·|ψ|+m+1 = |ϕ|+(N−1)·|ψ|+m+1 ≤ N ·|ϕ|+m+1 ≤ (N+1)·|ϕ|

because the size of a formula ϕ must be strictly greater than the maximal arity of any of
its subformulas. Now the number of fixpoint formulas in ϕ′′ is f − 1. By the induction
hypothesis we obtain

|ϕ′| ≤ (N + 1)f−1 · |ϕ′′| ≤ (N + 1)f−1 · (N + 1) · |ϕ| = (N + 1)f · |ϕ|

for the size of the formula ϕ′ without any fixpoint subformulas.

3.2. Reachability Games.

Definition 3.9. A reachability game between players ∃ and ∀ is a pointed and directed
graph G = (V∃, V∀, E, v0,W∃,W∀) with node set V := V∃ ∪V∀ ∪W∃ ∪W∀ for some mutually
disjoint V∃, V∀,W∃,W∀, edge relation E ⊆ (V∃ ∪ V∀) × V and designated starting node
v0 ∈ V . Define |G| := |E| as the size of the game.

The sets V∃ and V∀ contain those nodes in which player ∃, resp. player ∀ makes a choice.
The setsW∃ andW∀ are terminal nodes in which player ∃, resp. player ∀ wins. We therefore
require that only nodes in W∃ or W∀ are terminal, i.e. for all v ∈ V \ (W∃ ∪W∀) there is a
w ∈ V with (v,w) ∈ E.

A play is a sequence v0, v1, . . . starting in v0 and constructed as follows. If the play has
visited nodes v0, . . . , vi for some i ∈ N and vi ∈ Vp for some p ∈ {∃,∀} then player p chooses
a node w s.t. (vi, w) ∈ E and vi+1 := w.

THE COMPLEXITY OF MODEL CHECKING HFL 13

A play v0, . . . , vn is won by player p if vn ∈Wp. A reachability game is called determined

if every play has a unique winner. Given the prerequisite W∃ ∩W∀ = ∅, determinacy of a
reachability game simply means that infinite plays are not possible.

A strategy3 for player p is a function σ : Vp → V . A play v0, . . . , vn conforms to a
strategy σ for player p if for all i = 0, . . . , n− 1 with vi ∈ Vp: vi+1 = σ(vi). Such a strategy
σ is called winning strategy if player p wins every play that conforms to σ.

The problem of solving a determined reachability game is: given such a game G, decide
whether or not player ∃ has a winning strategy for G.

It is well-known that reachability games can be solved in linear time using dynamic
programming for instance [30].

Theorem 3.10. Solving a reachability game G can be done in time O(|G|).

3.3. Model Checking Games for Fixpoint-Free HFL. In this section we define reach-
ability games that capture exactly the satisfaction relation for fixpoint-free HFL formulas.

Let ϕ0 be a closed and fixpoint-free HFL formula of type Pr and T = (S, { a−→ | a ∈
A}, L) a labeled transition system with a designated starting state s0 ∈ S. The game
GT (s0, ϕ0) is played between players ∃ and ∀ in order to determine whether or not T , s0 |= ϕ0

holds. A configuration of the game is written

s, f1, . . . , fk, η ⊢ ψ

s.t. ψ ∈ FL(ϕ0) is of some type τ1 → . . . → τk → Pr, s ∈ S, and fi ∈ [[τi]]
T for all

i = 1, . . . , k. Note that k = 0 is possible. Finally, η is a (partial) finite map that assigns an
element f ∈ [[τ]]T to each free variable X of type τ in ψ .

The intended meaning of such a configuration is: player ∃ tries to show s ∈ [[ψ]]Tη f1 . . . fn
whereas player ∀ tries to show the opposite. Since the semantics of formulas is defined
recursively, the play usually proceeds from one such configuration to another containing a
direct subformula. For instance, if the formula in the current configuration is a disjunction
then player ∃ chooses one of the disjuncts because disjunctions are easy to prove but hard
to refute in this way. Consequently, player ∀ performs a choice on conjunctions (negated
disjunctions). A similar argument applies to configurations with modal operators. In case
of function application we employ a small protocol of choices between these two players
which simply reflects the semantics of function application in higher-order logic, etc.

A play of GT (s0, ϕ0) is a finite sequence C0, C1, . . . of configurations constructed as
follows. C0 := s0, η0 ⊢ ϕ0 where η0 is undefined on all arguments.

If C0, . . . , Cn−1 have already been constructed, then Cn is obtained by case distinction
on Cn−1.

(1) If Cn−1 = s, η ⊢ ψ1 ∨ ψ2 then player ∃ chooses an i ∈ {1, 2} and Cn := s, η ⊢ ψi.
(2) If Cn−1 = s, η ⊢ ¬(ψ1∨ψ2) then player ∀ chooses an i ∈ {1, 2} and Cn := s, η ⊢ ¬ψi.
(3) If Cn−1 = s, η ⊢ 〈a〉ψ then player ∃ chooses a t ∈ S s.t. s a−→ t and Cn := t, η ⊢ ψ.
(4) If Cn−1 = s, η ⊢ ¬〈a〉ψ then player ∀ chooses a t ∈ S s.t. s a−→ t and Cn := t, η ⊢ ¬ψ.
(5) If Cn−1 = s, f1, . . . , fk, η ⊢ ¬¬ψ then Cn := s, f1, . . . , fk, η ⊢ ψ.
(6) If Cn−1 = s, f1, . . . , fk, η ⊢ ϕ ψ and ψ is of type σ then player ∃ chooses a g ∈ [[σ]]T .

Next player ∀ has two options.

3Here we restrict ourselves to memory-less strategies which are well-known to suffice for reachability
games.

14 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

• He either continues with Cn := s, g, f1, . . . , fk, η ⊢ ϕ.
• Or let σ = σ1 → . . . → σm → Pr. Player ∀ chooses values hi ∈ [[σi]]

T for
i = 1, . . . ,m, and either

– selects a t ∈ g h1 . . . hm, and the play continues with t, h1, . . . , hm, η ⊢ ψ,
or

– selects a t 6∈ g h1 . . . hm, and the play continues with t, h1, . . . , hm, η ⊢ ¬ψ.
(7) If Cn−1 = s, f1, . . . , fk, η ⊢ ¬(ϕ ψ) and ψ is of type σ then player ∃ chooses a

g ∈ [[σ]]T . Next player ∀ has two options.
• He either continues with Cn := s, g, f1, . . . , fk, η ⊢ ¬ϕ.
• Or let σ = σ1 → . . . → σm → Pr. Player ∀ chooses values hi ∈ [[σi]]

T for
i = 1, . . . ,m, and either

– selects a t ∈ g h1 . . . hm, and the play continues with t, h1, . . . , hm, η ⊢ ψ,
or

– selects a t 6∈ g h1 . . . hm, and the play continues with t, h1, . . . , hm, η ⊢ ¬ψ.
(8) If Cn−1 = s, f1, . . . , fk, η ⊢ λX.ψ then Cn := s, f2, . . . , fk, η[X 7→ f1] ⊢ ψ.
(9) If Cn−1 = s, f1, . . . , fk, η ⊢ ¬λX.ψ then Cn := s, f2, . . . , fk, η[X 7→ f1] ⊢ ¬ψ.

The game rules (5),(8) and (9) are deterministic. Neither player has to make a real choice
there.

A play C0, C1, . . . , Cn is won by player ∃, if

(1) Cn = s, η ⊢ q and s ∈ L(q), or
(2) Cn = s, η ⊢ ¬q and s 6∈ L(q), or
(3) Cn = s, f1, . . . , fk, η ⊢ X and s ∈ η(X) f1 . . . fk, or
(4) Cn = s, f1, . . . , fk, η ⊢ ¬X and s 6∈ η(X) f1 . . . fk, or
(5) Cn = s, η ⊢ ¬〈a〉ψ and there is no t ∈ S with s a−→ t.

Player ∀ wins this play, if

(6) Cn = s, η ⊢ q and s 6∈ L(q), or
(7) Cn = s, η ⊢ ¬q and s ∈ L(q), or
(8) Cn = s, f1, . . . , fk, η ⊢ X and s 6∈ η(X) f1 . . . fk, or
(9) Cn = s, f1, . . . , fk, η ⊢ ¬X and s ∈ η(X) f1 . . . fk, or
(10) Cn = s, η ⊢ 〈a〉ψ and there is no t ∈ S with s a−→ t.

