arXiv:cs/0506090v1 [cs.CC] 24 Jun 2005

An Exact2.9416™ Algorithm for the Three
Domatic Number Problem

Tobias Riegeé and Jorg Rothe
Institut fur Informatik
Heinrich-Heine-Universitat Dusseldorf
40225 Dusseldorf, Germany

June 24, 2005

Abstract

The three domatic number problem asks whether a given wtedgraph can be
partitioned into at least three dominating sets, i.e.,whtsse closed neighborhood
equals the vertex set of the graph. Since this problem is diRptete, no
polynomial-time algorithm is known for it. The naive deténistic algorithm for
this problem runs in tim8", up to polynomial factors. In this paper, we design an
exact deterministic algorithm for this problem runningime 2.9416™. Thus, our
algorithm can handle problem instances of larger size thamaive algorithm in
the same amount of time. We also present another determiaist a randomized
algorithm for this problem that both have an even betterguerince for graphs
with small maximum degree.

Key words: Exact algorithms, domatic number problem

1 Introduction

In this paper, we design a deterministic algorithm for thee¢hdomatic number
problem, which is one of the standard NP-complete problese® Garey and
Johnson[[GJ79]. This problem asks, given an undirectedhgfapwhether or not
the vertex set oz can be partitioned into three dominating sets. A dominagigigs
a subset of the vertex set that “dominates” the graph in thatlésed neighborhood
covers the entire graph. Motivated by the tasks of distiilgutesources in a computer
network and of locating facilities in a communication netkycthis problem and the
related problem of finding a minimum dominating set in a giggaph have been
thoroughly studied, see, e.d.. [CHI77.Far84.Ban85.KSYagdFHKOU.RROA.

*Work supported in part by the DFG under Grant RO 1202/9-1.
TEmail: riege@cs.uni-duesseldorf.de.
fEmail: rothe@cs.uni-duesseldorf.de.

http://arxiv.org/abs/cs/0506090v1

The exact (i.e., deterministic) algorithm designed in fFaper runs in exponential
time. However, its running time is better than that of thevaaxact algorithm for
this problem. That is, we improve the trivid?(3") time bound to a time bound
of 0(2.9416™), where the® notation neglects polynomial factors as is common for
exponential-time algorithms. The point of such an improgamis that aO(c")
algorithm, wherec < 3 is a constant, can deal with larger instances than the ltrivia

O(3™) algorithm in the same amount of time before the exponentiath rate
eventually hits and the running time becomes infeasible.ekample, ifc = /3 ~

1.732 then we haved (\/ﬁ%) = O(3"), so one can deal with inputs twice as large as

before. Doubling the size of inputs that can be handled byesalgorithm can make
quite a difference in practice.

Exact exponential-time algorithms with improved runningds have been
designed for various other important NP-complete problefar example, Dantsin
et al. [DGH"02] pushed the trivialD(2™) bound for the three satisfiability problem
down to O(1.481™), which was further improved t@(1.473") by Brueggemann
and Kern [BKO4]. Schoning1SchD2], Hofmeister et al. [HS&X) and Paturi et
al. [PPSZ98] proposed even better randomized algorithnthécsatisfiability problem.
Combining their ideas, the currently best randomized d@lgwrfor this problem is due
to Iwama and Tamaki[IT03], who achieve a time boundXf.324™).

The currently best exact time bound®@f1.211™) for the independent set problem
is due to Robson [Rob86]. Eppsteln [Eppliia,Epp0lb] acHiev®(2.415") time
bound for graph coloring and @(1.3289") for the special case of graph three
colorability. Fomin, Kratsch, and Woeginger [EKWO04] impeal the trivial@(2n)
bound for the dominating set problem @(1.93782”). Comprehensive surveys on
this subject have been written by Woeginder [Wade03] and8uty [Schib].

In designing domatic number algorithms, it might be temptio exploit known
results (such as Eppsteirt¥1.3289™) bound) for the graph three colorability problem,
which resembles the three domatic number problem in that bot partitioning
problems. However, as Cockayne and Hedetniémi [CH77] pmimt the theory of
domination is dual to the theory of coloring in the followiegnse. Coloring is based
on the hereditary property of independence. A graph prgjehiereditaryif whenever
some set of vertices has the property then so does everytsofbie In contrast,
domination is arexpandingproperty in that every superset of a dominating set also
is a dominating set of the graph. Further, graph colorghigita minimum problem,
whereas the domatic number problem is a maximum problenepiexidence (and thus
colorability) can be seen aslaecal property, since it suffices to check the immediate
neighborhood of a set of vertices to determine whether oiitristindependent. In
contrast, dominance isglobal property, since in order to check it one has to consider
the relation between the given set of vertices and the egtaph. In this sense,
determining the domatic number of a graph intuitively appea be harder than
computing its chromatic number, notwithstanding that lpwtiblems are NP-complete.
More to the point, the algorithms developed for graph colpseem to be of no help
in designing algorithms for dominating set or domatic nungreblems.

After introducing some definitions and notation in Sectignw2 describe and
analyze our algorithm in Sectidh 3; the actual pseudo-cedaifted to the appendix.

In Sectior#, we give another deterministic and a randomégdrithm, which have
an even better running time for graphs with small maximumreleg Finally, we
summarize and discuss our results in Sedflon 5.

