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Abstract

The three domatic number problem asks whether a given undirected graph can be
partitioned into at least three dominating sets, i.e., setswhose closed neighborhood
equals the vertex set of the graph. Since this problem is NP-complete, no
polynomial-time algorithm is known for it. The naive deterministic algorithm for
this problem runs in time3n, up to polynomial factors. In this paper, we design an
exact deterministic algorithm for this problem running in time2.9416n . Thus, our
algorithm can handle problem instances of larger size than the naive algorithm in
the same amount of time. We also present another deterministic and a randomized
algorithm for this problem that both have an even better performance for graphs
with small maximum degree.

Key words: Exact algorithms, domatic number problem

1 Introduction

In this paper, we design a deterministic algorithm for the three domatic number
problem, which is one of the standard NP-complete problems,see Garey and
Johnson [GJ79]. This problem asks, given an undirected graph G, whether or not
the vertex set ofG can be partitioned into three dominating sets. A dominatingset is
a subset of the vertex set that “dominates” the graph in that its closed neighborhood
covers the entire graph. Motivated by the tasks of distributing resources in a computer
network and of locating facilities in a communication network, this problem and the
related problem of finding a minimum dominating set in a givengraph have been
thoroughly studied, see, e.g., [CH77,Far84,Bon85,KS94,HT98,FHK00,RR04].

∗Work supported in part by the DFG under Grant RO 1202/9-1.
†Email: riege@cs.uni-duesseldorf.de.
‡Email: rothe@cs.uni-duesseldorf.de.
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The exact (i.e., deterministic) algorithm designed in thispaper runs in exponential
time. However, its running time is better than that of the naive exact algorithm for
this problem. That is, we improve the trivial̃O(3n) time bound to a time bound
of Õ(2.9416n), where theÕ notation neglects polynomial factors as is common for
exponential-time algorithms. The point of such an improvement is that aÕ(cn)
algorithm, wherec < 3 is a constant, can deal with larger instances than the trivial
Õ(3n) algorithm in the same amount of time before the exponential growth rate
eventually hits and the running time becomes infeasible. For example, ifc =

√
3 ≈

1.732 then we havẽO
(√

3
2n
)

= Õ(3n), so one can deal with inputs twice as large as

before. Doubling the size of inputs that can be handled by some algorithm can make
quite a difference in practice.

Exact exponential-time algorithms with improved running times have been
designed for various other important NP-complete problems. For example, Dantsin
et al. [DGH+02] pushed the trivialÕ(2n) bound for the three satisfiability problem
down to Õ(1.481n), which was further improved tõO(1.473n) by Brueggemann
and Kern [BK04]. Schöning [Sch02], Hofmeister et al. [HSSW02] and Paturi et
al. [PPSZ98] proposed even better randomized algorithms for the satisfiability problem.
Combining their ideas, the currently best randomized algorithm for this problem is due
to Iwama and Tamaki [IT03], who achieve a time bound ofÕ(1.324n).

The currently best exact time bound ofÕ(1.211n) for the independent set problem
is due to Robson [Rob86]. Eppstein [Epp01a,Epp01b] achieved a Õ(2.415n) time
bound for graph coloring and ãO(1.3289n) for the special case of graph three
colorability. Fomin, Kratsch, and Woeginger [FKW04] improved the trivialÕ(2n)
bound for the dominating set problem tõO(1.93782n). Comprehensive surveys on
this subject have been written by Woeginger [Woe03] and Sch¨oning [Sch05].

In designing domatic number algorithms, it might be tempting to exploit known
results (such as Eppstein’s̃O(1.3289n) bound) for the graph three colorability problem,
which resembles the three domatic number problem in that both are partitioning
problems. However, as Cockayne and Hedetniemi [CH77] pointout, the theory of
domination is dual to the theory of coloring in the followingsense. Coloring is based
on the hereditary property of independence. A graph property is hereditaryif whenever
some set of vertices has the property then so does every subset of it. In contrast,
domination is anexpandingproperty in that every superset of a dominating set also
is a dominating set of the graph. Further, graph colorability is a minimum problem,
whereas the domatic number problem is a maximum problem. Independence (and thus
colorability) can be seen as alocal property, since it suffices to check the immediate
neighborhood of a set of vertices to determine whether or notit is independent. In
contrast, dominance is aglobalproperty, since in order to check it one has to consider
the relation between the given set of vertices and the entiregraph. In this sense,
determining the domatic number of a graph intuitively appears to be harder than
computing its chromatic number, notwithstanding that bothproblems are NP-complete.
More to the point, the algorithms developed for graph coloring seem to be of no help
in designing algorithms for dominating set or domatic number problems.

After introducing some definitions and notation in Section 2, we describe and
analyze our algorithm in Section 3; the actual pseudo-code is shifted to the appendix.
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In Section 4, we give another deterministic and a randomizedalgorithm, which have
an even better running time for graphs with small maximum degree. Finally, we
summarize and discuss our results in Section 5.