We remark that these games do not easily extend to formulas with fixpoint quantifiers
and variables via the characterisation of the model checking problem for the modal µ-
calculus as a parity game [26]. The natural extension would add simple unfolding rules for
fixpoint constructs which lead to infinite plays. The type of the outermost fixpoint variable
that gets unfolded infinitely often in such a play would determine the winner.

However, this is neither sound nor complete. Consider the formula (ν(X : Pr →
Pr).µ(Y : Pr).X Y) ff. It is equivalent to tt, hence, player ∃ should have a winning
strategy for the game on this formula and any transition system. But player ∀ can enforce
a play via rule (6) in which the outermost variable that gets unfolded infinitely often is Y
which is of type µ.

This shows that the straight-forward extension to non-fixpoint-free formulas is not
complete. Because of the presence of negation it is also not sound. Another explanation
for the failure of such games is given by the model checking games for FLC [17] which
incorporate a stack and a visibly pushdown winning condition in order to model that the
variable X (the function) is more important than the variable Y (the argument) in the
example above.

THE COMPLEXITY OF MODEL CHECKING HFL 15

Lemma 3.11. Every play of GT (s, ϕ) has a unique winner.

Proof. All rules properly reduce the size of the formula component in a configuration. Hence,
there are no infinite plays, and a play is finished when either one of the players cannot
perform a choice or there is no rule that applies to the current configuration anymore.

Note that for as long as rules still apply there are only two situations in which a player
can get stuck: Either the current configuration is s, η ⊢ 〈a〉ψ or it is s, η ⊢ ¬〈a〉ψ and there
is no t ∈ S s.t. s a−→ t. These cases are covered by winning conditions (5) and (10).

All other rules always guarantee one player a possible choice. The only rules for which
this is not obvious are (6) and (7). First note that [[σ]]T is non-empty for any type σ.
Hence, player ∃ can always choose some g. Then let, for some arguments h1, . . . , hm chosen
by player ∀, T := g h1 . . . hm. Note that it is impossible to have T = ∅ and at the same time
S \ T = ∅ for as long as S 6= ∅ for the underlying state space S. Hence, player ∀ cannot get
stuck in this rule either.

If a play finishes because no rule applies then the formula in the current configuration
must either be atomic or a negation of an atomic formula, i.e. of one of the forms q,¬q,X,¬X
for some q ∈ P, X ∈ V. In any case, one of the winning conditions (1)–(4) and (6)–(9)
applies.

This shows that every play has at least one winner. Finally, it is not hard to see that
the winning conditions are mutually exclusive, i.e. every play has at most one winner.

Theorem 3.12. Let ϕ0 be closed, fixpoint-free, and of type Pr. If s0 ∈ [[ϕ0]]
T then player ∃

has a winning strategy for the game GT (s0, ϕ0).

Proof. We call a configuration C = t, f1, . . . , fk, η ⊢ ψ of the game GT (s0, ϕ0) true if t ∈
[[ψ]]Tη f1 . . . fk. Otherwise we call C false.

Suppose s0 ∈ [[ϕ0]], i.e. the starting configuration s0, η0 ⊢ ϕ0 of GT (s0, ϕ0) is true.
Player ∃’s strategy will consist of preservering truth along a play. We will show by case
distinction on the last rule played that player ∃ can enforce a play in which every configu-
ration is true. I.e. if a configuration that is true requires her to make a choice then she can
choose a successor configuration which is also true. If such a configuration requires player
∀ to make a choice then regardless of what he selects, the successor will always be true.

Cases (1) and (2), the Boolean operators. If a play has reached a configuration t, η ⊢ ψ1∨ψ2

that is true then there is an i ∈ {1, 2} s.t. t, η ⊢ ψi is true. Player ∃ chooses this i.
Note that player ∀ will ultimately preserve truth if he makes a choice in a configuration
t, η ⊢ ¬(ψ1 ∨ ψ2).

Cases (3) and (4), the modal operators. Similarly, player ∃ can preserve truth in a config-
uration of the form t, η ⊢ 〈a〉ψ, and player ∀ must preserve truth in a configuration of the
form t, η ⊢ ¬〈a〉ψ.

Case (5), double negation. Preservation of truth is trivial.

Case (6), positive application. Suppose the play has reached a configuration t, f1, . . . , fk, η ⊢
ϕ ψ that is true. Let g := [[ψ]]Tη . Note that g always exists, hence, player ∃ can choose it.
By β-equivalence we have

t ∈ [[ϕ ψ]]Tη f1 . . . fk ⇒ t ∈ [[ϕ]]Tη g f1 . . . fk

which shows that truth is preserved if player ∀ selects his first option.

16 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

Suppose he selects his second option with arguments h1, . . . , hm for g instead. Since
g = [[ψ]]Tη we obviously have for all t ∈ S: t ∈ g h1 . . . hm iff t ∈ [[ψ]]Tη h1 . . . hm. This shows
that truth is preserved regardless of which way player ∀ leads.

Case (7), negative application. This is the same as the case above. Note that – by the
semantics of the negation operator – we have ¬(ϕ ψ) ≡ (¬ϕ) ψ.

Cases (8) and (9), λ-abstraction. This is only an equivalence-preserving β-reduction. Hence,
truth is preserved. For case (9) remember that the complement of a function is defined
pointwise.

It remains to be seen that this truth-preserving strategy guarantees player ∃ to win any
play. I.e. assume that player ∀ uses his best strategy against player ∃’s truth-preserving
strategy and consider the unique play C0, . . . , Cn that results from playing against each
other. By the argumentation above, we know that Ci is true for all i = 0, . . . , n. A quick
inspection of player ∀’s winning conditions (6)–(10) shows that he cannot be the winner of
this play because all of them require the play at hand to end in a configuration that is not
true.

According to Lemma 3.11, player ∃ wins every play in which she uses the truth-
preserving strategy. Hence, this is a winning strategy.

Theorem 3.13. Let ϕ0 be closed, fixpoint-free, and of type Pr. If s0 6∈ [[ϕ0]]
T then player ∀

has a winning strategy for the game GT (s0, ϕ0).

Proof. Similar to the proof of Theorem 3.12. The starting configuration of GT (s0, ϕ0) is
false. An analysis of the game rules shows that player ∀ can preserve falsity with his
choices, and player ∃ must preserve falsity.

This is shown for rules (1), (2), (3), (4) and (5) in the same way as above in the proof
of Thm. 3.12. Here we only consider the case (6). The case of rule (7) is shown analogously.

Suppose the current configuration is s, f1, . . . , fk, η ⊢ ϕ ψ, s.t. ψ has type σ and player
∃ has chosen some g ∈ [[σ]]T . We need to distinguish two subcases.

If s 6∈ [[ϕ]]Tη g f1 . . . fk then player ∀ can easily preserve falsity by choosing the successor
configuration s, g, f1, . . . , fk, η ⊢ ϕ.

If s ∈ [[ϕ]]Tη g f1 . . . fk then we must have g 6=σ [[ψ]]Tη for equality would, by β-
equivalence, contradict the assumption that the current configuration is false. Remember
that 6=σ is inequality w.r.t. the pointwise order ⊑σ. Now suppose σ = σ1 → . . .→ σm → Pr.
Hence, there must be hi ∈ [[σi]]

T for i = 1, . . . ,m s.t. g h1 . . . hm 6= [[ψ]]Tη h1 . . . hm. First
of all, player ∀ can choose these arguments h1, . . . , hm. Next, let T := g h1 . . . hm and
T ′ := [[ψ]]Tη h1 . . . hm. Note that T, T ′ ⊆ S. Hence, T 6= T ′ means T 6⊆ T ′ or T ′ 6⊆ T .

In the first case there is a t ∈ g h1 . . . hm s.t. t 6∈ [[ψ]]Tη h1 . . . hm. Player ∀ can choose
this t and continue with the configuration t, h1, . . . , hm, η ⊢ ψ which is false.

In the second case note that T ′ 6⊆ T iff S \ T 6⊆ S \ T ′. Hence, there is a t 6∈ g h1 . . . hm
s.t. t 6∈ S \ ([[ψ]]Tη h1 . . . hm). Again, player ∀ can choose this t and continue with the false
configuration t, h1, . . . , hm, η ⊢ ¬ψ.