2 Preliminaries and Simple Observations

We start by introducing some graph-theoretical notatiore &lly consider simple,
undirected graphs without loops in this paper. Get (V, E) be a graph. Unless stated
otherwisen denotes the number of vertices@ Theneighborhood of a vertexin
V is defined byN (v) = {u € V| {u,v} € E}, and theclosed neighborhood af
is defined byN[v] = N(v) U {v}. For any subsef C V of the vertices ofG,
define N[S] = U,cg N[v] andN(S) = N[S] — S. Thedegree of a vertex in G
is the number of vertices adjacentdpi.e., deg,(v) = ||[N(v)||. If the graphG is
clear from the context, we omit the subscrigt Define theminimum degree iz
by min-dedG) = min,cy degv), and themaximum degree i by max-dedG) =
max,cy degv). A path P, = wjus---uy Of lengthk is a sequence df vertices,
where each vertex is adjacent to its successor{ig,u; 11} € Eforl <i <k — 1.
If, in addition, {ux,u1} € E, then pathPy is said to be aycle and we writeCy,
instead ofP,.

Definition 1 LetG = (V, E) be a graph. A subsdd C V' is adominating set ot if
and only if N[D] = V, i.e., if and only if every vertex i&¥ either belongs td or has
some neighbor irD. Thedomination number off, denotedy(G), is the minimum size
of a dominating set off. Thedomatic number o7, denoted’(G), is the maximum
number of disjoint dominating sets 6f i.e.,d(G) is the maximunk such thatl” =
VuTaU...UV,, whereV; NV, =0 forl <i < j <k, and each; is a dominating
set ofG. Thedominating set problerasks, given a grapty and a positive integek,
whether or noty(G) < k. Thedomatic number problerasks, given a grapty and a
positive integet, whether or not(G) > k.

For fixedk > 3, both the dominating set problem and the domatic numberg@nob
are known to be NP-complete, see Garey and Johrison[GJ79]s, Tiey are not
solvable in deterministic polynomial time unless £ NP, and all we can hope
for is to design an exponential-time algorithm having a drettinning time than the
trivial exponential time bound. For exponential-time algons, it is common to drop
polynomial factors, as indicated by tld& notation: For functiong’ andg, we write
f e O(g)ifandonly if f € O(p - g) for some polynomiap. The naive deterministic
algorithm for the dominating set problem runs in ti|@¢2”). Fomin, Kratsch, and
Woeginger[[EKWO04] improved this trivial upper boundd‘i(l.93782”). For various
restricted graph classes, they achieve even better bounds.

The naive deterministic algorithm for the domatic numbeohbem works
as follows: Given a graphG and an integerk, it sequentially checks every
potential solution (i.e., every possible partition of thertex set ofG into k sets
Dy, Ds,...,Dy), and accepts if and only if a correct solution is found (iieand
only if eachD; is a dominating set). How many potential solutions are thefde
number of ways of partitioning a set with elements intok nonempty, disjoint

subsets can be calculated by the Stirling number of the sekord: Si(n, k) =

LS (=1 (%) (k —), which yields a running time o®(k™). A better result
can be achieved via the dynamic programming across the tsutesfnique, which
was introduced by Lawledl [Law76] to compute the chromatienber of a graph
by exploiting the fact that every minimum chromatic paotiticontains at least one
maximum independent set. By suitably modifying this tegiei, one can compute the
domatic number of a graph in tim@(3"). This is done by generating all dominating
sets of the graph with increasing cardinality, which takest

zn: (Z)z’“ = (1+2)" =3"

k=0

The difference to Lawler’s algorithm lies in the fact that dbminating sets need
to be checked, whereas only maximum independent sets awantlto compute the
chromatic number.

Proposition 2 Let G = (V, E) be a graph. Then, the domatic numbétz) can be
computed in tim&(3™).

One tempting way of designing an improved algorithm for tleendtic number
problem might be to exploit the result for the dominatingmeblem mentioned above.
However, we observe that no such useful connection betweetwo problems exists
in general. The first part of Propositidh 3 shows that an eatyitgiven minimum
dominating set is not necessarily part of a partition into aximum number of
dominating sets. The second part of Proposifibn 3 shows thian an arbitrary
partition into a maximum number of dominating sets, it is netessarily the case
that one set of the partition indeed is a minimum dominatitg $hus, for solving the
domatic number problem, one cannot use in any obvious wagxhetO(1.93782")
algorithm for the dominating set problem by Fomin et l_TFB¥Y. PropositiodB is
stated for graphs with domatic humkrit can easily be generalized to graphs with
domatic numbek > 3. The proof of Propositiofl3 can be found in the appendix.

Proposition3 1. There exists some graphl with 5(G) = 3 such that some
minimum dominating s€? of GG is not part of any partition into three dominating
sets ofG.

2. There exists some graph = (V, E') with §(H) = 3 such that for each partition
V = D1UD,UDs into three dominating sets éf and for each, || D;|| > v(H).

For the three domatic number problem, no algorithm with aniog time better
thanO(3") is known. We improve this trivial upper bound €2.9416™).

We now define some technical notions suitable to measure heefll” a vertex is
to achieve domination of the gragh= (V, E). Intuitively, the vertex degree is a good
(local) measure, since the larger the neighborhood of &xést the more vertices are
potentially dominated by the set to which it belongs. Thé&técal notions introduced
in Definition[4 will be used later on to describe our algorithm

