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Abstract. The data diffusion space (DDS) is an all-software shared
address space for parallel computing on distributed memory platforms.
It is an extra address space to that of each process running a parallel
application under the SPMD (Single Program Multiple Data) model.
The size of DDS can be up to 264 bytes, either on 32- or on 64-bit
architectures. Data laid on DDS diffuses, or migrates and replicates, in
the memory of each processor using the data. This data is used through
an interface similar to that used to access data in files.
We have implemented DDS for PC clusters with Linux. However, being
all-software, DDS should require little change to make it immediately
usable in other distributed memory platforms and operating systems.
We present experimental results on the performance of two applications
both under DDS and under MPI (Message Passing Interface). DDS tends
to perform better in larger processor counts, and is simpler to use than
MPI for both in-core and out-of-core computation.

1 Introduction

Today PC clusters are widely used as platforms for parallel computing. Both
message-passing and distributed shared memory environments are available for
developing parallel applications on these platforms. Except for relatively sim-
ple communication patterns, message-passing programming is complicated; the
programmer must specify when and which data to pass between which process-
ing nodes. It is still more complicated for out-of-core computation, since the
programmer must specify, or know, the data partitioning in disk space. How-
ever, message-passing libraries, such as MPI (Message Passing Interface) [12]
and PVM (Parallel Virtual Machine) [15], are widely used because they do not
require special hardware or operating system support.

A distributed shared memory (DSM) simplifies parallel programming be-
cause the location of data is not an issue. Shared data moves between processing
nodes automatically and according to the access pattern of each application.
Most DSM designs require either hardware or operating system support, which
is, nonetheless, readily available in most hardware platforms and operating sys-
tems. If a DSM supports mapping files onto the shared memory, out-of-core
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computation is as simple to program as in-core computation. This will be most
useful in 64-bit architectures, as in 32-bit architectures only 4 GB are available,
while out-of-core applications today range in the hundreds of GB.

In this paper we present the data diffusion space (DDS), an all-software
shared address space for parallel computing on clusters. It is an extra address
space to the virtual address space of each process running a parallel application.
DDS is for shared data only, which the programmer must explicitly specify as
such through simply declaring it within a C struct declaration. Shared data au-
tomatically diffuses, or migrates and replicates, in the memory of each processor
using the data, under a multiple-readers-single-writer protocol.

The size of DDS can be up to 264 bytes, either on 32- and on 64-bit archi-
tectures. Hence shared data may not all be resident in memory. Some data will
be in the disk space of processing nodes. However, the programmer uses the
same interface to gain access to shared data (without specifying any location for
data). This interface is similar to that used to access data in files. For a read,
the programmer first calls DDS Read(); for a write the programmer first calls
DDS Write(). The programmer then uses the data as it uses data in its local
address space. After using the data the programmer must call DDS UnRead()
or DDS UnWrite(), respectively.

Data diffusion takes place by dynamically mapping data onto the memory of
each processor using the data. Under out-of-core computation, DDS also maps
shared data onto disk space in each processing node. These applications are likely
to improve their performance under DDS, because DDS first tries to satisfy data
requests from the memory of other nodes, instead of remote disk space.

In Section 2 we present related work. In Section 3 we present the architecture
of DDS and its programming model. In Section 4 we show some empirical data
on the performance of DDS compared to that of MPI for in-core and out-of-core
applications. We offer some conclusions and describe future work in Section 5.

2 Related Work

A useful classification of DSM systems is that based on whether the implemen-
tation is all-hardware, mostly hardware, mostly software, or all-software [6]. All-
hardware DSM moves data between processing nodes by hardware only, and at
a fairly small granularity of typically 16 to 128 bytes. It includes cache-coherent
non-uniform memory access (CC-NUMA) architectures, such as DASH [7] and
Origin [9], and data diffusion architectures (also known as cache only memory
architectures, or COMAs), such as DDM [19] and COMA-F [5]. In CC-NUMAs,
data moves to the cache of each using processor, whether the data is local (res-
ident in the nearest main memory node to a processor) or remote. In COMAs,
the organisation of main memory is associative, and thus data moves to main
memory nodes, and from these into processor caches, if available.

Mostly hardware DSM also moves data by hardware at a fairly small granu-
larity, but little of its operation (e.g., gaining access to a memory region) is car-
ried out by system software. Examples include Alewife [1] and KSR-1 [4]. Mostly
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software DSM is the well known virtual shared memory based on paging. Based
on commodity virtual memory hardware, it has been widely investigated and
improved. The first representative, IVY [8], adopted sequential consistency as
its memory consistency model, incurring in general a significant communication
overhead to keep data coherent. This overhead has since been reduced through
the adoption of more efficient consistency models [11], such as release consistency
and lazy release consistency, and optimisations relating to the implementation
of the DSM [17].