The proof is finished just like the proof of Thm. 3.12. With this strategy, player ∀ can
always enforce a play that ends in a false configuration, but player ∃ can only win plays
that end in true configurations.

THE COMPLEXITY OF MODEL CHECKING HFL 17

Putting these two theorems together shows that these games correctly characterise the
satisfaction relation for fixpoint-free HFL.

Corollary 3.14. For all transition systems T all of their states s, and all fixpoint-free HFL
formulas ϕ of type Pr we have: T , s |= ϕ iff player ∃ wins the game GT (s, ϕ).

Lemma 3.15. For any k,m ≥ 1, any T = (S, { a−→ | a ∈ A}, L) with |S| = n, any s ∈ S,
and any HFLk,m formula ϕ, GT (s, ϕ) is a reachability game of size at most

4n2 · |ϕ|2 · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)2(m+v(ϕ)) .

Proof. It should be clear from the definition of the game that GT (s, ϕ) can indeed be re-
garded as a reachability game (V∃, V∀, v0,W∃,W∀). Its node set V := V∃ ∪ V∀ ∪W∃ ∪W∀

consists of all possible configurations in GT (s, ϕ) plus auxiliary configurations that repre-
sent the choices done by either player in rules (6) and (7) which require an alternating
sequence of choices of fixed depth 3. However, this can at most double the number of nodes
in comparison to the number of configurations.

The starting node v0 is the starting configuration s, η ⊢ ϕ for an everywhere undefined
η. The partition of the nodes is given by the definition of the game rules and winning
conditions above: V∃, resp. V∀ are all those configurations that require player ∃, resp. ∀
to make a choice – including the auxiliary configurations for the choices in between rules.
The edges of the game are simply given by the game rules. W∃, resp. W∀ are all those
configurations that end a play according to one of the winning conditions. Lemma 3.11
shows that these games are determined.

What remains to be seen is that the size of GT (s, ϕ) is bounded accordingly. There
are at most n different states t ∈ S, and at most |ϕ| many formulas ψ ∈ FL(ϕ). The
maximal width of a configuration, the parameter m′ in t, f1, . . . , fm′ , η ⊢ ψ is bounded
by m since here ψ has a type of arity m′. According to Lemma 3.3 there are at most

m(k−1)mk−2
2
n(k−1+m)k−1

k many different functions fi of type order k− 1. None of these can
be of type order k because they only occur as arguments to formulas of strictly higher order.

We simply define m(k−1)mk−2
:= m if k = 1 rather than introducing max-operators in these

terms.
Finally, we need to estimate the number of different environments η. These map at

most each λ-bound variable X of type τ in ϕ to an element of [[τ]]T . Again, if X occurs
bound in ϕ, then there is a λX.ψ ∈ FL(ϕ) of type σ, and we have ord(σ) ≥ ord(τ) + 1.

Hence, there are at most m(k−1)mk−2
2
n(k−1+m)k−1

k many possible values for each such X,

and thus at most (m(k−1)mk−2
2
n(k−1+m)k−1

k)v(ϕ) many different environments η.
Putting this together we obtain

2 · n · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)m · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)v(ϕ) · |ϕ| =

2n · |ϕ| · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)m+v(ϕ)

as an upper bound on the number of nodes in GT (s, ϕ). The number of edges in this directed
graph can of course be at most quadratic in the number of nodes which finishes the proof.

18 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

3.4. The Model Checking Complexity.

Theorem 3.16. The model checking problem on a transition system T of size n and an

HFLk,m formula ϕ can be solved in time 2O(|ϕ|k·log(n·|ϕ|))·(2
n(m+k−1)k−1

k)O(|ϕ|2) for any k,m ≥
1.

Proof. Let S be the state space of T , n := |S|, and ϕ ∈ HFLk,m for some k,m ≥ 1 be
closed. According to Lemma 3.8 there is a fixpoint-free ϕ′ s.t.

• v(ϕ′) ≤ v(ϕ) +m,

• |ϕ′| ≤ |ϕ| · (n+ 1)|ϕ| · (2
n(m+k−1)k−1

k)m·|ϕ|, and
• for all s ∈ S we have T , s |= ϕ iff T , s |= ϕ′.

Now take any s ∈ S. Consider the reachability game GT (s, ϕ
′). According to Lemma 3.15

its size is at most

4n2 · |ϕ′|2 · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)2(m+v(ϕ′))

= 4n2 · (|ϕ| · (n+ 1)|ϕ| · (2
n(m+k−1)k−1

k)m·|ϕ|)2 · (m(k−1)mk−2
· 2

n(k−1+m)k−1

k)2(2m+v(ϕ))

by replacing |ϕ′| according to Lemma 3.8. This can be approximated from above by

4 · (n+ 1)2|ϕ|+2 · |ϕ|3|ϕ|
k+2 · (2

n(m+k−1)k−1

k)2|ϕ|
2+6|ϕ|

= nO(|ϕ|) · |ϕ|O(|ϕ|k) · (2
n(m+k−1)k−1

k)O(|ϕ|2)) = 2O(|ϕ|k·log(n·|ϕ|)) · (2
n(m+k−1)k−1

k)O(|ϕ|2)

because |ϕ| is an upper bound on m, k and v(ϕ). By Cor. 3.14 we have T , s |= ϕ′ iff player
∃ has a winning strategy for GT (s, ϕ

′). And by Thm. 3.10 the asymptotic time needed to
solve this game equals its size.

Corollary 3.17. For any k,m ≥ 1 the HFLk,m model checking problem is in kExpTime.

Corollary 3.18. For any k,m ≥ 1 the model checking problem for HFLk,m on a fixed

transition system is in ExpTime.

Proof. If k,m and n are fixed constants then so is 2
n(k−1+m)k−1

k . Hence, model checking in

this case can be done in time 2O(|ϕ|2+|ϕ|k·log |ϕ|).

4. The Lower Bound

We will show that the upper bound in Cor. 3.17 is optimal by reducing the word problem
for alternating space bounded Turing Machines to the model checking problem for HFL.

Let F0(p(n)) := 2p(n) and Fk+1(p(n)) := 2p(n)·Fk(p(n)) for any polynomial p(n). A simple

induction shows Fk(p(n)) ≥ 2
p(n)
k+1 for all k, n ∈ N. Clearly, the space used by a 2

p(n)
k -space

bounded Turing Machine is also bounded by Fk−1(p(n)) for k ≥ 1. This slight shift in
indices makes the encoding of large numbers in the next section easier. On the other hand,

it only allows us to consider alternating 2
p(n)
k -space bounded Turing Machines when k ≥ 1.

Hence, we will only obtain kExpTime-hardness results for k ≥ 2. Fortunately, the results
for the HFL1,m fragments follow from known lower bounds for FLC [18].

THE COMPLEXITY OF MODEL CHECKING HFL 19

||Fk−1(p(n))− 1||k−1 . . . ||1||k−1 ||0||k−1

||0||k ||0||0 . . . ||0||0 ||0||0

||1||k ||0||0 . . . ||0||0 ||1||0

||2||k ||0||0 . . . ||0||0 ||2||0

...
...

...
...

...

||F1(p(n))− 1||k ||0||0 . . . ||0||0 ||F0(p(n))− 1||0

||F1(p(n))||
k ||0||0 . . . ||1||0 ||0||0

||F1(p(n)) + 1||k ||0||0 . . . ||1||0 ||1||0

...
...

...
...

...

||Fk(p(n))− 1||k ||F0(p(n))− 1||0 . . . ||F0(p(n))− 1||0 ||F0(p(n))− 1||0

Figure 3: Encoding large numbers as lexicographically ordered functions.

4.1. Representing Large Numbers in HFL. Let τ0 := Pr and τk+1 := τk → Pr for all
k ∈ N. Note that on a transition system of exactly p(n) states we have |τk| = Fk(p(n)) for
all k ∈ N. In order to model the position of the head and the sequence of the cells of a
tape of size Fk(p(n)) we therefore use a transition system T with p(n) many states, and an
encoding of the natural numbers {0, . . . , Fk(p(n)) − 1} via HFL functions4 of type τk over
T . This is done by induction on k. Let n and the polynomial p(n) be fixed.