2 Preliminaries and Simple Observations

We start by introducing some graph-theoretical notation. We only consider simple,
undirected graphs without loops in this paper. LetG = (V,E) be a graph. Unless stated
otherwise,n denotes the number of vertices inG. Theneighborhood of a vertexv in
V is defined byN(v) = {u ∈ V | {u, v} ∈ E}, and theclosed neighborhood ofv
is defined byN [v] = N(v) ∪ {v}. For any subsetS ⊆ V of the vertices ofG,
defineN [S] =

⋃

v∈S N [v] andN(S) = N [S] − S. Thedegree of a vertexv in G
is the number of vertices adjacent tov, i.e., degG(v) = ||N(v)||. If the graphG is
clear from the context, we omit the subscriptG. Define theminimum degree inG
by min-deg(G) = minv∈V deg(v), and themaximum degree inG by max-deg(G) =
maxv∈V deg(v). A pathPk = u1u2 · · ·uk of lengthk is a sequence ofk vertices,
where each vertex is adjacent to its successor, i.e.,{ui, ui+1} ∈ E for 1 ≤ i ≤ k − 1.
If, in addition, {uk, u1} ∈ E, then pathPk is said to be acycle, and we writeCk

instead ofPk.

Definition 1 LetG = (V,E) be a graph. A subsetD ⊆ V is a dominating set ofG if
and only ifN [D] = V , i.e., if and only if every vertex inG either belongs toD or has
some neighbor inD. Thedomination number ofG, denotedγ(G), is the minimum size
of a dominating set ofG. Thedomatic number ofG, denotedδ(G), is the maximum
number of disjoint dominating sets ofG, i.e., δ(G) is the maximumk such thatV =
V1 ∪ V2 ∪ . . .∪ Vk, whereVi ∩ Vj = ∅ for 1 ≤ i < j ≤ k, and eachVi is a dominating
set ofG. Thedominating set problemasks, given a graphG and a positive integerk,
whether or notγ(G) ≤ k. Thedomatic number problemasks, given a graphG and a
positive integerk, whether or notδ(G) ≥ k.

For fixedk ≥ 3, both the dominating set problem and the domatic number problem
are known to be NP-complete, see Garey and Johnson [GJ79]. Thus, they are not
solvable in deterministic polynomial time unless P= NP, and all we can hope
for is to design an exponential-time algorithm having a better running time than the
trivial exponential time bound. For exponential-time algorithms, it is common to drop
polynomial factors, as indicated by thẽO notation: For functionsf andg, we write
f ∈ Õ(g) if and only if f ∈ O(p · g) for some polynomialp. The naive deterministic
algorithm for the dominating set problem runs in timẽO(2n). Fomin, Kratsch, and
Woeginger [FKW04] improved this trivial upper bound tõO(1.93782n). For various
restricted graph classes, they achieve even better bounds.

The naive deterministic algorithm for the domatic number problem works
as follows: Given a graphG and an integerk, it sequentially checks every
potential solution (i.e., every possible partition of the vertex set ofG into k sets
D1, D2, . . . , Dk), and accepts if and only if a correct solution is found (i.e., if and
only if eachDi is a dominating set). How many potential solutions are there? The
number of ways of partitioning a set withn elements intok nonempty, disjoint
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subsets can be calculated by the Stirling number of the second kind: S2(n, k) =
1

k!

∑k−1

i=0
(−1)i

(

k
i

)

(k − i)n, which yields a running time of̃O(kn). A better result
can be achieved via the dynamic programming across the subsets technique, which
was introduced by Lawler [Law76] to compute the chromatic number of a graph
by exploiting the fact that every minimum chromatic partition contains at least one
maximum independent set. By suitably modifying this technique, one can compute the
domatic number of a graph in timẽO(3n). This is done by generating all dominating
sets of the graph with increasing cardinality, which takes time

n
∑

k=0

(

n

k

)

2k = (1 + 2)n = 3n.

The difference to Lawler’s algorithm lies in the fact that all dominating sets need
to be checked, whereas only maximum independent sets are relevant to compute the
chromatic number.

Proposition 2 Let G = (V,E) be a graph. Then, the domatic numberδ(G) can be
computed in timẽO(3n).

One tempting way of designing an improved algorithm for the domatic number
problem might be to exploit the result for the dominating setproblem mentioned above.
However, we observe that no such useful connection between the two problems exists
in general. The first part of Proposition 3 shows that an arbitrary given minimum
dominating set is not necessarily part of a partition into a maximum number of
dominating sets. The second part of Proposition 3 shows that, given an arbitrary
partition into a maximum number of dominating sets, it is notnecessarily the case
that one set of the partition indeed is a minimum dominating set. Thus, for solving the
domatic number problem, one cannot use in any obvious way theexactÕ(1.93782n)
algorithm for the dominating set problem by Fomin et al. [FKW04]. Proposition 3 is
stated for graphs with domatic number3; it can easily be generalized to graphs with
domatic numberk ≥ 3. The proof of Proposition 3 can be found in the appendix.

Proposition 3 1. There exists some graphG with δ(G) = 3 such that some
minimum dominating setD ofG is not part of any partition into three dominating
sets ofG.

2. There exists some graphH = (V,E) with δ(H) = 3 such that for each partition
V = D1∪D2∪D3 into three dominating sets ofH and for eachi, ||Di|| > γ(H).

For the three domatic number problem, no algorithm with a running time better
thanÕ(3n) is known. We improve this trivial upper bound tõO(2.9416n).