Definition 4 LetG = (V, E) be a graph with vertices, and leP = (D1, D2, D3, R)

be a partition ofV into four sets,Dy, D», D3, and R. The subset®, of V' will

eventually yield a partition o¥/ into the three dominating sets (if they exist) to be

constructed, and the subsktC V' collects the remaining vertices not yet assigned at

the current point in the computation of the algorithm. ket ||R|| be the number of

these remaining vertices, and let= n — r be the number of vertices already assigned

to some seD;. Thearea ofG covered byP is defined asrea (G) = Zf’zl [|N[D;]|]-

Note thatarea (G) = 3n if and only if D1, Dy, and D3 are dominating sets aF. For

a partition P, we also define theurplus of grapltz assurplus, (G) = aree (G) — 3d.
Some of the vertices ik may be assigned to three, not necessarily disjoint,

auxiliary setsA;, As, and As arbitrarily. Let A = (A4;, A2, A3). For each vertex

v € R and for eachi with 1 < < 3, define thegap of vertexv with respect to seb;

by

, [IN[]l| = [{u € N[v]| (Qw € Nu])[w € Di]}|| ifv¢ A
9apy 4(v,1) = { 1 otherwise,

where L is a special symbol that indicates thgap, 4(v,i) is undefined for this
andi. (Our algorithm will make sure to properly handle the castsmdefined gaps.)
Additionally, giveri? and A, define for all vertices € R:

maxgap 4(v) = max{gap, ,(v.i)|1<i<3),
mingag, 4(v) = min{gap, 4(v.i)|1<i<3),

3
Z gag).,.A(vv Z)

=1

sumgagyA(v)

GivendG, P, and A, define themaximum gap of7 and theminimum gap ofG by
taking the maximum and minimum gaps over all verticeS mot yet assigned:

maxgap 4(G) = max{maxgap 4(v)|v € R},
mingap 4(G) = min{mingap, 4(v)|v € R}.

LetP be given. A vertex € V is called anopen neighbor of € V if u € N|v]
andu has not been assigned to any e, D», or D3 yet. A potential dominating
setD;, 1 < i < 3, is called anopen set ofv € V if its closed neighborhood does
not includev, i.e., v is not dominated by);. Thebalance ofv € V is defined as the
difference between the number of open vertices and the mohbpen sets. Formally,
define

openNeighbors(v) = {u€ N[v||ue R},
openSets(v) = {i€{1,2,3}|v¢ N[D;]},
balance(v) = |lopenNeighbors(v)|| — ||openSets(v)||.

We call a vertex € V critical if and only ifbalance (v) < 0 and||openSets(v)|| >
0.

The proof of the next proposition is straightforward. Onedabce (v) = 0, no
two vertices remaining iV [v] N R can be assigned to the same dominatingl3gt
1 < ¢ < 3, since balance(v) would then be negative.

Proposition 5 Let P = (D;, D2, D3, R) be given as in Definitiofl4 , and € V be
a critical vertex for this partition. The only way to modify so as to contain three
dominating sets is to assign all verticess N[v] N R to distinct dominating setd;.

3 The Algorithm

Our strategy is to recursively assign the vertices V' to obtain a correct potential
solution consisting of a partition into three dominatingss®;, D,, and D3. Once a
previous assignment afto some seD; turns out to be wrong, we remember this by
adding this vertex tod;. More precisely, the basic idea is to first pick those vestice
with the highest maximum gap. While the algorithm is progimg, it dynamically
updates the gaps for every vertex in each step. We now stateaio result.

Theorem 6 The three domatic number problem can be solved by a detestigini
algorithm running in time>(2.9416™).

Proof. LetG = (V, E) be the given graph. The algorithm seeks to find a partition
of V into three disjoint dominating sets. Note that every vertex V' is contained in
one of these sets and is dominated by the remaining two setsitiis adjacent to at
least one of their elements. The algorithm is describedéug@s-code in the appendix,
see FigureBIZ18] 8] A 5, afb 6. Siré!) < min-dedG) + 1, we may assume that
min-dedG) > 2.

The algorithm starts by initializing the potential domingtsetsD,, D5, and D3
and the auxiliary setd, A5, andAs, setting each to the empty set. The initial partition
thusisP = (0, %, %, V) and the initial triple of auxiliary sets id = (0, 0, ?).

Then, the recursive function @MINATE is called for the first time. It is always
invoked with graplt7, a partition? = (D1, D2, D3, R), and atripled = (A1, As, A3)
of not necessarily disjoint auxiliary set® and.A represent a situation in which the
vertices inV — R have been assigned 10,, D5, and D3, andv € A; means that
in some previous recursive call to functioro®INATE the vertexv has been assigned
to D, without successfully changirg to contain three dominating sets.

Function DOMINATE starts by calling RCALCULATE-GAPS, which calculates all
gaps with respect t® and.4. Additionally, openNeighbogs(v), openSets(v), and
balance (v) are determined for every vertexc V. Four trivial cases can occur.

Case 1:The setsD;, Dy, andD3 are dominating sets of graggh In this case, we are
done and may add the remaining vertices R to any setD;, say toD;.

Case 2: For some vertex € V, we have balanggv) < 0. That is, there are less
vertices inR N N[v] than dominating sets with ¢ N[D;]. Thus, no matter how the
vertices inR N N[v] are assigned? won't contain three dominating sets. We have
run into a dead-end and return to the previous level of therséan.

Case 3:There exists a vertex € R that is also a member of two of the auxiliary sets
Ay, As, and Az. Hence, vertex was previously assigned to two distinct séls
andD;, 1 <i < j < 3, but the recursion returned without success. We assign
the only possible saby, left, withi #£ &k #£ j.

Case 4:For some vertex € V, we have balangg(v) = 0 and||openSets(v)|| > 0.
That is,v is a critical vertex, since it is not dominated by all thretsge,, D-, and
D3 contained in the currefR, and there are as many open neighbors as open sets left
for it. Note that this is the case for each vertewith degv) = 2 andN[v]N R # 0,
asv and its two neighbors have to be assigned to three differemiirthting sets.
We select one of the at most three vertices lefiipp] N R, sayu, and call function
ASSIGNG, P, A, u,i) for all i with u ¢ A;.