For k = 0 we assume that T contains p(n) many states called 0, . . . , p(n)−1. A number
i between 0 and F0(p(n))− 1 is now represented by the subset Si = {j | the j-th bit of i is
1} which has type τ0. Let ||i||0 for i ∈ {0, . . . , F0(p(n)) − 1} denote the function of type τ0

that represents the natural number i in this way.
Now let k > 0. By assumption there are HFL functions ||0||k−1, . . . , ||Fk−1(p(n))−1||k−1

of type τk−1 that represent the numbers 0, . . . , Fk−1(p(n)) − 1. Clearly, these are linearly
ordered by the standard ordering on the numbers that they represent. We now need to find a
representation of the numbers 0, . . . , Fk(p(n))−1 via HFL functions of type τk = τk−1 → Pr.

These functions have a finite and linearly ordered domain as well as co-domain. Hence,
we can regard them as lexicographically ordered words of length Fk−1(p(n)) over the alpha-
bet {||0||0, . . . , ||F0(p(n))−1||0}, or simply as base-F0(p(n)) numerals with Fk−1(p(n)) digits.
Now ||i||k simply is the i-th function in this lexicographic ordering as depicted in Fig. 3.
The leftmost column contains the symbolic name ||i||k for the i-th function in that ordering.
The upper row contains the ordered list of all possible arguments x for any such ||i||k while
the entries below denote the values ||i||k x.

4We will also use the term “function” for an object of type τ0 which is a set strictly speaking, hence, a
function of order 0.

20 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

3 2 1 0

test

lower

Figure 4: The transition system TM,w for p(n) = 4.

4.2. The Reduction. For the remainder of this section we fix an alternating Fk(p(n))-
space bounded Turing Machine M = (Q,Σ,Γ, q0, δ, qacc , qrej) and an input word w of length
n. W.l.o.g. we assume p(n) > n for all n ∈ N. According to Thm. 2.12 we can also assume
Σ = Γ and |Γ| = 2.

Of course, symbols are just purely syntactic objects. However, later we need to encode
these two symbols as propositions in transition systems, and we will use the propositions tt
and ff to do so. Hence, we can simplify notation slightly by assuming Γ = {tt, ff} as two
different alphabet letters with no attached meaning. W.l.o.g. we assume that the special
blank symbol � is encoded by a sequence of the symbol ff of some suitable length.

The goal is to construct a transition system TM,w and an HFLk+2 formula Φk
M,w both

of polynomial size, s.t. TM,w, s |= Φk
M,w iff w ∈ L(M) for some state s. The types of

the subformulas of Φk
M,w that we present in the following can easily be inferred. We will

therefore omit type annotations.
We begin with the construction of the transition system. Let P := ∅, i.e. no state of

TM,w carries a label. There are two modal accessibility relations with labels lower and test .

Let TM,w = (S, { lower−−−−→, test−−−→}, L) where S = {0, . . . , p(n) − 1}, and L maps every state
to the empty set. The lower -relation simply resembles the less-than-relation on natural

numbers: i lower−−−−→ j iff j < i. The test-relation forms a clique: i test−−−→ j for all i, j ∈ S. It is
used to form global statements. Note that for all states i, j, and all formulas ψ: i |= [test]ψ
iff j |= [test]ψ. Fig. 4 depicts TM,w for p(n) = 4. The transitions above the states are the
lower−−−−→-relation. Consequently, they only lead from the left to the right. The transitions

below the states are the test−−−→-relation.
For the remainder of this section we fix TM,w as the transition system over which

formulas are interpreted and write [[·]] instead of [[·]]TM,w .
Remember that any function of type τ0 represents a number in binary coding over TM,w:

||i||0 = {j | the j-th bit of i is 1}. Furthermore, the transitions in TM,w allow a bit to assess

the values of all lower bits. The HFL1,1 formula

inc0 := λX.X ↔ 〈lower 〉¬X

models the increment among the number representations ||0||0, . . . , ||F0(p(n)) − 1||0. Incre-
ment of a binary counter sets a bit of the input to 0 if itself and all lower bits are 1. A bit
is set to 1 if it currently is 0 and all lower bits are 1. A bit is preserved if a lower-valued
bit is unset. Applied to ||F0(p(n))− 1||0 this yields ||0||0 again. Similarly, we can model the

THE COMPLEXITY OF MODEL CHECKING HFL 21

decrement among these values as

dec0 := λX.X ↔ 〈lower 〉X

Lemma 4.1. For all i ∈ {0, . . . , F0(p(n))− 1} we have:

a) [[inc0]] ||i||0 = ||i+ 1 mod F0(p(n))||
0,

b) [[dec0]] ||i||0 = ||i− 1 mod F0(p(n))||
0.

Proof. We will only show part (a) since part (b) is entirely analogous. Take any i ∈
{0, . . . , F0(p(n))} and let m := p(n) − 1 = (log F0(p(n))) − 1. Furthermore, let bm . . . b0 ∈
{0, 1}m+1 be the binary representation of the number i. According to the encoding described
in the previous section, we have ||i||0 = {j | bj = 1}.

Now take any state j and suppose j ∈ [[inc0]] ||i||0. The body of the λ-abstracted
formula inc0 is a bi-implication which can be seen as an abbreviation of a disjunction of
two conjunctions. Hence, there are two possibilities.

• Either j |= X ∧ 〈lower 〉¬X with X interpreted as ||i||0. This means that bit j is set
in i and there is a lower bit that is not set in i. Hence, bit j is also set in i + 1
mod F0(p(n)).

• Or j |= ¬X ∧ [lower]X under the same interpretation of X. Then the j-th bit is the
lowest bit which is unset in i. Hence, it gets set in i+ 1 mod F0(p(n)).

This shows that only those bits are included in the increment process that should be in-
cluded. The converse direction – all necessary bits are included – is shown in the same way
by case analysis. Suppose j 6∈ [[inc0]] ||i||0, i.e. j 6|= X ↔ 〈lower 〉¬X with X interpreted by
||i||0.

• Either j |= X ∧ [lower]X. Then the j-th bit is among all those least bits that are
set in i. Hence, it gets unset in i+ 1 mod F0(p(n)).

• Or j |= ¬X ∧ 〈lower 〉¬X. Then the j-th bit is not set in i, but there is a lower
bit that is not set either. Hence, it preserves its value and remains unset in i + 1
mod F0(p(n)).

In order to define the increment and decrement of numbers ||i||k in lexicographic ordering
for some k > 0 we need to have equality, less-than and greater-than tests on lower types τk−1.
They can be implemented as functions of type τk−1 → τk−1 → Pr. Equality simply makes
use of the fact that two numbers are equal iff they have the same binary representation.

eq0 := λI.λJ.[test](I ↔ J)

The other comparing functions need to access single bits. Remember that i < j iff there is
a bit that is unset in i and set in j s.t. i and j agree on all higher bits. We therefore first
define formulas bit i for i = 0, . . . , p(n) − 1 s.t. bit i axiomatises the state i, i.e. j |= bit i iff
i = j. This can be done recursively as

bit0 := [lower]ff , bit i+1 := 〈lower 〉bit i ∧ [lower](
∨

j≤i

bitj)

Note that |bit i| = O(i2) only.

lt0 := λI.λJ.

p(n)−1
∨

k=0

[test]
(

(bitk → ¬I ∧ J)) ∧
∧

h>k

(
(bith → (I ↔ J)

))

22 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

gt0 := λI.λJ.(lt0 J I)

Lemma 4.2. For all i, j ∈ {0, . . . , F0(p(n))− 1} we have:

a) [[eq0]] ||i||0 ||j||0 =

{

S, if i = j

∅, o.w.

b) [[lt0]] ||i||0 ||j||0 =

{

S, if i < j

∅, o.w.

c) [[gt0]] ||i||0 ||j||0 =

{

S, if i > j

∅, o.w.

Proof. (a) The binary representation of a number is unique. Hence, i = j iff ||i||0 = ||j||0 iff
for all s ∈ S: s ∈ ||i||0 ⇔ s ∈ ||j||0. The rest follows from the fact that [test](I ↔ J) either
holds in all states or in none of S.