All-software DSM does not rely on any hardware support other than network
communication hardware. Access to shared data is controlled by software prim-
itives (linked to the application) whose invocation is instrumented/coded either
by a compiler or the application programmer. All-software, compiler assisted
DSM includes Orca [2] Shasta [16], Midway [3], and CAS-DSM [10]. The C Re-
gion Library (CRL) [6] is also all-software DSM but with no compiler support.
The programmer must call CRL procedures to map and gain access to shared
data, and also to relinquish access to, and unmap, shared data.

DDS is similar to CRL regarding the use of shared data. However, the map-
ping of shared data in DDS is made only once. Another difference is that DDS
manages a 264 byte shared address space, both in 32- or in 64-bit architectures.

3 The Data Diffusion Space

The data diffusion space (DDS) was designed to simplify the programming of
parallel applications under the SPMD (Single Program Multiple Data) model.
Under this model, a process is created on each processing node to run a parallel
application. With DDS, the DDSP process is also created, and runs, on each
processing node. DDS is organised into a library to which a parallel application
is linked.

3.1 Architecture

Figure 1 shows the DDS architecture. The data diffusion space is extra to that
of each process running a parallel application. Data in the diffusion space is
dynamically mapped onto the address space of whichever application process is
using the data. We will use the term shared data to refer to data in the diffusion
space from now on.

When an application process requests shared data, and this data is not res-
ident in its local memory, the DDSP process requests the data from a remote
memory node (as described in Section 3.2). When the data arrives, it is placed
somewhere in the address space of the application by DDSP. The address where
the data was placed is given back to the application through the DDS inter-
face (as described in Section 3.3). DDSP processes communicate through TCP
sockets, using blocks of up to 64 KB.

3.2 Protocol

Shared data diffuses under a multiple-readers-single-writer data coherency pro-
tocol. For a read request, a copy of the data is obtained; for a write request, an
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Fig. 1. DDS Architecture.

exclusive copy is obtained invalidating all other copies, thus ensuring all proces-
sors have the same view of the shared data.

The DDS protocol is similar to that of COMA-F (Cache-only Memory Archi-
tecture-Flat), an all-hardware distributed shared memory architecture [5]. It
is homeless and directory-based. Data has no home location. It moves to the
memory of the accessing processors and resides there, either until it is invalidated
by a write by a processor or until it is evicted to give room to other data most
recently used.

COMA-F uses associative main memory. Hence data has no home location
therein. When a read or write misses in a memory node, a request is sent to the
home directory of the relevant data item. This directory holds the location (node)
and state information (exclusive, shared) of the item. If the home directory node
is that location, it services the request; otherwise it sends the request to a node
that currently has the item. A home directory is managed in each node, and
some bits of each item address are used to identify a home directory.

DDS uses two directories in each node (see Figure 1). The local directory
(LD) plays the role of an associative memory directory. A data item address is
looked up there to see if the corresponding data item is in the memory. However,
our local directory organisation keeps track of data not only in the memory of a
node, but in both the memory and the disk space of the node. When a memory
is needed to store recently used items, exclusive items less recently used are
swapped out onto disk space. Shared items are just discarded.

When a read or write misses in a node, the DDS protocol sends a request to
the relevant home directory, which is used and identified as described above for
the COMA-F protocol.
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3.3 Programming Model

Figure 2 shows the use DDS in the addition of two matrices: C = A + B. The
programmer must define shared data within the DDS C structure. Before using
shared data, the programmer must call DDS Init as shown in that figure. In
each processing node, DDS Init maps the shared data to the diffusion space,
initialises the local directory and the home directory, and starts the DDSP pro-
cess.

In the matrix addition code, ROWS/nprocs rows are calculated by each
processor. Before accessing data, each processor must gain access to it, through
calling DDS Write or DDS Read. When these procedures return, the relevant
data is already in the processor memory, and will remain there until the corre-
sponding DDS UnWrite or DDS UnRead is issued.

struct DDS { /* declaring shared data */

unsigned int A[ROWS][COLUMNS];

unsigned int B[ROWS][COLUMNS];

unsigned int C[ROWS][COLUMNS];

};

:

main() {

:

DDS_Init(sizeof(struct DDS), &myid); /* initialising DDS */

:

rows = ROWS/nprocs;

offset = myid * (ROWS/nprocs);

for (r=0; r < rows; r++){

i = r + offset;

DDS_Write(DDS_C, i*COLUMNS, COLUMNS); /* gaining access */

DDS_Read(DDS_A, i*COLUMNS, COLUMNS); /* to shared data */

DDS_Read(DDS_B, i*COLUMNS, COLUMNS);

for (j=0; j<NCA; j++){ /* using shared data */

(dds_shmem[off_C+i])[j] = (dds_shmem[off_A+i])[j] +

(dds_shmem[off_B+i])[j];

}

DDS_UnWrite(DDS_C, i*COLUMNS, COLUMNS);

DDS_UnRead(DDS_A, i*COLUMNS, COLUMNS);

DDS_UnRead(DDS_B, i*COLUMNS, COLUMNS);

}

:

Fig. 2. DDS programming model example: matrix addition.