We now define some technical notions suitable to measure how “useful” a vertex is
to achieve domination of the graphG = (V,E). Intuitively, the vertex degree is a good
(local) measure, since the larger the neighborhood of a vertex is, the more vertices are
potentially dominated by the set to which it belongs. The technical notions introduced
in Definition 4 will be used later on to describe our algorithm.
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Definition 4 LetG = (V,E) be a graph withn vertices, and letP = (D1, D2, D3, R)
be a partition ofV into four sets,D1, D2, D3, andR. The subsetsDi of V will
eventually yield a partition ofV into the three dominating sets (if they exist) to be
constructed, and the subsetR ⊆ V collects the remaining vertices not yet assigned at
the current point in the computation of the algorithm. Letr = ||R|| be the number of
these remaining vertices, and letd = n− r be the number of vertices already assigned
to some setDi. Thearea ofG covered byP is defined asareaP(G) =

∑3

i=1
||N [Di]||.

Note thatareaP(G) = 3n if and only ifD1, D2, andD3 are dominating sets ofG. For
a partitionP , we also define thesurplus of graphG assurplusP(G) = areaP(G)−3d.

Some of the vertices inR may be assigned to three, not necessarily disjoint,
auxiliary setsA1, A2, andA3 arbitrarily. Let A = (A1, A2, A3). For each vertex
v ∈ R and for eachi with 1 ≤ i ≤ 3, define thegap of vertexv with respect to setDi

by

gapP,A(v, i) =

{

||N [v]|| − ||{u ∈ N [v] | (∃w ∈ N [u])[w ∈ Di]}|| if v /∈ Ai

⊥ otherwise,

where⊥ is a special symbol that indicates thatgapP,A(v, i) is undefined for thisv
andi. (Our algorithm will make sure to properly handle the cases of undefined gaps.)

Additionally, givenP andA, define for all verticesv ∈ R:

maxgapP,A(v) = max{gapP,A(v, i) | 1 ≤ i ≤ 3},
mingapP,A(v) = min{gapP,A(v, i) | 1 ≤ i ≤ 3},

sumgapP,A(v) =

3
∑

i=1

gapP,A(v, i).

GivenG, P , andA, define themaximum gap ofG and theminimum gap ofG by
taking the maximum and minimum gaps over all vertices inG not yet assigned:

maxgapP,A(G) = max{maxgapP,A(v) | v ∈ R},
mingapP,A(G) = min{mingapP,A(v) | v ∈ R}.

LetP be given. A vertexu ∈ V is called anopen neighbor ofv ∈ V if u ∈ N [v]
andu has not been assigned to any setD1, D2, or D3 yet. A potential dominating
setDi, 1 ≤ i ≤ 3, is called anopen set ofv ∈ V if its closed neighborhood does
not includev, i.e.,v is not dominated byDi. Thebalance ofv ∈ V is defined as the
difference between the number of open vertices and the number of open sets. Formally,
define

openNeighborsP(v) = {u ∈ N [v] | u ∈ R},
openSetsP(v) = {i ∈ {1, 2, 3} | v /∈ N [Di]},
balanceP(v) = ||openNeighborsP(v)|| − ||openSetsP(v)||.

We call a vertexv ∈ V critical if and only ifbalanceP(v) ≤ 0 and||openSetsP(v)|| >
0.
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The proof of the next proposition is straightforward. Once balanceP(v) = 0, no
two vertices remaining inN [v] ∩ R can be assigned to the same dominating setDi,
1 ≤ i ≤ 3, since balanceP(v) would then be negative.

Proposition 5 LetP = (D1, D2, D3, R) be given as in Definition 4 , andv ∈ V be
a critical vertex for this partition. The only way to modifyP so as to contain three
dominating sets is to assign all verticesu ∈ N [v] ∩R to distinct dominating setsDi.

3 The Algorithm

Our strategy is to recursively assign the verticesv ∈ V to obtain a correct potential
solution consisting of a partition into three dominating sets,D1, D2, andD3. Once a
previous assignment ofv to some setDi turns out to be wrong, we remember this by
adding this vertex toAi. More precisely, the basic idea is to first pick those vertices
with the highest maximum gap. While the algorithm is progressing, it dynamically
updates the gaps for every vertex in each step. We now state our main result.

Theorem 6 The three domatic number problem can be solved by a deterministic
algorithm running in timeÕ(2.9416n).

Proof. Let G = (V,E) be the given graph. The algorithm seeks to find a partition
of V into three disjoint dominating sets. Note that every vertexv ∈ V is contained in
one of these sets and is dominated by the remaining two sets, i.e., it is adjacent to at
least one of their elements. The algorithm is described in pseudo-code in the appendix,
see Figures 2, 3, 3, 4, 5, and 6. Sinceδ(G) ≤ min-deg(G) + 1, we may assume that
min-deg(G) ≥ 2.

The algorithm starts by initializing the potential dominating setsD1, D2, andD3

and the auxiliary setsA1,A2, andA3, setting each to the empty set. The initial partition
thus isP = (∅, ∅, ∅, V ) and the initial triple of auxiliary sets isA = (∅, ∅, ∅).

Then, the recursive function DOMINATE is called for the first time. It is always
invoked with graphG, a partitionP = (D1, D2, D3, R), and a tripleA = (A1, A2, A3)
of not necessarily disjoint auxiliary sets.P andA represent a situation in which the
vertices inV − R have been assigned toD1, D2, andD3, andv ∈ Ai means that
in some previous recursive call to function DOMINATE the vertexv has been assigned
toDi without successfully changingP to contain three dominating sets.

Function DOMINATE starts by calling RECALCULATE-GAPS, which calculates all
gaps with respect toP andA. Additionally, openNeighborsP(v), openSetsP(v), and
balanceP(v) are determined for every vertexv ∈ V . Four trivial cases can occur.