(b) Similarly, we have i < j iff there is a bit that is unset in ||i||0 but set in ||j||0, and
||i||0 and ||j||0 agree on all higher bits. Again, each disjunct of the form [test] . . . is satisfied
by either all or no states, and so is the entire disjunction.

(c) Follows directly from (b).

We will call an HFL formula ψ of some type σ1 → . . . → σm → Pr 2-valued iff for all
x1 ∈ [[σ1]], . . . , xm ∈ [[σm]] we have [[ψ]] x1 . . . xm = S or [[ψ]] x1 . . . xm = ∅. For example, eq0,
lt0, and gt0 are 2-valued. Such functions will be used to model predicates, i.e. functions
whose return value should be either true or false.

Before we can extend the incrementation and decrementation functions to types τk for
some k > 0 we need to define some auxiliary functions and macros.

For HFL formulas β, ψ1, ψ2 of type Pr let

if β then ψ1 else ψ2 := (β ∧ ψ1) ∨ (¬β ∧ ψ2)

Note that if [[β]] is either S or ∅ then we have

[[if β then ψ1 else ψ2]] =

{

[[ψ1]], if [[β]] = S

[[ψ2]], if [[β]] = ∅

For any k ∈ N we can easily define formulas mink and max k that encode the minimal and
maximal element in the range of 0, . . . , Fk(p(n))− 1.

min0 := ff max 0 := tt

mink+1 := λX.min0 max k+1 := λX.max 0

We will define by simultaneous induction on k the following formulas.

• existsk : (τk → Pr) → Pr

It takes a predicate P on the number representations ||0||k, . . . , ||Fk(p(n))− 1)||k and
decides whether or not there is an i s.t. P ||i||k holds. If P is 2-valued then so is
existsk. It is defined as

existsk := λP.
((
µZ.λX.(P X) ∨ Z (inck X)

)
mink

)

THE COMPLEXITY OF MODEL CHECKING HFL 23

• forallk : (τk → Pr) → Pr

Similarly, this function checks whether P ||i||k holds for all such i.

forallk := λP.¬
(
(existsk) (¬P)

)

• eqk : τk → τk → Pr

This is a 2-valued function which decides whether two given representations from
||0||k, . . . , ||Fk(p(n)) − 1||k encode the same number. Note that for k = 0 this has
already been defined above.

eqk := λI.λJ.forall k−1
(
λX.eq0 (I X) (J X)

)

• ltk : τk → τk → Pr

This 2-valued function decides for two number representations whether the less-
than-relationship holds between the two encoded numbers. Again, the case of k = 0
has been dealt with above.

ltk := λI.λJ.existsk−1

(

λX.
(
lt0 (I X) (J X)

)
∧

forallk−1
(

λY.(gtk−1 X Y) →
(
eq0 (I X) (J Y)

))
)

• gtk : τk → τk → Pr

Using the last one we can easily decide for two number representations whether the
greater-than-relationship holds between the two encoded numbers.

gtk := λI.λJ.(ltk J I)

• inck : τk → τk
This function models increment in the range of 0, . . . , Fk(p(n))− 1 for k > 0.

inck := λI.λX.if existsk−1
(
λY.(ltk−1 Y X) ∧ ¬(eq0 (I Y) max 0)

)

then I X else inc0 (I X)

Incrementation is done in the same way as with the binary represenation in the case
of k = 0 above: inck applied to ||i||k yields the function that agrees with ||i||k on all
arguments for which there is a smaller one whose value is not maximal, i.e. still less
than F0(p(n)) − 1. If all smaller arguments including itself have already reached
the maximal value then they are reset to the minimal, i.e. ||0||0. Note that inc0 also
models the increment modulo F0(p(n)).

• deck : τk → τk
Similarly, this models decrement in the range of 0, . . . , Fk(p(n))− 1 for k > 0.

deck := λI.λX.if existsk−1
(
λY.(ltk−1 Y X) ∧ ¬(eq0 (I Y) min0)

)

then I X else dec0 (I X)

These definitions are well-defined. For k > 0, inck and deck need ltk−1, and existsk−1. The
latter only needs inck−1. The former needs existsk−2 and forallk−2, etc.

Remark 4.3. For all k ∈ N we have:

24 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

ord(existsk) = ord(forall k) = k + 2

ord(eqk) = ord(ltk) = ord(gtk) = k + 1

ord(inck) = ord(deck) = k + 1

mar (existsk) = mar (forallk) = 1

mar (eqk) = mar (ltk) = mar (gtk) = 2

mar (inck) = mar (deck) = 2

The following lemmas provide exact specifications for the functions above and prove that
their implementations comply to these specifications. They are all proved by simultaneous
induction on k.

Lemma 4.4. For any function ψ of type τk → Pr s.t. [[ψ]] is two-valued we have:

a) [[existsk ψ]] =

{

S, if ∃i ∈ {0, . . . , Fk(p(n))− 1} s.t. [[ψ]] ||i||k = S

∅, o.w.

b) [[forall k ψ]] =

{

S, if ∀i ∈ {0, . . . , Fk(p(n))− 1} s.t. [[ψ]] ||i||k = S

∅, o.w.

Proof. We will only prove part (a), since (b) follows from it by simple propositional reason-
ing. Note that for any formula ψ we have

existsk ψ ≡
∨

i∈N

p (inck(inck(. . . (inck
︸ ︷︷ ︸

i times

mink) . . .)))

by fixpoint unfolding. The rest follows from the correctness Lemmas 4.1 and 4.6 for inck

and the fact that p is assumed to be 2-valued. Clearly, the disjunction over disjuncts that
all are either true or false is also either true or false.

Lemma 4.5. For all k > 0 and i, j ∈ {0, . . . , Fk(p(n))− 1} we have:

a) [[eqk]] ||i||k ||j||k =

{

S, if i = j

∅, o.w.

b) [[ltk]] ||i||k ||j||k =

{

S, if i < j

∅, o.w.

c) [[gtk]] ||i||k ||j||k =

{

S, if i > j

∅, o.w.

Proof. (a) This follows immediately from the definition of eqk and Lemmas 4.4 and 4.2.
Note that i = j iff they encode the same functions according to the representation of the
previous section. Function equality, however, can easily be tested using the forall macro to
iterate through all possible arguments and the eq0 function to compare the corresponding
values.

(b) We have i < j iff ||i||k is lexicographically smaller than ||j||k according to the encoding
of the previous section. Now this is the case iff there is an argument x s.t. the value of ||i||k

on x is smaller than the value of ||j||k on x, and for all arguments that are greater than x,

these two functions agree. Hence, correctness of ltk follows from Lemmas 4.4, 4.2 and part
(c) on k − 1.

(c) Follows from (a) and (b) by propositional reasoning.

THE COMPLEXITY OF MODEL CHECKING HFL 25

Lemma 4.6. For all k > 0 and i ∈ {0, . . . , Fk(p(n))− 1} we have:

a) [[inck]] ||i||k = ||i+ 1 mod Fk(p(n))||
k,

b) [[deck]] ||i||k = ||i− 1 mod Fk(p(n))||
k.

Proof. Again, we will only prove part (a) since part (b) is entirely analogous. Let i ∈
{0, . . . , Fk(p(n)) − 1}, and i′ := i + 1 mod Fk(p(n)). Remember that according to the
previous section, ||i′||k is the lexicographically next function after ||i||k. Hence, it is the
function that takes an argument x and returns ||i||k x if there is a smaller argument y s.t.
||i||k y is not the maximal value. If there is no such smaller y then it returns the value of
||i||k on x increased by one. This makes use of the fact that inc0 increases modulo F0(p(n)).
Hence, on all lower-valued arguments the function values are reset to ||0||0 again. Therefore,
correctness follows from Lemmas 4.1, 4.4, 4.2, and 4.5.

This provides all the necessary tools to model the behaviour of the space-bounded
alternating Turing Machine M. In particular, inck and deck can be used to model the
movements of the tape head on a tape of size Fk(p(n)).

Remember that a configuration of M in the computation on w is a triple (q, h, t) where
q ∈ Q, h ∈ {0, . . . , Fk(p(n)) − 1}, and t : {0, . . . , Fk(p(n)) − 1} → Γ. We will use the HFL
type τk to model head positions h, and the type τk+1 to model tape contents t. The state
component of a configuration will be encoded in the formula. The two alphabet symbols tt
and ff will be interpreted by the whole, resp. empty set of states, i.e. like the propositions
tt and ff.