Function HANDLE-CRITICAL-VERTEX deals with the latter three of these trivial
cases. After they have been ruled out, one of the remaininigesv € R is selected
and assigned to one of the three sefsunder the constraint that a vertexc R cannot
be added td); if it is already a member ofi;. This case occurs whenever the recursion
returns because no three dominating sets could be foundtigtltombination. The
recursion continues by calling $sI1GNG, P, A, v, 1), which addsv to D;, and then
calls DOMINATE(G, P, A). If no three dominating sets are found by this choice, we
remember this by adding to the setd;. A final call to DOMINATE is made without
assigning a vertex to one potential dominating Bet If this call fails, the recursion
returns to the previous level. This completes the desonf the algorithm. We now
argue that it is correct and estimate its running time.

To see that the algorithm works correctly, note that it otggghree setd,, Do,
and D3 only if they each are dominating sets@f It remains to prove that these sets
are definitely found in the recursion tree. All drop-backshivi the recursion occur
when, for the currenP = (D;, D2, D3, R), we have balanggv) < 0 for some
vertexv € V. Thus,P cannot be modified so as to contain a correct partition into
three dominating sets on this branch of the recursion treeeShe algorithm checks
every possible partition aff into three sets, unless it is stopped by such a drop-back,
a partition into three dominating sets will be found, if iti€ts. If the algorithm does
not find three dominating sets, it eventually terminatesmareturning from the first
recursive call of function DMINATE. It reports the failure, and thus always yields the
correct output.

To estimate the running time of the algorithm, an importdrgesvation is that the
recalculation of the gaps takes no more than quadratic timethe number of vertices
of the graphG. Thus, in terms of thé&-notation, the running time of the algorithm
depends solely on the number of recursive calls. Tet) be the number of steps of
the algorithm, wheren is the number of potential dominating sets left for all vess
that have not been selected as yet. Initially, every vertay e a member of any of
the three dominating sets to be constructed (if they existicen = 3n.

There are two scenarios where the algorithm calls functiomNATE recursively.

If HANDLE-CRITICAL-VERTEX detects a vertex € V' as being critical, it selects a
vertexu € N[v] N R and calls function AsIGN (and thus MINATE) for eachi with
u ¢ A;. Since every critical vertex € V remains critical as long a¥[v] N R # 0,

function HANDLE-CRITICAL-VERTEX will be called until all vertices inN[v] N R
have been assigned to any Bf, D», andDs. Since||openSets(v)|| < 3, at most
three vertices in the closed neighborhoodvdiave not been assigned whenurns
critical. By Propositiorfb, all vertices itV [v] N R have to be assigned to different
dominating sets. IfjopenNeighbors(v)|| = 3, we have at most six combinations; if
we have two open neighbors for a critical vertex, there arma@dt two combinations
left; and finally, for one open neighbare N[v] N R, there remains only one possible
choice to assigm to one of the set®;, D5, andDs. Thus, in the worst case, we have
T(m) < 6T(m — 6), as we will handle three vertices for which at least two chsic
for dominating sets are left. Wittn = 3n, it follows thatT'(m) < 6™/6 = 67/2, i.e.,
T(m) = O(2.4495").

The only other branching into two different recursive cdligppens in the main
body of function DDMINATE, when selecting a vertex with the currently highest
maximum gap with respect t8 and.4. Two cases might occur. On the one hand, we
might have considered a correct dominatingBgfor v. If v had not been looked at
so far, i.e., ifv is not contained in any set;, 1 < j < 3, j # 4, we have eliminated
all three possible sets ferto belong to. Thus, in this cas&(m) = T(m — 3). On
the other hand, if the algorithm returns from the recursiod thus did not make the
right choice forv, we haveT'(m) = T(m — 1), sincev is added ta4;, and function
DOMINATE is called without assigning any vertex. Summing up, we HBve)) <
T(m — 1) + T(m — 3). In the second case, we have already visited vertéx a
previous stage of the algorithm and unsuccessfully triedssign it to some seb;,
with 1 < 57 < 3. There are only two dominating sets foreft. Either way, if we
putw into the correct dominating set right away or fail the firstéi, we haved’(m) =
T(m — 2). Summing up both cases, we hdlién) < 2T (m — 2). Suppose that the
first and the second case occur equally often, i.e., theighgoconsiders every vertex
twice. It then follows that

T(m) < 5(T(m 1) + T(m — 3)) + 5(2T(m — 2))

2
with m = 3n. Thus, we havd'(m) = O(3"), and the trivial time bound cannot be
beaten. To improve this running time, we have to make suretligarecursion tree
will not reach its full depth, i.e., not all vertices are cwlesed by the algorithm or
function HANDLE-CRITICAL-VERTEX will be called for a sufficiently large portion

of the vertices. It is clear that the algorithm has found ¢hdeminating sets once
area (G) = 3n (recall the notions from Definitiofl 4). By selecting the nraxim
gap possible for a partitio®, we try to reach this goal as fast as possible. For every
vertexv € R that we assign to one of the potential dominating ges1 < i < 3,

we increase argdG) by gap> 4(v,), and additionally we adfgap, 4(v,i) — 3) to
surplus,(G).

Since the vertices of degree two are critical, they and tiedghbors can be handled
in time O(2.4495™), as argued above. So assume that-dedG) > 3. Then, we have
maxgap. 4(G) > 3 at the start of the algorithm. If this condition remains tdchior
at least3n/4 steps, we have reached ag€&') = 3n, and the algorithm terminates
successfully. To make use of more tham/4 vertices, maxgap ,(G) has to drop
below four at one point of the computation. We exploit the that up to this point,

the surplus has grown sufficiently large with respectito Decreasing it will force
maxgap. 4(G) to drop below three, and this condition can hold only for aaiar
portion of the remaining vertices until the algorithm tenaties. To see this, we now
analyze the remaining steps of the algorithm after the gy@phG has reached a
certain maximum gap with respect to the currBrand A.