Case 1:The setsD1, D2, andD3 are dominating sets of graphG. In this case, we are
done and may add the remaining verticesv ∈ R to any setDi, say toD1.

Case 2: For some vertexv ∈ V , we have balanceP(v) < 0. That is, there are less
vertices inR∩N [v] than dominating sets withv /∈ N [Di]. Thus, no matter how the
vertices inR ∩N [v] are assigned,P won’t contain three dominating sets. We have
run into a dead-end and return to the previous level of the recursion.
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Case 3:There exists a vertexv ∈ R that is also a member of two of the auxiliary sets
A1, A2, andA3. Hence, vertexv was previously assigned to two distinct setsDi

andDj , 1 ≤ i < j ≤ 3, but the recursion returned without success. We assignv to
the only possible setDk left, with i 6= k 6= j.

Case 4:For some vertexv ∈ V , we have balanceP(v) = 0 and||openSetsP(v)|| > 0.
That is,v is a critical vertex, since it is not dominated by all three setsD1, D2, and
D3 contained in the currentP , and there are as many open neighbors as open sets left
for it. Note that this is the case for each vertexv with deg(v) = 2 andN [v]∩R 6= ∅,
asv and its two neighbors have to be assigned to three different dominating sets.
We select one of the at most three vertices left inN [v] ∩R, sayu, and call function
ASSIGN(G,P ,A, u, i) for all i with u /∈ Ai.

Function HANDLE-CRITICAL -VERTEX deals with the latter three of these trivial
cases. After they have been ruled out, one of the remaining verticesv ∈ R is selected
and assigned to one of the three setsDi, under the constraint that a vertexv ∈ R cannot
be added toDi if it is already a member ofAi. This case occurs whenever the recursion
returns because no three dominating sets could be found withthis combination. The
recursion continues by calling ASSIGN(G,P ,A, v, i), which addsv to Di, and then
calls DOMINATE(G,P ,A). If no three dominating sets are found by this choice, we
remember this by addingv to the setAi. A final call to DOMINATE is made without
assigning a vertex to one potential dominating setDi. If this call fails, the recursion
returns to the previous level. This completes the description of the algorithm. We now
argue that it is correct and estimate its running time.

To see that the algorithm works correctly, note that it outputs three setsD1, D2,
andD3 only if they each are dominating sets ofG. It remains to prove that these sets
are definitely found in the recursion tree. All drop-backs within the recursion occur
when, for the currentP = (D1, D2, D3, R), we have balanceP (v) < 0 for some
vertexv ∈ V . Thus,P cannot be modified so as to contain a correct partition into
three dominating sets on this branch of the recursion tree. Since the algorithm checks
every possible partition ofG into three sets, unless it is stopped by such a drop-back,
a partition into three dominating sets will be found, if it exists. If the algorithm does
not find three dominating sets, it eventually terminates when returning from the first
recursive call of function DOMINATE. It reports the failure, and thus always yields the
correct output.

To estimate the running time of the algorithm, an important observation is that the
recalculation of the gaps takes no more than quadratic time inn, the number of vertices
of the graphG. Thus, in terms of thẽO-notation, the running time of the algorithm
depends solely on the number of recursive calls. LetT (m) be the number of steps of
the algorithm, wherem is the number of potential dominating sets left for all vertices
that have not been selected as yet. Initially, every vertex may be a member of any of
the three dominating sets to be constructed (if they exist),hencem = 3n.

There are two scenarios where the algorithm calls function DOMINATE recursively.
If H ANDLE-CRITICAL -VERTEX detects a vertexv ∈ V as being critical, it selects a
vertexu ∈ N [v]∩R and calls function ASSIGN(and thus DOMINATE) for eachi with
u /∈ Ai. Since every critical vertexv ∈ V remains critical as long asN [v] ∩ R 6= ∅,
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function HANDLE-CRITICAL -VERTEX will be called until all vertices inN [v] ∩ R
have been assigned to any ofD1, D2, andD3. Since||openSetsP(v)|| ≤ 3, at most
three vertices in the closed neighborhood ofv have not been assigned whenv turns
critical. By Proposition 5, all vertices inN [v] ∩ R have to be assigned to different
dominating sets. If||openNeighborsP(v)|| = 3, we have at most six combinations; if
we have two open neighbors for a critical vertex, there are atmost two combinations
left; and finally, for one open neighboru ∈ N [v] ∩R, there remains only one possible
choice to assignu to one of the setsD1, D2, andD3. Thus, in the worst case, we have
T (m) ≤ 6T (m − 6), as we will handle three vertices for which at least two choices
for dominating sets are left. Withm = 3n, it follows thatT (m) ≤ 6m/6 = 6n/2, i.e.,
T (m) = Õ(2.4495n).