First of all we need to define formulas that encode the starting configuration. Formula
headk

0 encodes position 0 on a tape of length Fk(p(n)). This is simply headk
0 := mink.

Remark 4.7. ord(head k
0) = k, mar (headk

0) = 1 if k ≥ 1 and 0 otherwise.

In order to encode the tape content of the starting configuration we need yet another
auxiliary macro. Let m ∈ N and j1, . . . , jm be HFL formulas of type τk, and ψ,ψ1, . . . , ψm

be HFL formulas of type τ0. We write

case
k j1 : ψ1, . . . , jm : ψm else ψ

to abbreviate

λI.

(
(

m∨

h=1

(eqk I jh) ∧ ψh

)
∨
(
ψ ∧

m∧

h=1

¬(eqk I jh) ∨ ¬ψh

)
)

Lemma 4.5 immediately gives us the following. Given formulas j1, . . . , jm of type τk that
represent pairwise different numbers from {0, . . . , Fk(p(n))−1}, and formulas ψ,ψ1, . . . , ψm,
as well as a number i ∈ {0, . . . , Fk(p(n))− 1}, we have

[[
(
case

k j1 : ψ1, . . . , jm : ψm else ψ
)
]] ||i||k =

{

[[ψh]], if ||i||k = [[jh]]

[[ψ]], o.w.

In order to define the tape content of the starting configuration of length Fk(p(n)) let
w = a0 . . . an−1 with ai ∈ {tt, ff}. We will use the case-construct to define the initial tape
content by case distinction. In order to do so, we need to explicitly address the first n tape
cells via a formula χk

i s.t. [[χk
i]] = ||i||k for all i, k. This can be done recursively using the

26 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

auxiliary formulas bit i from above.

χ0
i :=

p(n)−1
∨

j=0

{

bitj , the j-th bit of i is set

¬bitj , the j-th bit of i is unset

Note that here we need to represent a number in the range of 0, . . . , F0(p(n)) − 1 by the
union over all its bit values, hence a disjunction rather than a conjunction which might
seem more intuitive.

For k > 0 also recall that we have assumed p(n) > n for all n ∈ N, in particular

n ≤ 2p(n). This ensures an easy encoding of the small numbers 0, . . . , n − 1 as functions of
type τk+1. Function ||i||k, for i ∈ {0, . . . , n−1}, maps ||0||k−1 to ||i||0 and all other arguments
to ||0||0 – cf. Fig. 3. Hence, for k > 0, let

χk
i := case mink−1 : χ0

i else min0

This allows us to represent the starting configuration of M on w as a simple case distinction.

tapek0 := case
k χk

0 : a0, . . . , χ
k
n−1 : an−1 else ff

Here we utilise the fact that we encode the alphabet symbols tt and ff using the propositions
tt and ff and the blank tape by a sequence of the symbol ff.

Remark 4.8. ord(tapek0) = k + 1, mar(tapek0) = 2.

Next we need formulas that encode the manipulation of configurations. In particular,
we will have to model the head movement, and define formulas for reading and updating
the symbol at a certain tape position. Remember that in an Fk(p(n))-space bounded con-
figuration, the head position can be encoded using type τk, and the tape content can be
encoded using type τk → Pr = τk+1. We need to define the following functions for any
a ∈ Γ.

• readk
a : τk+1 → τk → Pr

Applied to an encoded tape content and head position it tests whether or not the
symbol under the head on that tape is a. It is also a 2-valued predicate. Remember
that there only are the two symbols tt and ff with corresponding encoding.

readk
tt

:= λT.λH.(T H)

readk
ff

:= λT.λH.¬(T H)

• writeka : τk+1 → τk → τk+1

Given an encoded tape content t and a head position h it returns the tape content
that contains a at position h and complies with t on all other positions.

writeka := λT.λH.λH ′.if (eqk H H ′) then a else (T H ′)

Remark 4.9. ord(readk
a) = k + 2, ord(writeka) = k + 2, mar (readk

a) = 2, mar (writeka) = 3.

In the following we write ||t||k for the encoding of the tape t of length Fk(p(n)) as a
function of type τk → Pr. Equally, the head position h in a configuration is encoded by
||h||k. We also write t[h := a] for the update of t with a at position h. The next two lemmas
show that the above functions are correct. Their proofs are straight-forward. The latter
relies on the correctness of the if-then-else-construct.

THE COMPLEXITY OF MODEL CHECKING HFL 27

Lemma 4.10. For all k ∈ N, all x ∈ Γ, all tape contents t, and all head positions h we

have

[[read k
x]] ||t||

k ||h||k =

{

S, if the symbol in t at position h is x

∅, o.w.

Lemma 4.11. For all k ∈ N, all x ∈ Γ, all tape contents t, t′, and all positions h we have:

[[writekx]] ||t||
k ||h||k = ||t′||k iff t′ = t[h := x].

The movement of the tape head is easily modeled using three functions movekd : τk → τk
for d ∈ {−1, 0,+1}.

movek−1 := deck , movek0 := λH.H , movek+1 := inck

Finally, we use the characterisation of acceptance in an alternating Turing Machine as a
reachability game to construct the formula Φk

M,w. Let Q = {q0, . . . , qm, qacc , qrej}. We will
simultaneously define for each state q ∈ Q an eponymous function q : τk+1 → τk → Pr that
– given a tape content t and a head position h – signals as a 2-valued predicate whether or
not M accepts starting in the configuration (q, h, t). Let, for all q ∈ Q,

Ψk
M,q := µq.










q0 . λT.λH.Ψ0
...

qm . λT.λH.Ψm

qacc . λT.λH.tt
qrej . λT.λH.ff










where for all i = 0, . . . ,m:

Ψi :=
∨

a∈Γ

(read k
a T H) ∧







∨

(q′,b,d)∈δ(qi,a)

q′ (writekb T H) (movekd H) , if q ∈ Q∃

∧

(q′,b,d)∈δ(qi,a)

q′ (writekb T H) (movekd H) , if q ∈ Q∀

Then define Φk
M,w := Ψk

M,q0
tapek0 headk

0 .

The following result about the order-restricted fragment into which Φk
M,w falls is easily

obtained by collecting all the preceding remarks about the orders and maximal arities of
all its subformulas. Note that those of highest type-order are readk

a, write
k
a, and q for each

q ∈ Q. All of them have order k + 2.

Lemma 4.12. For all k ∈ N: Φk
M,w ∈ HFLk+2,3.

Theorem 4.13. For all k ≥ 1, all w ∈ Γ∗ and all Fk(p(n))-space bounded alternating

Turing Machines M we have:

[[Φk
M,w]]

TM,w =

{

S, if w ∈ L(M)

∅, o.w.

Proof. Let M = (Q,Σ,Γ, q0, δ, qacc , qrej). Suppose w ∈ L(M). Then there is an accepting
run of M on w. Remember that M is alternating. Hence, this run can be represented as a
tree T with starting configuration (q0, 0, wff . . . ff) as the root, s.t.

• every existential configuration has exactly one successor in the tree,
• for every universal configuration the set of its successors in the tree forms the set of
all its successor configurations,

• all leaves are accepting configurations.

28 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

We now show [[Φk
M,w]]

TM,w = S by induction on the height h(T) of T . Since Φk
M,w is

a simultaneously defined fixpoint function applied to two arguments we need a stronger
inductive hypothesis. We will show that for all q ∈ Q and all t : τk → Pr, all h : τk encoding
a tape content and a head position: [[Ψk

M,q]] ||t||
k ||h||k = S if M accepts starting in the

configuration given by (q, h, t).
The base case is h(T) = 1 which means that the root is an accepting configuration.

Hence, q = qacc, and the claim is easily seen to be true by two applications of β-reduction.
If h(T) > 1 then we need to distinguish two cases. First, assume that q ∈ Q∃. Then

there is exactly one successor configuration (q′, t′, h′) in T which results from (q, t, h) by
one Turing Machine step according to δ. Clearly, M accepts starting in (q′, t′, h′) and, by
hypothesis, we have [[Ψk

M,q′]] ||t
′||k ||h′||k = S. One unfolding of the fixpoint formula together

with Lemmas 4.1, 4.6–4.11 show that we also have [[Ψk
M,q]] ||t||

k ||h||k = S.
The case of q ∈ Q∀ is similar. Here, there are possibly several accepting subtrees of T .