If maxgap> 4(G) = 0, the recursion stops immediately. Either we have already
found three disjoint dominating sets (in which case we paitémaining vertices € R
into setD; and halt), or one vertex has not been dominated by on®sét P yet.
Since no positive gaps exist for the verticeg R, P cannot be modified to a valid
partition into three dominating sets. Functiom&bLE-CRITICAL-VERTEX returns
true immediately after detecting balande) < 0 for some vertex € V, and function
DOMINATE drops back one recursion level. The question is how manycesrare left
in R when we reach maxgap,(G) = 0.

Lemma 7 LetG = (V, E) be a graph and® = (D,, D2, D3, R) be a partition of//
as in Definitiorl#. Let = [[R|| and maxgap, ,(G) = 3. Then, for at least /64
vertices inR, the algorithm will not recursively call functioDOMINATE.

Proof of Lemmal[d. Let maxgap 4(G) = k with k > 0. Since gap_4(v,i) < k
for eachv € R and for each, 1 < i < 3, we have) . sumgap 4(v) < 3kr.
Every vertexv that is selected for a sé; with gap, 4(v,i) = k decreases at leakt
gaps of the vertices iR — {v} by one. Otherwise, WNDLE-CRITICAL-VERTEX
would have found a critical vertex € NJv] with Nju] N R = {v}. Then,
either ||openSets(u)|| > 1 (which implies balance(u) < 0 and we abort), or
|lopenSets(u)|| = 1, in which case is added to the appropriate gef without further
branching of function DMINATE. Thus, if no critical vertex is detected, selecting a
vertexv € R for some setD; decreases at leaktgaps, and since does not belong
to R anymore, additionally all gaps previously defined foare now undefined. So
the lowest possible rate at which the gaps are decreasddtisd¢o the maximum gap
of G.

Now suppose that maxggap,(G) = 3 and sumgap 4(v) = 9 for all vertices
v € R. We always select a vertexwith the highest summation gap of all vertices
u € R with maxgap 4(u) = 3. As long as there exists a vertexe R with
gaps 4(v,i) = 3 forall i, it will be selected by the algorithm. After calling functio
RECALCULATE-GAPS, the number of gaps equal to three will be decreased at least
by six. If exactly three other gaps of verticesih— {v} decrease by one in every
step, it takes at least/4 vertices until sumgap 4(v) < 9 for all v € R. Another
1/4 of the 3r/4 vertices remaining have to be selected until sumgap) < 8.
Adding 1/4 of the 9r/16 vertices left inR, we have reached maxgap (G) = 2
with sumgap, 4 (v) = 6 for all verticesv € R. This implies that every defined gap is
equal to two. Summing up, we have selected

1
—-r+

1 37
4 Ty

s.,1.9 _37
1" T1 16 T 6

vertices until maxgap ,(G) = 2, under the constraint that a minimum number of gaps
is reduced in each step, while simultaneously trying to cedhe maximum summation

gap in the fastest possible way. This way we reach level maxgdG) = 0 with as
few vertices left inR as possible, which describes the worst case that might happe
Analogously, we can show that maxgap(G) drops from2 to 1 after selecting
another19r/64 vertices. And once we have maxgap(G) = 1, it takes7r/64
vertices to get to maxgap,(G) = 0. Now, there are-/64 vertices remaining irR,

which do not have to be processed recursively. | LemmdT

Continuing the proof of Theorefd 6, note that we assuméu-dedG) > 3, so
when the gaps are initialized for graph we have mingap ,(v) > 4 for each vertex
v € V. Thus, more than three vertices are dominated by the sdleseteD; for
vertexv. As long as maxgap 4(G) > 3 is true, surplug(G) is increasing. The only
way to lower the surplus is by adding verticeso a setD, with gap, 4(v,%) < 3.
The surplus decreases by one when,ggfv,i) = 2, and it decreases by two when
gagD,A(v’i) = L

Let S = surplus,(G) be the surplus collected for a partitidh until we reach a
point where maxgap ,(G) = 3. To make use of the most recursive calls and to even
out the surplus completely, there have to be at least||R|| vertices remaining with

37r 197 r
0- o1 +1- 1 +2~64_S,

sor > 645/33. A fraction of 1/64 of these vertices will be handled by the algorithm
without branching into more than one recursive call, whistai leastS/33. The
question is how big the surplus might grow and how many vertices are left i
before maxgap 4(G) = 3 is reached. The lowest surplus with as few vertices in
R as possible occurs thin-dedG) = max-degG) = 3. SurplusS is increased by
one in each step until we arrive at maxgap(GG) = 3. When selecting a vertex
v of degree3 for a setD;, the gap of its neighborg € N(v) and the gaps of the
neighbors of every, might be decreased. Summing up, at mbst3 +3-2 = 10
vertices can have decreased their gaps for soméer selecting at least/10 vertices
for eachi, we have mingap ,(G) = 3 (in the worst case). From this point on, we
cannot be sure if the next vertex selected for samesatisfies gap 4(v,i) > 3.
But so far we have already collected a surplusSof 3n/10, and applying this we
obtain64n /110 < r < 7n/10. Thus, for at least./110 vertices we never branch into
two different recursive calls. Setting = 3(109n/110), we obtain a running time
of O(2.9416™).