The only other branching into two different recursive callshappens in the main
body of function DOMINATE, when selecting a vertexv with the currently highest
maximum gap with respect toP andA. Two cases might occur. On the one hand, we
might have considered a correct dominating setDi for v. If v had not been looked at
so far, i.e., ifv is not contained in any setAj , 1 ≤ j ≤ 3, j 6= i, we have eliminated
all three possible sets forv to belong to. Thus, in this case,T (m) = T (m − 3). On
the other hand, if the algorithm returns from the recursion and thus did not make the
right choice forv, we haveT (m) = T (m − 1), sincev is added toAi, and function
DOMINATE is called without assigning any vertex. Summing up, we haveT (m) ≤
T (m − 1) + T (m − 3). In the second case, we have already visited vertexv in a
previous stage of the algorithm and unsuccessfully tried toassign it to some setDj,
with 1 ≤ j ≤ 3. There are only two dominating sets forv left. Either way, if we
putv into the correct dominating set right away or fail the first time, we haveT (m) =
T (m − 2). Summing up both cases, we haveT (m) ≤ 2T (m− 2). Suppose that the
first and the second case occur equally often, i.e., the algorithm considers every vertex
twice. It then follows that

T (m) ≤ 1

2
(T (m− 1) + T (m− 3)) +

1

2
(2T (m− 2))

with m = 3n. Thus, we haveT (m) = Õ(3n), and the trivial time bound cannot be
beaten. To improve this running time, we have to make sure that the recursion tree
will not reach its full depth, i.e., not all vertices are considered by the algorithm or
function HANDLE-CRITICAL -VERTEX will be called for a sufficiently large portion
of the vertices. It is clear that the algorithm has found three dominating sets once
areaP(G) = 3n (recall the notions from Definition 4). By selecting the maximum
gap possible for a partitionP , we try to reach this goal as fast as possible. For every
vertexv ∈ R that we assign to one of the potential dominating setsDi, 1 ≤ i ≤ 3,
we increase areaP(G) by gapP,A(v, i), and additionally we add(gapP,A(v, i)− 3) to
surplusP(G).

Since the vertices of degree two are critical, they and theirneighbors can be handled
in timeÕ(2.4495n), as argued above. So assume thatmin-deg(G) ≥ 3. Then, we have
maxgapP,A(G) > 3 at the start of the algorithm. If this condition remains to hold for
at least3n/4 steps, we have reached areaP(G) = 3n, and the algorithm terminates
successfully. To make use of more than3n/4 vertices, maxgapP,A(G) has to drop
below four at one point of the computation. We exploit the fact that up to this point,
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the surplus has grown sufficiently large with respect ton. Decreasing it will force
maxgapP,A(G) to drop below three, and this condition can hold only for a certain
portion of the remaining vertices until the algorithm terminates. To see this, we now
analyze the remaining steps of the algorithm after the givengraphG has reached a
certain maximum gap with respect to the currentP andA.

If maxgapP,A(G) = 0, the recursion stops immediately. Either we have already
found three disjoint dominating sets (in which case we put the remaining verticesv ∈ R
into setD1 and halt), or one vertex has not been dominated by one setDi in P yet.
Since no positive gaps exist for the verticesv ∈ R, P cannot be modified to a valid
partition into three dominating sets. Function HANDLE-CRITICAL -VERTEX returns
true immediately after detecting balanceP(v) < 0 for some vertexv ∈ V , and function
DOMINATE drops back one recursion level. The question is how many vertices are left
in R when we reach maxgapP,A(G) = 0.

Lemma 7 LetG = (V,E) be a graph andP = (D1, D2, D3, R) be a partition ofV
as in Definition 4. Letr = ||R|| and maxgapP,A(G) = 3. Then, for at leastr/64
vertices inR, the algorithm will not recursively call functionDOMINATE.

Proof of Lemma 7. Let maxgapP,A(G) = k with k > 0. Since gapP,A(v, i) ≤ k
for eachv ∈ R and for eachi, 1 ≤ i ≤ 3, we have

∑

v∈R sumgapP,A(v) ≤ 3kr.
Every vertexv that is selected for a setDi with gapP,A(v, i) = k decreases at leastk
gaps of the vertices inR − {v} by one. Otherwise, HANDLE-CRITICAL -VERTEX

would have found a critical vertexu ∈ N [v] with N [u] ∩ R = {v}. Then,
either ||openSetsP(u)|| > 1 (which implies balanceP(u) < 0 and we abort), or
||openSetsP(u)|| = 1, in which casev is added to the appropriate setDi without further
branching of function DOMINATE. Thus, if no critical vertex is detected, selecting a
vertexv ∈ R for some setDi decreases at leastk gaps, and sincev does not belong
to R anymore, additionally all gaps previously defined forv are now undefined. So
the lowest possible rate at which the gaps are decreased is related to the maximum gap
of G.

Now suppose that maxgapP,A(G) = 3 and sumgapP,A(v) = 9 for all vertices
v ∈ R. We always select a vertexv with the highest summation gap of all vertices
u ∈ R with maxgapP,A(u) = 3. As long as there exists a vertexv ∈ R with
gapP,A(v, i) = 3 for all i, it will be selected by the algorithm. After calling function
RECALCULATE-GAPS, the number of gaps equal to three will be decreased at least
by six. If exactly three other gaps of vertices inR − {v} decrease by one in every
step, it takes at leastr/4 vertices until sumgapP,A(v) < 9 for all v ∈ R. Another
1/4 of the 3r/4 vertices remaining have to be selected until sumgapP,A(v) < 8.
Adding 1/4 of the 9r/16 vertices left inR, we have reached maxgapP,A(G) = 2
with sumgapP,A(v) = 6 for all verticesv ∈ R. This implies that every defined gap is
equal to two. Summing up, we have selected

1

4
· r + 1

4
· 3
4
r +

1

4
· 9

16
r =

37

64
r

vertices until maxgapP,A(G) = 2, under the constraint that a minimum number of gaps
is reduced in each step, while simultaneously trying to reduce the maximum summation
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gap in the fastest possible way. This way we reach level maxgapP,A(G) = 0 with as
few vertices left inR as possible, which describes the worst case that might happen.