But the hypothesis applies to all of them and intersection over S several times is still S.
This shows completeness. Soundness can be proved along the same lines because of

determinacy. Note that if w 6∈ L(M) then this is witnessed by a computation tree in which
every universal configuration has only one successor, every existential one retains all of its
successors, and all leaves are rejecting.

4.3. Lower Bounds on the Model Checking Complexity.

Theorem 4.14. For all k ≥ 2 and all m ≥ 3 the model checking problem for HFLk,m is

kExpTime-hard when |P| ≥ 0, |A| ≥ 2.

Proof. Let k ≥ 2. According to Thm. 2.12 there is a (k − 1)AExpSpace machine M s.t.
L(M) is kExpTime-hard [4]. Using padding we can assume the space required by M on
an input word of length n to be bounded by Fk−2(p(n)) for some polynomial p(n) > n.
Thm. 4.13 yields a reduction from w ∈ Γ∗ to labeled transition systems TM,w and a formula

Φk−2
M,w s.t. w ∈ L(M) iff TM,w, s |= Φk−2

M,w for any state s.

According to Lemma 4.12 we have Φk−2
M,w ∈ HFLk,3. Furthermore, |TM,w| is clearly

polynomial in n. The size of Φk−2
M,w is also polynomial in n, but this formula is only an

abbreviation using the simultaneous fixpoint definition in Φk
M,q0

and we need to consider
the Fisher-Ladner closure of its unabbreviated counterpart. But remember the definition
of Φk−2

M,w as Ψk
M,q0

tapek0 headk
0 . Unfolding only affects the subformula Ψk

M,q0
whose size is

independent of n. Hence, |Φk−2
M,w| is also polynomial in n.

For the fragment HFL1 a similar result follows from the known ExpTime lower bound
for FLC [18] and the embedding of FLC into HFL1,1 [28].

Proposition 4.15 ([18, 28]). There is an HFL1,1 formula over a singleton P and an A of

size 2 whose set of models is ExpTime-hard.

The condition |A| ≥ 2 results from the fact that the reduction to FLC model checking
is from the pushdown game problem. The number of different modal accessibility relations
is p + 1 where p is the size of the alphabet in the pushdown games. A close inspection of
the ExpTime lower bound proof for this problem [29] shows that p = 1 is sufficient.

It has already been observed that model checking HFL on fixed and very small transition
systems is non-elementary [19]. We repeat this observation here since it follows from the

THE COMPLEXITY OF MODEL CHECKING HFL 29

construction above in a very neat way. Remember that log∗ n = i iff the i-fold iteration of
the function λm.⌈logm⌉ starting in n yields 1.

Theorem 4.16. The model checking problem for HFL on the fixed transition system of size

1, no transitions and no labels is non-elementary when maximal type arities are at least 2.

Proof. Note that Thm. 4.13 uses p(n) many states to encode Fk(p(n)) many numbers for
any k ≥ 1. But Fk(p(n)) = 2p(n)·Fk−1(p(n)), thus Fk+1(log p(n)) ≥ Fk(p(n)). This means
that the reduction in Thm. 4.13 also works with log p(n) many states, but yields a formula
in HFLk+1 rather than HFLk. Iterating this shows that one state suffices for the reduction,
but the result is only in HFLk+log∗ p(n).

Finally, note that by the construction above, this single state 0 does not have any lower -

transitions. The transition 0 test−−−→ 0 is redundant because we have 0 |= [test]ψ iff 0 |= ψ for
any formula ψ.

There is an apparent intuitive mismatch between this and Cor. 3.18 which both make
a statement about the expression complexity of HFL on the smallest possible transition
system. For every fixed k,m, this is in ExpTime. However, when k is unbounded it
becomes non-elementary. Even though this gap is huge in terms of complexity classes it
is just tiny in terms of the HFL types that are necessary to achieve a non-elementary
complexity: the type levels only have to be increased by log∗ p(n). Note that log∗m ≤ 6
for any natural number m that is representable using electron spins as bits when the entire
observable universe was densely packed with electrons. The cause for the apparent intuitive
mismatch is simply an underestimation of the exponential time hierarchy. Equally, a tower
of height 6 is sufficient to exceed the numbers representable using the electron spins in this
way.

The above two theorems raise the question after a lower bound for the data complexity
of HFL. In the following we will modify the reduction to yield a formula Φk

M that only
depends on the alternating Turing Machine M rather than both the machine and the input
word. Remember that, according to Thm. 2.12, there is – for any k ≥ 1 – such a machine
with a word problem that is kExpTime-hard.

The idea for the modification is simple. It is only the subformula tapek0 that depends
on the input word. First, let

tapekempty := λX.ff

model the tape that contains the blank symbol � only.
Note that TM,w has p(n) > n many states. Hence, we can use these states together

with a single proposition q to model the input word w = a0, . . . , an−1 ∈ {tt, ff}∗.

L(i) =

{

{q} , if i ≤ n and ai = tt

∅ , o.w.

Let T ′
M,w be the result of this. Note that it differs from TM,w only through the additional

labels on the states. An example with p(n) = 4 and w = tt ttff tt is shown in Fig. 5. For

better readability we depict the relation test−−−→ only schematically.
All we need now is a formula that traverses through these states and uses the information

obtained from each label to generate the original encoding tapek0 of the real input tape. This

is done by the function buildk : τk+1 → τk → Pr → Pr → τk+1, defined as

buildk := µZ.λT.λH.λC.λY.

30 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

lower

q q q
3 2 1 0

test

Figure 5: The transition system T ′
M,w for p(n) = 4 and w = tttt fftt.

if [test](χ↔ bitp(n)) then T

else if [test](C → q)

then Z (writek
tt
T H) (inck−1 H) (〈lower〉C ∧ [lower]Y) (C ∨ Y)

else Z (writek
ff
T H) (inck−1 H) (〈lower〉C ∧ [lower]Y) (C ∨ Y)

The parameters T and H contain the current tape content and the position at which the
next symbol is going to be written. From this perspective it is not surprising that writek

and inck are applied to them before a recursive call of Z. The parameters C and Y are
used to identify the next state in TM,w which is checked for the label q. Remember the
recursive definition of the formulas bit i which is exactly what is reproduced here. Note that
ord(buildk) = k + 2 and mar (buildk) = 5. Finally, let

tapekbuilt := buildk tapekempty mink bit0 ff

Lemma 4.17. For all T ′
M,w which, in addtion to TM,w carry the input word w through

labels as defined above we have [[tapekbuilt]]
T ′
M,w = [[tapek0]]

TM,w .

Proof. Assume that ||t||k encodes a tape content t and ||h||k a head position on this tape.
Then we have for all i ∈ {0, . . . , p(n)− 1}:

[[buildk]] ||t||k ||h||k [[bit i]] [[
∨i−1

j=0
bit j]] =

{

||t||k , if i = p(n)

[[buildk]] ||t[h := a]||k ||h+ 1||k [[bit i+1]] [[
∨i

j=0 bitj]] , if i < p(n)

where a = tt if L(i) = q and a = ff if L(i) = ∅. Thus, when applied to the initial values
encoding the blank tape, leftmost head position, the state representing bit 0 and the empty
disjunction, this least fixpoint recursion eventually yields the tape onto which the word w
at hand is written. This makes use of the fact that p(n) > n, i.e. the fixpoint recursion
takes at least one more step after reading the entire input word before it terminates.

Theorem 4.18. For all k ≥ 2 and all m ≥ 5 there is an HFLk,m formula over a singleton

P and an A of size 2 whose set of models is kExpTime-hard.

Proof. Let Φk
M := Ψk

M,q0
tapekbuilt head

k
0 . Clearly, Φk

M only depends on M and not on its

input word w. Furthermore, we have Φk
M ∈ HFLk+2,5. The hardness result then follows

from Lemma 4.17 and Thm. 4.13 along the same lines as the proof of Thm. 4.14.