4 Graphs with Bounded Maximum Degree

As seen in the last section, the running time of the algoritmocially depends on
the degrees of the vertices 6f If we restrict ourselves to graphis with bounded
maximum degree (sa®x = max-deg¢G)), we can optimize our strategy in finding three
disjoint dominating sets. In this section, we present a Erdpterministic algorithm,
which has a better running time than the algorithm from Thed8, provided that\

is low. By using randomization, we can further improve thening time for graphs:
with low maximum degree.

10

Before stating the two results, note that graphs with marindegree two can
trivially be partitioned into three dominating sets, if Bua partition exists. Every
component of such a graph is either an isolated vertex, a pagicycle, and each such
property can be recognized in polynomial time.

Proposition 8 LetG = (V, E) be a given graph with max-dég) = 2. There exists a
partition of the vertices of into three dominating sets if and only if every component
of G is a cycle of lengtht such tha3 dividesk.

We use the terms from Definitidl 4 in Sectidn 3 to describe psmat within the
algorithm. For any partitio’® = (D1, D2, D3, R), some vertices oV have already
been assigned to the potential dominating g&tsD-, and D3, while all the remaining
vertices are inR. The auxiliary setsd = (A;, As, As) will not be needed in this
section. Only connected graphs are considered, as it igyp®sstreat every connected
component separately, producing the desired output witldrsame time bounds.

Table[d lists the running times of both the deterministic tredrandom algorithm,
where the maximum degree of the input graph is boundefd l8/< A < 8. Note that
the exact deterministic algorithm from TheorEm 6 in SedBdreats the deterministic
algorithm from Theorerl9 whenevér > 7.

A 3 4 5 6 7 8
deterministic| 2.2894™ | 2.6591™ | 2.8252™ | 2.9058™ | 2.9473™ | 2.9697"
randomized 2n 2.3570™ | 2.5820™ | 2.7262™ | 2.8197™ | 2.8808"™

Table 1: Results fomax-degG) = k, where3 < k <8

Theorem 9 Let G = (V, E) be a graph with max-dég:) = A, whereA > 3.
There exists a deterministic algorithm solving the threendic number problem in
timeO(d%), where

d= Az_:_: (i) A;Zjl (A N a)} . (4.1)

Proof. The algorithm works as follows. We start with an arbitrarytegv € V and
assign it to the first seb;. In each step, we first check whether we found a partition
P = (D1, Dy, D3, R) into dominating set®;, Dy, andDs. If not, one vertex» € V

is selected that is not dominated by all three dets D, and D3, and additionally
has a vertex. € N[v] in its closed neighborhood that has already been added te som
setD;, 1 <i < 3. Itfollows thatl < |jopenSets(v)|| < 2.

If balance-(v) < 0, we return within the recursion. Otherwise, we try all
combinations to partition the vertices I¥i[v] N R, so that after this step vertexis
dominated by all three potential dominating sets. If no sceimbination leads to a
valid partition, we again return within the recursion.

Suppose now that balanee) > 0, ||openSets(v)|| = 2, andN[v] N D; # 0.

To obtain three disjoint dominating sets, at least one xentéV[v] has to be assigned
to Ds, and at least one vertex i [v] has to be added tD;. This limits our choices,
especially if the degree ofis bounded by some constait

11

To measure the running time of the algorithm, we considemtbest case with

the most possible combinations that might yield a partitida three dominating sets.
This occurs when only one vertex € N[v] has already been added to one set, i.e.,
[|N[v] N (D1 U Dy U D3)|| = 1. If N[v] N D; # 0, then any number betweénand
A —2 of vertices inN [v] N R may be assigned to the same Bgt Let this number be.
It follows that from one tAA —a — 1 vertices remaining itV [v] N R are allowed to be in
the next potential dominating sét,. This is how Equatiof 411 fof is derived. After
assigning the last vertices ¥i[v]N R to the dominating se&bs, exactlyA vertices have
been removed fronk. Thus, we have a worst case running timei2). Table[l
lists the running time for graphs with maximum degree frone&to nine. |

In the next theorem, randomization is used to speed up thisepure. Instead of
assigning all vertices in the closed neighborhood of sonmeexe € V' in one step,
only one or two vertices ifiN[v] N R are added to the potential dominating sBts
Ds, andD3. The goal is to dominate one vertex by all three sets in one $& will
select the one or two vertices that are missing for this goeradom.

Theorem 10 Let G = (V, E) be a graph with max-d¢g:) = A, whereA > 3, and
let d be defined as in Equatiofi{#.1) in TheorEm 9. For each constant0, there
exists a randomized algorithm solving the three domatic memproblem with error
probability at mose—¢ in time O(r%), where

d

T = —3A72'

(4.2)
Proof. Let graphG = (V,E) be given withmax-degG) = k. As in the
deterministic algorithm, we start by adding a random vettethe setD,. In every
following step, a vertew € V is selected witt) < ||openSets(v)|| < 3, so itis
NN (D1 UDyU Ds) # 0. If ||openSets(v)|| = 1, we haveN[v] N D; = 0 for
onei with 1 <4 < 3. We randomly choose a vertexe N[v] N R and assign it to set
D;, in order that is dominated by all three sets afterwards||dpenSets(v)|| = 2,
we randomly select two vertices, us € R in the closed neighborhood of Another
random choice is made when deciding how to distribute thesevertices among the
two potential dominating sets that have not dominateg to now.