DDS A, DDS B and DDS C are enumeration constants 0, 1 and 2, respec-
tively. They refer to the order in which arrays A, B and C were declared within
the DDS structure. They are used at run time to index the array dds vars,
where, for each DDS variable/array, the size of each element, the total number
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of elements and the initial (DDS) shared address are found. This information is
used, along with the other two parameters sent to DDS Write/DDS Read, to
calculate the DDS address of the data being accessed. The data is actually ac-
cessed through pointers held in the array dds shmem, and the variables off A,
off B and off C, which are locally shared between the DDSP process and the
application process. The variables off A, ..., off C (or that related with other
defined shared data) are updated by DDSP according both to the address of
the data requested with DDS Read or DDS Write, and to the actual location
where that data is placed in the local memory, possibly after being requested
from a remote node.

4 Performance Evaluation

To evaluate the performance of DDS we ran two applications on a 16-node
PC cluster using different numbers of processors, both applications under DDS
and under MPI/MPI-IO [13]. The version of MPI-IO we used is also known as
ROMIO [18], and was used for our MPI version to be either in-core or out-of-
core. In the out-of-core version, PVFS [14] is used and data is partitioned round
robin into disk space along nodes by block (stripe in PVFS terminology). Each
block is the size of n/p rows, where n is the number of rows in each array, and
p is the number of processors used in each application run. Under DDS, out-of-
core applications are programmed as in-core applications are. There is no need
to specify a data partitioning into disk space.

It must be noted that, in programming out-of-core applications under MPI,
programmers partition, or know the partition of, data into disk space. Also,
programmers read data from, and write data to, disk space. That is, the pro-
grammer knows that data does not fit in memory in its entirety, and thus uses
some memory only as a temporary buffer. The number of I/O requests is thus
implicitly defined by the programmer. Under DDS, some reads and writes can be
satisfied from copies in other memory nodes; hence the number of I/O requests
can potentially be reduced.

The 16-node cluster configuration is as follows. Each node has 1 Intel Celeron
1.7 GHz processor, 512 MB RAM memory, and a hard disk drive. Hard disk
drives are, however, of different make, size (1 GB, 3 GB, 4 GB and 8 GB) and
speed. All nodes are interconnected by a 3COM Fast Ethernet switch with 48
ports. The operating system is Linux RedHat 9.0.

4.1 Matrix Multiplication

Our first application is a matrix multiplication (MM) algorithm: C = A ∗ B.
A and C are managed by rows (the C language default) and the matrix B by
columns (the elements of a column are stored in consecutive localities in memory
and/or in disk space). The matrices used were of size 16K × 16K × 8bytes (long
type), or 2 GB each, a total of 6 GB for the three matrices. The matrices are
partitioned into disk space such that each processor has �n

p � consecutive columns
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Fig. 3. Matrix multiplication: thick lines indicate data partitioning among nodes;
dashed rectangles the elements in array C processed by each processor.

of B and �n
p � rows of A and C (but C is only written). The multiplication is as

follows. Each processor calculates the total value of each element in �n
p � rows in

matrix C. Each processor reads �n
p � rows of A into memory, but only �n

p �/f at
a time, where f = 1, 2 and 4 for p = 16, 8 and 4, respectively. Then reads all
columns of B, one at a time, f times, to calculate the value of all elements in
n/p rows of C. Fig. 3 shows the data partitioning and processing for n = 4 and
p = 2.

Table 1. MM: I/O requests under DDS and MPI-PVFS 16K ∗ 16K matrices of 8-byte
integers.