THE COMPLEXITY OF MODEL CHECKING HFL 31

complexity combined data expression

HFL

∈ DTime(2
n·|ϕ|O(|ϕ|)

k)
kExpTime

DTime(2
|ϕ|O(|ϕ|)

k)

hard Elementary Elementary

HFL0
∈ UP∩co-UP

P
UP∩co-UP

hard P P

HFL1,m
∈

ExpTime

(when p ≥ 3)

ExpTime

(when p ≥ 3)

ExpTime

hard P

HFLk,m, k ≥ 2
∈ kExpTime

(when m ≥ 3, p ≥ 2)

kExpTime

(when m ≥ 5, p ≥ 3
or m ≥ 4, p ≥ 4)

ExpTime

hard P

Figure 6: A summary of the model checking complexity results.

It is possible to reduce the maximal arity to 4 at the cost of an extra accessibility

relation in the model. If there are transitions i
pred

−−−→ j iff j = i − 1 then the formulas bit i
can be defined more simply as bit0 := [pred]ff and bit i+1 := 〈pred〉bit i, and the parameter

Y in buildk is unnecessary.

5. Conclusions

The table in Fig. 6 shows the complexity of the model checking problem for HFL. We
distinguish the combined complexity (both transition system and formulas as input), the
expression complexity (model checking on a fixed transition system), and the data complexity

(model checking with a fixed formula). Note that lower bounds from either expression or
data complexity trivially transfer to the combined complexity while upper bounds for that
trivially transfer back to both of them. In any case, n denotes the size of the transition
system, ϕ is the input formula, k the maximal type order and m the maximal type arity
of one of its subformulas, and p := |P| + |A| is the number of underlying propositions and
modal acessibility relations. Note that there are standard translations for modal logics that
reduce one at the cost of increasing the other whilst preserving satisfiability. These could
be incorporated directly into the reduction for the lower bound.

The entries stretching over two columns denote completeness results for the correspond-
ing complexity class. The restrictions of the form m ≥ 2 etc. of course only apply to the
respective lower bound.

The estimation on the time complexity of model checking general HFL uses the fact
that the maximal type order as well as the maximal type arity of a subformula of ϕ are
both bounded by |ϕ|.

32 ROLAND AXELSSON, MARTIN LANGE, AND RAFA L SOMLA

Recall that Elementary does not have complete problems under polynomial time
reductions. The upper bounds on the expression and combined complexity for general HFL
model checking are therefore as close as possible to the corresponding lower bound.

The gaps between P and UP∩co-UP simply restate open questions about the exact
model checking complexity of the modal µ-calculus. The best upper bound known there
in terms of complexity classes is UP∩co-UP so far [14]. The polynomial time lower bound
for its expression complexity is taken from an unpublished manuscript [6]. Despite a lot of
effort this gap remains open up to date.

The only question about the complexity of model checking HFL that is left unanswered
but might be feasible is the gap in the expression complexity of HFLk,m for any fixed
k,m ≥ 1. It remains to be seen whether there are fixed transition systems Tk,m, s.t. for all

k,m, the set of HFLk,m formulas that are satisfied by Tk,m is ExpTime-hard.

Finally, the kExpTime-completeness of HFLk,m’s data complexity immediately implies
a hierarchy result regarding expressive power.

Corollary 5.1. For all k ∈ N we have: HFLk � HFLk+1.

Proof. For k = 0 this is known already because of HFL0 = Lµ � FLC ≤ HFL1,1 [22, 28].

Now take any k ≥ 1. According to Thm. 4.14, there is a formula ϕ ∈ HFLk+1,5 whose set
of models is (k+1)ExpTime-hard. Now suppose that there is also a ψ ∈ HFLk,m for some
m ≥ 1 s.t. ψ ≡ ϕ. Note that ϕ is fixed, and so is ψ. According to Thm. 3.17, this same set
of models would also be included in kExpTime which contradicts the complexity-theoretic
time-hierarchy theorem of kExpTime ((k + 1)ExpTime.

References

[1] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure grammars.
Zeitschrift für Phonologie, Sprachwissenschaft und Kommunikationsforschung, 14:113–124, 1961.

[2] H. Békic̀. Programming Languages and Their Definition, Selected Papers, volume 177 of LNCS. Springer,
1984.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142–170, June 1992.
[4] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133,

January 1981.
[5] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving.

Formal Methods in System Design, 19(1):7–34, 2001.
[6] S. Dziembowski, M. Jurdziński, and D. Niwiński. On the expression complexity of the modal µ-calculus

model checking. Unpublished manuscript, 1996.
[7] E. A. Emerson. Uniform inevitability is tree automaton ineffable. Information Processing Letters,

24(2):77–79, January 1987.
[8] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic of

branching time. Journal of Computer and System Sciences, 30:1–24, 1985.
[9] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching versus linear

time temporal logic. Journal of the ACM, 33(1):151–178, January 1986.
[10] E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd Symp. on

Foundations of Computer Science, pages 368–377, San Juan, Puerto Rico, October 1991. IEEE.
[11] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer

and System Sciences, 18(2):194–211, April 1979.
[12] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular programs. Journal of

Computer and System Sciences, 26(2):222–243, April 1983.

THE COMPLEXITY OF MODEL CHECKING HFL 33

[13] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional µ-calculus with respect
to monadic second order logic. In U. Montanari and V. Sassone, editors, Proc. 7th Conf. on Concurrency

Theory, CONCUR’96, volume 1119 of LNCS, pages 263–277, Pisa, Italy, August 1996. Springer.
[14] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP . Inf. Process. Lett., 68(3):119–124,

1998.
[15] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, December 1983.
[16] M. Lange. Model checking propositional dynamic logic with all extras. Journal of Applied Logic, 4(1):39–

49, 2005.
[17] M. Lange. The alternation hierarchy in fixpoint logic with chop is strict too. Information and Compu-

tation, 204(9):1346–1367, 2006.
[18] M. Lange. Three notes on the complexity of model checking fixpoint logic with chop. R.A.I.R.O. –

Theoretical Informatics and Applications, ??(??):??–??, 2006. (to appear).
[19] M. Lange and R. Somla. The complexity of model checking higher order fixpoint logic. In Proc. 30th Int.

Symp. on Math. Foundations of Computer Science, MFCS’05, volume 3618 of LNCS, pages 640–651.
Springer, 2005.

[20] M. Lange and R. Somla. Propositional dynamic logic of context-free programs and fixpoint logic with
chop. Information Processing Letters, 100(2):72–75, 2006.

[21] M. Lange and C. Stirling. Model checking fixed point logic with chop. In M. Nielsen and U. H. Engberg,
editors, Proc. 5th Conf. on Foundations of Software Science and Computation Structures, FOSSACS’02,
volume 2303 of LNCS, pages 250–263, Grenoble, France, April 2002. Springer.

[22] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and S. Tison, editors, Proc. 16th Symp.

on Theoretical Aspects of Computer Science, STACS’99, volume 1563 of LNCS, pages 510–520, Trier,
Germany, 1999. Springer.

[23] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of Computer Science,

FOCS’77, pages 46–57, Providence, RI, USA, October 1977. IEEE.
[24] H. Schwichtenberg. An upper bound for reduction sequences in typed λ-calculus. Archives of Mathe-

matical Logic, 30:405–408, 1991.
[25] R. Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer Science, 9:73–81,

1979.
[26] C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors, Proc. 6th Conf. on

Concurrency Theory, CONCUR’95, volume 962 of LNCS, pages 1–11, Berlin, Germany, 1995. Springer.
[27] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific Journal of Mathematics,

5:285–309, 1955.
[28] M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In Ph. Gardner and

N. Yoshida, editors, Proc. 15th Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of LNCS,
pages 512–528, London, UK, 2004. Springer.

[29] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234–263, 2001.

[30] E. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In Proc. 5th Int.

Congress of Mathematicians, volume II, pages 501–504. Cambridge University Press, 1913.

	1. Introduction
	2. Preliminaries
	2.1. The Syntax of Formulas
	2.2. The Semantics of Types and Formulas
	2.3. Examples of Properties Expressible in HFL
	2.4. Complexity Classes and Alternating Turing Machines

	3. The Upper Bound
	3.1. Fixpoint Elimination
	3.2. Reachability Games
	3.3. Model Checking Games for Fixpoint-Free HFL
	3.4. The Model Checking Complexity

	4. The Lower Bound
	4.1. Representing Large Numbers in HFL
	4.2. The Reduction
	4.3. Lower Bounds on the Model Checking Complexity

	5. Conclusions
	References