Analogously, we can show that maxgapP,A(G) drops from2 to 1 after selecting
another19r/64 vertices. And once we have maxgapP,A(G) = 1, it takes7r/64
vertices to get to maxgapP,A(G) = 0. Now, there arer/64 vertices remaining inR,

which do not have to be processed recursively. Lemma 7

Continuing the proof of Theorem 6, note that we assumedmin-deg(G) ≥ 3, so
when the gaps are initialized for graphG, we have mingapP,A(v) ≥ 4 for each vertex
v ∈ V . Thus, more than three vertices are dominated by the selected setDi for
vertexv. As long as maxgapP,A(G) > 3 is true, surplusP(G) is increasing. The only
way to lower the surplus is by adding verticesv to a setDi with gapP,A(v, i) < 3.
The surplus decreases by one when gapP,A(v, i) = 2, and it decreases by two when
gapP,A(v, i) = 1.

Let S = surplusP(G) be the surplus collected for a partitionP until we reach a
point where maxgapP,A(G) = 3. To make use of the most recursive calls and to even
out the surplus completely, there have to be at leastr = ||R|| vertices remaining with

0 · 37r
64

+ 1 · 19r
64

+ 2 · 7r
64

= S,

sor ≥ 64S/33. A fraction of1/64 of these vertices will be handled by the algorithm
without branching into more than one recursive call, which is at leastS/33. The
question is how big the surplusS might grow and how many vertices are left inR
before maxgapP,A(G) = 3 is reached. The lowest surplus with as few vertices in
R as possible occurs ifmin-deg(G) = max-deg(G) = 3. SurplusS is increased by
one in each step until we arrive at maxgapP,A(G) = 3. When selecting a vertex
v of degree3 for a setDi, the gap of its neighborsu ∈ N(v) and the gaps of the
neighbors of everyu might be decreased. Summing up, at most1 + 3 + 3 · 2 = 10
vertices can have decreased their gaps for somei. After selecting at leastn/10 vertices
for eachi, we have mingapP,A(G) = 3 (in the worst case). From this point on, we
cannot be sure if the next vertex selected for someDi satisfies gapP,A(v, i) > 3.
But so far we have already collected a surplus ofS = 3n/10, and applying this we
obtain64n/110 ≤ r ≤ 7n/10. Thus, for at leastn/110 vertices we never branch into
two different recursive calls. Settingm = 3(109n/110), we obtain a running time
of Õ(2.9416n).

4 Graphs with Bounded Maximum Degree

As seen in the last section, the running time of the algorithmcrucially depends on
the degrees of the vertices ofG. If we restrict ourselves to graphsG with bounded
maximum degree (say∆ = max-deg(G)), we can optimize our strategy in finding three
disjoint dominating sets. In this section, we present a simple deterministic algorithm,
which has a better running time than the algorithm from Theorem 6, provided that∆
is low. By using randomization, we can further improve the running time for graphsG
with low maximum degree.
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Before stating the two results, note that graphs with maximum degree two can
trivially be partitioned into three dominating sets, if such a partition exists. Every
component of such a graph is either an isolated vertex, a path, or a cycle, and each such
property can be recognized in polynomial time.

Proposition 8 LetG = (V,E) be a given graph with max-deg(G) = 2. There exists a
partition of the vertices ofG into three dominating sets if and only if every component
ofG is a cycle of lengthk such that3 dividesk.

We use the terms from Definition 4 in Section 3 to describe a snapshot within the
algorithm. For any partitionP = (D1, D2, D3, R), some vertices ofV have already
been assigned to the potential dominating setsD1, D2, andD3, while all the remaining
vertices are inR. The auxiliary setsA = (A1, A2, A3) will not be needed in this
section. Only connected graphs are considered, as it is possible to treat every connected
component separately, producing the desired output withinthe same time bounds.

Table 1 lists the running times of both the deterministic andthe random algorithm,
where the maximum degree of the input graph is bounded by∆, 3 ≤ ∆ ≤ 8. Note that
the exact deterministic algorithm from Theorem 6 in Section3 beats the deterministic
algorithm from Theorem 9 whenever∆ ≥ 7.

∆ 3 4 5 6 7 8
deterministic 2.2894n 2.6591n 2.8252n 2.9058n 2.9473n 2.9697n

randomized 2n 2.3570n 2.5820n 2.7262n 2.8197n 2.8808n

Table 1: Results formax-deg(G) = k, where3 ≤ k ≤ 8

Theorem 9 Let G = (V,E) be a graph with max-deg(G) = ∆, where∆ ≥ 3.
There exists a deterministic algorithm solving the three domatic number problem in
timeÕ(d

n

∆ ), where

d =

∆−2
∑

a=0

[

(

∆

a

)∆−a−1
∑

b=1

(

∆− a

b

)

]

. (4.1)

Proof. The algorithm works as follows. We start with an arbitrary vertexv ∈ V and
assign it to the first setD1. In each step, we first check whether we found a partition
P = (D1, D2, D3, R) into dominating setsD1, D2, andD3. If not, one vertexv ∈ V
is selected that is not dominated by all three setsD1, D2, andD3, and additionally
has a vertexu ∈ N [v] in its closed neighborhood that has already been added to some
setDi, 1 ≤ i ≤ 3. It follows that1 ≤ ||openSetsP(v)|| ≤ 2.