Supposé€= indeed has a partition into three dominating sets. We hawvest@asure
the error rate when making our random choices to estimatsubeess probability
of the algorithm. In every step, a vertexe V is selected with at least one vertex
u € N[v] inits closed neighborhood that has already been added tofdhe setsD;,
D», or D3. The highest error occurs when exactly one verte¥im] is not included
in R, so we restrict our analysis to this case. To obtain a valititjzm into three
dominating sets, there are at mdsthoices left to partition the vertices remaining in
N[v] N R. Here,d is the number from Equatidn4.1. Once we selected and assigne
two vertices fromN[v] N R at random, there ar@¥~?2 possibilities left to partition the
vertices in the closed neighborhoodwothat are still left inR. Our success rate when
selecting the two vertices is therefa® 2 /d.

To achieve an error probability of beloswv ¢, the algorithm needs to be executed
more than once. The repetition number of the algorithm eyt reciprocal of the

12

success rate, which explains Equaiiod 4.2. Since two esrtice processed in every
step, the overall running time 8(r%).

5 Conclusion

We have shown that the three domatic number problem canedsloy a deterministic
algorithmin time@(2.9416"). Furthermore, we presented two algorithms solving the
three domatic number problem for graphs with bounded maxirdegree, improving
the above time bound for graphs with small maximum degre&odigh our running
times seem to be not too big of an improvement of the tri¢¥B™) bound, they
are to our knowledge the first such algorithms breaking thisiér. Fork > 3, the
decision problem of whethef(G) > k can be solved in tim&(3") by Lawlers
dynamic programming algorithm for the chromatic numbeprapriately modified for
the domatic number problem. Therefore, it would not be neable to use our gap
approach of Sectidd 3 to decide¥ifG) > k for a graphG andk > 3.

Acknowledgement.We thank Dieter Kratsch for pointing us to Lawler’s algonith

References

[BKO4] T. Brueggemann and W. Kern. An improved local searlgoathm for
3-SAT. Technical Report Memorandum No. 1709, University weTty,
Department of Applied Mathematics, Enschede, The Nethdsla2004.

[Bon85] M. Bonuccelli. Dominating sets and dominating nembf circular arc
graphs.Discrete Applied Mathematic42:203-213, 1985.

[CHT7T] E. Cockayne and S. Hedetniemi. Towards a theory of idation in
graphs.Networks 7:247-261, 1977.

[DGH'02] E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg
C. Papadimitriou, P. Raghavan, and U. Schoning. A detestigr(2 —
2/(k + 1))™ algorithm for k-SAT based on local searchTheoretical
Computer Scien¢@89(1):69-83, October 2002.

[EppOla] D. Eppstein. Improved algorithms f&icoloring, 3-edge-coloring, and
constraint satisfaction. IRroceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithmspages 329-337. Society for Industrial and Applied
Mathematics, 2001.

[EppOlb] D. Eppstein. Small maximal independent sets asterfaexact graph
coloring. InProceedings of the 7th Workshop on Algorithms and Data
Structures pages 462-470. Springer-Verlagcture Notes in Computer
Science #2125001.

[Far84] M. Farber. Domination, independent dominatiorg dnality in strongly
chordal graphsDiscrete Applied Mathematicg:115-130, 1984.

13

[FHKOO] U. Feige, M. Halldérsson, and G. Kortsarz. Appmmeting the domatic
number. InProceedings of the 32nd ACM Symposium on Theory of
Computing pages 134-143. ACM Press, May 2000.

[FKWO04] F. Fomin, D. Kratsch, and G. Woeginger. Exact (exgutial) algorithms
for the dominating set problem. Proceedings of the 30th International
Workshop on Graph-Theoretic Concepts in Computer Sciai€22004)
pages 245-256. Springer-Verldgecture Notes in Computer Science
#3353 2004.

[GJ79] M. Garey and D. Johnsoomputers and Intractability: A Guide to the
Theory of NP-Completenes$V. H. Freeman and Company, New York,
1979.

[HSSWO02] T. Hofmeister, U. Schoning, R. Schuler, and O.aabe. A probabilistic
3-SAT algorithm further improved. IProceedings of the 19th Annual
Symposium on Theoretical Aspects of Computer Scigages 192—-202.
Springer-Verlad-ecture Notes in Computer Science #228802.

[HT98] P. Heggernes and J. Telle. Partitioning graphs imtoegalized dominating
sets.Nordic Journal of Computings(2):128—-142, 1998.

[ITO3] K. Iwama and S. Tamaki. Improved upper bounds3eéBAT. Technical
Report TR03-053, Electronic Colloquium on Computationah(lexity,
July 2003. 3 pages.

[KS94] H. Kaplan and R. Shamir. The domatic number problersame perfect
graph families. Information Processing Letters19(1):51-56, January
1994.

[Law76] Eugene L. Lawler. A note on the complexity of the amatic number
problem.Information Processing Letters(3):66—67, 1976.

[PPSZ98] R. Paturi, P. Pudlak, M. Saks, and F. Zane. An irgd@xponential-
time algorithm fork-SAT. In Proceedings of the 39th IEEE Symposium
on Foundations of Computer Sciengmges 628—-637. IEEE Computer
Society Press, November 1998.

[Rob86] J. Robson. Algorithms for maximum independent.setiournal of
Algorithms 7:425-440, December 1986.

[RRO4] T. Riege and J. Rothe. Complexity of the exact domatimber problem
and of the exact conveyor flow shop problenTheory of Computing
SystemsDecember 2004. On-line publication DOI 10.1007/s002@4-0
1209-8. Paper publication to appear.

[Sch02] U. Schoning. A probabilistic algorithm férSAT based on limited local
search and restarAlgorithmicg 32(4):615-623, 2002.

[Sch05] U. Schoning. Algorithmics in exponential time Rroceedings of the 22nd
Annual Symposium on Theoretical Aspects of Computer Sgipages
36—43. Springer-Verlagecture Notes in Computer Science #342305.