DDS MPI-PVFS

Processors Reads Writes

4 69632 4096
8 34816 2048
16 17408 1024

Processors Reads Writes

4 69632 4096
8 34816 2048
16 17408 1024

Table 1 shows the average (total/p) number of I/O requests under DDS and
under MPI-PVFS. Under both, the number of I/O requests is the same on 4,
8 and 16 processors. This is somewhat surprising because it means that, under
DDS, the columns of array B, which are the ones shared by all processors,
were not diffused at all. The reason is as follows. In 4, 8 and 16 processors,
each processor uses just above 256 MB of memory to store shared data. On the
other hand, the amount of memory required by the rows of A and C that each
processor holds in memory at any time is �n

p �/f = (16384/4)/4 = 1024 in all
processor-count configurations (recall that for p = 4, f = 4, ... and for p = 16,
f = 1). This is a total of 1024× 16384× 8 (bytes) = 128 MB for each A and C.
Since that many rows A and C are wired (with DDS Read), there is very little
memory for the columns of B to remain resident in main memory, and thus are
evicted from main memory just after being used.

However, each processor uses all the columns of B in the same order, and
thus once a column of B is resident in main memory, should it not be diffused
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to other processors (thus reducing the amount of read requests)? This did not
happen because disk drives in our platform are of different speed, and because we
did not synchronise MM (both under DDS and MPI-PVFS) periodically. Since
processors started reading their rows of A at different speed from different disks,
they did not access columns in B concurrently at all.
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Fig. 4. MM: response time under DDS and MPI-PVFS.

Figure 4 shows the execution time of MM under DDS and MPI-PVFS, the
latter both with independent I/O (MPI-PVFS-IND) and with collective I/O
(MPI-PVFS-COL). DDS and MPI-PVFS-IND show almost the same perfor-
mance in 4, 8 and 16 processors because they incur the same number of I/O
operations and because these operations are independent in both versions. MPI-
PVFS-COL also incurred the same number of I/O operations. However, syn-
chronisation of collective operations, coupled with different speed of disk drives,
increased response time.

4.2 Fast Fourier Transform

Our second application applies the Fast Fourier Transform (FFT) to restore de-
graded or defocused images. For an image of N × N pixels, a matrix of size
N × N × 8 (float type) bytes is used. From this matrix, another matrix is cre-
ated, which corresponds to an autocorrelation process of the original image that
contains M ×M images, where M = 2N (see Figure 5). The size in bytes of this
matrix is 2N × 2N × (N × N) × 8 = (N4) × 32 bytes.

The image matrix is physically partitioned among processors by rows. In
Figure 5, for p = 4, processor 0 (out of four) stores in disk space the images in
the first row, processor 1 stores the images in the second row and so on.
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Each processor applies the FFT to M/p rows and to M/p columns four times,
as follows (see Figure 5): along entire rows (1st FFT), along entire columns (2nd
FFT), jumping through rows (3rd FFT), and jumping through columns (4th
FFT).

Table 2 shows the number of I/O requests per processor, both under MPI-
PVFS and DDS on 4, 8 and 16 processors, for an original matrix of size 64 ×
64 pixels. The total number of I/O requests is the same in all processor-count
configurations. The images matrix is of size ((64)4) × 32 = 512 MB, and could
held in memory in all processor-count configurations.

Table 2. FFT: I/O requests under DDS and MPI-PVFS.

DDS MPI-PVFS

Processors Reads Writes

4 4096 4096
8 2048 2048
16 1024 1024

Processors Reads Writes

4 12288 12288
8 6144 6144
16 3072 3072

For each processor-count configuration, the number of I/O requests is fewer
under DDS than under MPI-PVFS. Under DDS only the initial reads to load
data into memory and the final writes to store results in disk space are incurred.
Along the computation, other reads and writes are satisfied from copies in other
memory nodes. There are more I/O requests under MPI-PVFS because each
node manages only one memory buffer to hold an entire row of images at a time.
As mentioned earlier, the application was programmed to manage both in-core
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and out-of-core conditions (managing more buffers complicates programming
even more).

Figure 6 shows execution of FFT under DDS and MPI-PVFS. In all processor-
count configurations, DDS performs better than MPI-PVFS because it incurs
fewer I/O overhead, reducing response time by half on average.

5 Conclusions and Future Work

We presented the data diffusion space (DDS), an extra shared address space for
parallel computing under the SPMD model on distributed memory platforms.
Compared with message passing, DDS is simpler to use and potentially offers
improved performance both for in-core and out-of-core applications. On appli-
cations tested, DDS shows good performance up to 16 processors.

Programming a parallel application under DDS requires that DDS Read and
DDS UnRead, or DDS Write and DDS UnWrite, functions be called to access
data. DDS brings the data to the memory of the accessing processor whichever
the current location of the data is, either other memory nodes or local or remote
disk space.

We are currently designing a parallel file system with support to mapping
files onto DDS. To support the shared memory programming model completely,
we are also designing an extension to the C language and its compiler to avoid
the use of the DDS interface entirely.
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