If balanceP(v) < 0, we return within the recursion. Otherwise, we try all
combinations to partition the vertices inN [v] ∩ R, so that after this step vertexv is
dominated by all three potential dominating sets. If no suchcombination leads to a
valid partition, we again return within the recursion.

Suppose now that balanceP (v) ≥ 0, ||openSetsP(v)|| = 2, andN [v] ∩ D1 6= ∅.
To obtain three disjoint dominating sets, at least one vertex in N [v] has to be assigned
to D2, and at least one vertex inN [v] has to be added toD3. This limits our choices,
especially if the degree ofv is bounded by some constant∆.
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To measure the running time of the algorithm, we consider theworst case with
the most possible combinations that might yield a partitioninto three dominating sets.
This occurs when only one vertexu ∈ N [v] has already been added to one set, i.e.,
||N [v] ∩ (D1 ∪ D2 ∪ D3)|| = 1. If N [v] ∩D1 6= ∅, then any number between0 and
∆−2 of vertices inN [v]∩R may be assigned to the same setD1. Let this number bea.
It follows that from one to∆−a−1 vertices remaining inN [v]∩R are allowed to be in
the next potential dominating setD2. This is how Equation 4.1 ford is derived. After
assigning the last vertices inN [v]∩R to the dominating setD3, exactly∆ vertices have
been removed fromR. Thus, we have a worst case running time ofÕ(d

n

∆ ). Table 1
lists the running time for graphs with maximum degree from three to nine.

In the next theorem, randomization is used to speed up this procedure. Instead of
assigning all vertices in the closed neighborhood of some vertex v ∈ V in one step,
only one or two vertices inN [v] ∩ R are added to the potential dominating setsD1,
D2, andD3. The goal is to dominate one vertex by all three sets in one step. We will
select the one or two vertices that are missing for this goal at random.

Theorem 10 LetG = (V,E) be a graph with max-deg(G) = ∆, where∆ ≥ 3, and
let d be defined as in Equation (4.1) in Theorem 9. For each constantc > 0, there
exists a randomized algorithm solving the three domatic number problem with error
probability at moste−c in timeÕ(r

n

2 ), where

r =
d

3∆−2
. (4.2)

Proof. Let graphG = (V,E) be given with max-deg(G) = k. As in the
deterministic algorithm, we start by adding a random vertexto the setD1. In every
following step, a vertexv ∈ V is selected with0 < ||openSetsP(v)|| < 3, so it is
N [v] ∩ (D1 ∪ D2 ∪ D3) 6= ∅. If ||openSetsP(v)|| = 1, we haveN [v] ∩ Di = ∅ for
onei with 1 ≤ i ≤ 3. We randomly choose a vertexu ∈ N [v] ∩ R and assign it to set
Di, in order thatv is dominated by all three sets afterwards. If||openSetsP(v)|| = 2,
we randomly select two verticesu1, u2 ∈ R in the closed neighborhood ofv. Another
random choice is made when deciding how to distribute these two vertices among the
two potential dominating sets that have not dominatedv up to now.

SupposeG indeed has a partition into three dominating sets. We have tomeasure
the error rate when making our random choices to estimate thesuccess probability
of the algorithm. In every step, a vertexv ∈ V is selected with at least one vertex
u ∈ N [v] in its closed neighborhood that has already been added to oneof the setsD1,
D2, or D3. The highest error occurs when exactly one vertex inN [v] is not included
in R, so we restrict our analysis to this case. To obtain a valid partition into three
dominating sets, there are at mostd choices left to partition the vertices remaining in
N [v] ∩ R. Here,d is the number from Equation 4.1. Once we selected and assigned
two vertices fromN [v] ∩R at random, there are3k−2 possibilities left to partition the
vertices in the closed neighborhood ofv that are still left inR. Our success rate when
selecting the two vertices is therefore3k−2/d.

To achieve an error probability of belowe−c, the algorithm needs to be executed
more than once. The repetition number of the algorithm equals the reciprocal of the
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success rate, which explains Equation 4.2. Since two vertices are processed in every
step, the overall running time is̃O(r

n

2 ).

5 Conclusion

We have shown that the three domatic number problem can be solved by a deterministic
algorithm in timeÕ(2.9416n). Furthermore, we presented two algorithms solving the
three domatic number problem for graphs with bounded maximum degree, improving
the above time bound for graphs with small maximum degree. Although our running
times seem to be not too big of an improvement of the trivialÕ(3n) bound, they
are to our knowledge the first such algorithms breaking this barrier. Fork > 3, the
decision problem of whetherδ(G) ≥ k can be solved in timẽO(3n) by Lawler’s
dynamic programming algorithm for the chromatic number, appropriately modified for
the domatic number problem. Therefore, it would not be reasonable to use our gap
approach of Section 3 to decide ifδ(G) ≥ k for a graphG andk > 3.

Acknowledgement.We thank Dieter Kratsch for pointing us to Lawler’s algorithm.
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A Proof of Proposition 3

Proof. Figure 1 shows the graphsG andH whose existence is claimed. In this
figure, the numbersi|j within a vertex have the following meaning:i indicates which
dominating setDi this vertex belongs to in a fixed partition into three dominating sets,
andj indicates a specific choice of a minimum dominating setS of the graph by setting
j = 1 if and only if this vertex belongs toS.