14

[Woe03] G. Woeginger. Exact algorithms for NP-hard proldenin M. Junger,
G. Reinelt, and G. Rinaldi, editorsCombinatorical Optimization:
“Eureka, you shrink!”, pages 185-207. Springer-Verlagcture Notes in
Computer Science #2570003.

15

A Proof of Proposition

Proof. Figure[d shows the graph& and H whose existence is claimed. In this
figure, the numberg; within a vertex have the following meaningindicates which
dominating seD; this vertex belongs to in a fixed partition into three domimgsets,
andj indicates a specific choice of a minimum dominating$ef the graph by setting
j = 1ifand only if this vertex belongs t§.

2/1

Ug u7

Figure 1. Graphs: andH for Propositior B

For the first assertion, look at the gra@hshown on the left-hand side of Figuie 1.
Note thaty(G) = 2. In particular,D = {u3, us} is @ minimum dominating set af.
Note further thaty(G) = 3. In particular, a partition into three dominating sets of
Gis given byDl = {ul,U4,U7}, Dy = {UQ,U5}, andD3 = {u3,u6}. However,
D cannot be part of any partition into three dominating set&esthe only neighbors
of ug, namelyus andus, belong toD.

Note that the minimum dominating st = {us, us} of G defined above indeed
is part of a partition into three dominating sets. The secoad of the proposition,
however, shows that this is not always the case. ConsidgrémhH = (V, F) shown
on the right-hand side of Figufé 1. We hayeH) = 2 by choosing the minimum
dominating setD = {v1, vz}, which is unique in this case. Agaif(H) = 3. The
only way, up to isomorphism, to partition the vertex settbfinto three dominating
sets is given b)l)l = {’Ul, U7, ’Ug}, Dy = {UQ,UG, ’Ug}, andD3 = {U37U4,U5}. Thus,
min{||D1||, ||D2]|, ||D3||} > v(H) for each partition into three dominating sef.

16

B Pseudo-Code of the Algorithm from Theoreni®
FiguredP[B 15, arld 6 describe the algorithm from Thegilémp8eudo-code.

Algorithm for the Three Domatic Number Problem
Input: GraphG = (V, E) with vertex set/” = {vy,vs,...,v,} and edge sef
Output: Partition of V' into three dominating set®:, Dy, D3 C V' or “failure”
Seteach oD, D, D3, Ay, Ao, and A3 to the empty set;
SetR =1V,
SetP = (Dl, Do, D3, R),
SetA = (Al, AQ, A3);
DOMINATE(G, P, A); // Start recursion
output “failure” and halt;

Figure 2: Algorithm for the Three Domatic Number Problem

17

Function DOMINATE (G, P, A) { // P is a partition of grapltz,

// Ais atriple of auxiliary sets

RECALCULATE-GAPS(G, P, A);
if (eachD, is a dominating st

Dy =DyUR;

output D1, Do, Ds;
}
if (not HANDLE-CRITICAL-VERTEX(G, P, A)) {

select vertex € R with

maxgap 4(v) = maxgap. 4(G)and

sumgap 4(v) = max{sumgap ,(u)| v € R A maxgap 4(u) =
maxgap 4(G)};
find i with gap, 4(v,7) = maxgap 4(v);
ASSIGNG, P, A, v,1); // First recursive call
A; = A; U{v}; // If recursion fails, pub in A; and try again
DOMINATE(G, P, A); // Second recursive call
}
return;

Figure 3: Recursive function to dominate gragh

Function AsSIGNG, P, A, v,i) {
D; = D;U{v};
R=R-{v};
DOMINATE(G, P, A);

Figure 4: Function to assign vertexo setD;

18

Function RECALCULATE-GAPS(G, P, A) { // P is a partition of graplt,
// Ais artriple of auxiliary sets

for all (verticesv € V) {
if (vertexv € R) {
forall (i=1,2,3){
if (v & Ai){gapy 4(v,i) = |IN[o]]| = [{u € N[v]| Buw € Nu]) [w €

Dil} [¥
elsegapy 4(v,i) = L ; // L indicates that gap 4 (v,) is undefined

maxgap, 4 (v) = maxie(1,2,3){9aPp 4 (v, 9)};
mingas, 4 (v) = minje(1,2,3{98Pp _a(v,1)};
sumgap, 4(v) = > (12,3 98P 4(v,9);
}
openNeighbors(v) = {u € N[v]| u € R};
openSets(v) = {i € {1,2,3}|v ¢ N[D,]};
balance (v) = ||openNeighbors(v)|| — ||openSets(v)||;
}
maxgagaA(G) = maxveR{maxgap)_’A(v)};
mingagDA(G) = minveR{mingaQD,A(U)};

}

Figure 5: Function to recalculate gaps after partition hemnged

19

Function boolean FANDLE-CRITICAL-VERTEX(G, P, A) {
for all (verticesv € V) {

if (balance (v) < 0) { // impossible to three dominatewith P
return true;
}elseif(||{i € {1,2,3}|ve A;}|| ==2) { // one choice fow remaining

selecti with v ¢ A;;
ASSIGNG, P, A, v,1);
return true;
} else if(balance (v) == 0 and||openSets(v)|| > 0) { // v is critical
selectu € N[v] N R;
for all (i with u ¢ A; andv not dominated byD;)
ASSIGNG, P, A, u,1);
return true;

}
}

return false; // no critical vertices were found

Figure 6: Function to handle the critical vertices

20

	Introduction
	Preliminaries and Simple Observations
	The Algorithm
	Graphs with Bounded Maximum Degree
	Conclusion
	Proof of Proposition ??
	Pseudo-Code of the Algorithm from Theorem ??