1|0

3|0

2|0

1|0

3|02|1

2|0

1|0

3|1

v4v3

v8

v6 v1 v2 v7

v9

v5

u1 u2

u3

u5

u4

u6 u7

3|1

1|0

2|1

3|0 1|0

1|0 2|0

Figure 1: GraphsG andH for Proposition 3
.

For the first assertion, look at the graphG shown on the left-hand side of Figure 1.
Note thatγ(G) = 2. In particular,D = {u3, u5} is a minimum dominating set ofG.
Note further thatδ(G) = 3. In particular, a partition into three dominating sets of
G is given byD1 = {u1, u4, u7}, D2 = {u2, u5}, andD3 = {u3, u6}. However,
D cannot be part of any partition into three dominating sets, since the only neighbors
of u4, namelyu3 andu5, belong toD.

Note that the minimum dominating setD2 = {u2, u5} of G defined above indeed
is part of a partition into three dominating sets. The secondpart of the proposition,
however, shows that this is not always the case. Consider thegraphH = (V,E) shown
on the right-hand side of Figure 1. We haveγ(H) = 2 by choosing the minimum
dominating setD = {v1, v2}, which is unique in this case. Again,δ(H) = 3. The
only way, up to isomorphism, to partition the vertex set ofH into three dominating
sets is given byD1 = {v1, v7, v8}, D2 = {v2, v6, v9}, andD3 = {v3, v4, v5}. Thus,
min{||D1||, ||D2||, ||D3||} > γ(H) for each partition into three dominating sets.
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B Pseudo-Code of the Algorithm from Theorem 6

Figures 2, 3, 4, 5, and 6 describe the algorithm from Theorem 6in pseudo-code.

Algorithm for the Three Domatic Number Problem

Input: GraphG = (V,E) with vertex setV = {v1, v2, . . . , vn} and edge setE

Output: Partition ofV into three dominating setsD1, D2, D3 ⊆ V or “failure”

Set each ofD1, D2, D3, A1, A2, andA3 to the empty set;

SetR = V ;

SetP = (D1, D2, D3, R);

SetA = (A1, A2, A3);

DOMINATE(G,P ,A); // Start recursion

output “failure” andhalt;

Figure 2: Algorithm for the Three Domatic Number Problem
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Function DOMINATE(G,P ,A) { // P is a partition of graphG,

// A is a triple of auxiliary sets

RECALCULATE-GAPS(G,P ,A);

if (eachDi is a dominating set) {
D1 = D1 ∪R;
output D1, D2, D3;

}
if ( not HANDLE-CRITICAL -VERTEX(G,P ,A)) {

select vertexv ∈ R with
maxgapP,A(v) = maxgapP,A(G) and
sumgapP,A(v) = max{sumgapP,A(u) | u ∈ R ∧ maxgapP,A(u) =

maxgapP,A(G)};
find i with gapP,A(v, i) = maxgapP,A(v);
ASSIGN(G,P ,A, v, i); // First recursive call
Ai = Ai ∪ {v}; // If recursion fails, putv in Ai and try again
DOMINATE(G,P ,A); // Second recursive call

}
return ;

}

Figure 3: Recursive function to dominate graphG

Function ASSIGN(G,P ,A, v, i) {
Di = Di ∪ {v};

R = R− {v};

DOMINATE(G,P ,A);

}

Figure 4: Function to assign vertexv to setDi
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Function RECALCULATE-GAPS(G,P ,A) { // P is a partition of graphG,

// A is a triple of auxiliary sets

for all (verticesv ∈ V ) {
if (vertexv ∈ R) {

for all (i = 1, 2, 3) {
if (v /∈ Ai) { gapP,A(v, i) = ||N [v]|| − ||{u ∈ N [v] | (∃w ∈ N [u]) [w ∈
Di]}||; }

elsegapP,A(v, i) = ⊥ ; // ⊥ indicates that gapP,A(v, i) is undefined
}
maxgapP,A(v) = maxi∈{1,2,3}{gapP,A(v, i)};
mingapP,A(v) = mini∈{1,2,3}{gapP,A(v, i)};
sumgapP,A(v) =

∑

i∈{1,2,3} gapP,A(v, i);
}
openNeighborsP(v) = {u ∈ N [v] | u ∈ R};
openSetsP(v) = {i ∈ {1, 2, 3} | v /∈ N [Di]};
balanceP(v) = ||openNeighborsP(v)|| − ||openSetsP(v)||;

}
maxgapP,A(G) = maxv∈R{maxgapP,A(v)};

mingapP,A(G) = minv∈R{mingapP,A(v)};

}

Figure 5: Function to recalculate gaps after partition has changed
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Function boolean HANDLE-CRITICAL -VERTEX(G,P ,A) {
for all (verticesv ∈ V ) {

if (balanceP(v) < 0) { // impossible to three dominatev with P
return true;

} else if(||{i ∈ {1, 2, 3} | v ∈ Ai}|| == 2) { // one choice forv remaining
selecti with v /∈ Ai;
ASSIGN(G,P ,A, v, i);
return true;

} else if(balanceP(v) == 0 and||openSetsP(v)|| > 0) { // v is critical
selectu ∈ N [v] ∩R;
for all (i with u /∈ Ai andv not dominated byDi)

ASSIGN(G,P ,A, u, i);
return true;

}
}
return false; // no critical vertices were found

}

Figure 6: Function to handle the critical vertices
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