
Efficient Bufferless Routing on Leveled Networks

Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
{buschc,kelkas,magdon}@cs.rpi.edu

Abstract. We give near optimal bufferless routing algorithms for leveled
networks. N packets with preselected paths are given, and once injected,
the packets may not be buffered while in transit to their destination. For
the preselected paths, the dilation D is the maximum path length, and
the congestion C is the maximum number of times an edge is used. We
give two bufferless routing algorithms for leveled networks:
(i) a centralized algorithm with routing time O((C + D) log(DN));
(ii) a distributed algorithm with routing time O((C + D) log2(DN)).
The distributed algorithm uses a new technique, reverse-simulation,
which is used to obtain a distributed emulation of the centralized algo-
rithm. Since a well known lower bound on the routing time is Ω(C +D),
our results are at most one or two logarithmic factors from optimal.

1 Introduction

We study bufferless routing on leveled networks, where packets cannot be stored
at nodes while in transit to their destination. In particular we consider hot-potato
(or deflection) routing [2], in which packets get “deflected” (like a “hot-potato”)
if they cannot make progress toward their destination. Buffereless routing is ap-
propriate when buffering is costly or impossible, for example in optical networks.

A leveled network with depth L has L + 1 levels of nodes, numbered 0 to L.
Every node belongs to exactly one level, and the only edges are between nodes
at consecutive levels (Figure 1). Many routing problems on multiprocessor net-
works can be represented as routing problems on leveled networks, for example
routing problems on the Butterfly, the Mesh (Figure 1), shuffle-exchange net-
works, multidimensional arrays, the hypercube, fat-trees, de Bruijn networks,
etc. (see [7, 14] for more details).

We assume a synchronous routing model in which at each discrete time step,
a node forwards at most one packet down any link (two packets may use a link,
one in each direction). We study many-to-one batch routing problems: we are
given N packets with preselected paths; each node is the source of at most one
packet, but may be the destination of many packets. Every preselected path is
monotonic in the sense that every edge in a path connects a lower level node
with a node in the next higher level, i.e., a path moves from left to right on the
general leveled network depicted in Figure 1. Here we are only concerned with
scheduling the packets given the paths, and not how to obtain the paths.

The routing time is the time at which the last packet reaches its destination.
For the preselected paths, the congestion C is the maximum number of packets

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 931–940, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

932 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

3

Butterfly Mesh

1 L

2

0 1 2 3 4 5 6

0

1

L − 1

......

0 2

General Leveled Network

Fig. 1. Leveled networks

that traverse any edge, and the dilation D is the maximum path length. At most
one packet can traverse any edge per time step, a lower bound on the routing
time is Ω(C + D), and routing times close to this are optimal.

If two or more packets wish to follow the same link at the same time step,
then a conflict occurs. Only one packet can follow this link, and the others must
be deflected along alternative links (since there are no buffers). Deflections may
change the preselected paths, however, we only consider bufferless algorithms in
which the final path followed by the packets contains every edge in its preselected
path. A routing time close to (C +D) is still optimal with respect to any routing
algorithm, buffered or not, even when we allow path deformation, provided that
the final paths contain the preselected paths.

Our Contributions. We present two new bufferless routing algorithms for
many-to-one routing problems in leveled networks. The first algorithm is cen-
tralized, and has routing time O(C log(DN)+D), which is at most a logarithmic
factor from optimal. The second algorithm is distributed and has routing time
O(C log2(DN) + D log(DN)), a logarithmic factor worse than the centralized
algorithm. In the distributed algorithm, all routing decisions are made locally.
Both results hold with high probability (w.h.p.), i.e., with probability at least
1 − O(1/DN). The distributed algorithm relies on a new technique, reverse-
simulation, which efficiently emulates the centralized algorithm. The final paths
used by the packets contain the preselected paths, which is useful to provide
guarantees for the delivery time of the packets. Further, for the centralized al-
gorithm, a packet never strays away from its preselected path.

The fundamental idea behind the centralized algorithm is to partition the
network into frames each containing O(log(DN)) levels. Packets are divided into
O(C) sets that move from frame to frame. The packets of a particular set are
routed from frame to frame by coloring their dependency graph, which is a graph
representing the conflicts between packet paths. It takes O(log(DN)) time steps
to move all the packets from one frame to the next, and since a packet traverses
at most O(D/ log(DN)) frames to its destination, once a packet is injected, it is
delivered in O(D) time steps. The packet sets are injected sequentially, spaced by
the time it takes to move packets from one frame to the next, so the last packet is
injected at time O(C log(DN)), resulting in a routing time O(C log(DN) + D).
Note that packets are not injected all simultaneously, but rather each packet is
injected at an appropriate time after which it moves from frame to frame.

Efficient Bufferless Routing on Leveled Networks 933

The main idea behind the distributed algorithm is to color the dependency
graph in a distributed way: packets randomly select colors and if the coloring is
valid, they will make it to their destination. If not, they use reverse simulation
to trace their paths backwards, recompute colors, and the process repeats. The
distributed coloring imposes an extra logarithmic factor in the routing time.

Related Work. Bufferless routing algorithms have been studied for various
specific network topologies, [1, 3–8, 10–12, 15]. Most related to our work is
[7], which gives a distributed algorithm for leveled networks with routing time
O(C +L) log9(LN). By using refined techniques, we improve this result by seven
logarithmic factors, and obtain a result in terms of D, rather than L. A recent
result in [9] gives a general bufferless routing algorithm for arbitrary networks
with routing time O((C + D) log3(n + N)), where n is the size of the network.
By taking advantage of the special structure of leveled networks, we can obtain
a better routing time. Further, our centralized algorithm is one of the few hot-
potato routing algorithms that keep the packets on their original preselected
paths. Store-and-forward (buffered) routing algorithms exist with near optimal
routing time for leveled as well as arbitrary networks (see for example [13]).

Paper Outline. We begin with some preliminaries (Section 2), followed by the
centralized (Section 3) and the distributed algorithm (Section 4).

2 Preliminaries

We begin with some preliminaries regarding packet paths, oscillations, frames,
and the dependencies between packets.

Paths. Every packet π has a preselected path p with path length |p|. Its current
path at time step t, denoted p(t), is defined as follows; we assume that the current
path is maintained in the header of the packet, and is used for deciding where
to send the packet at each time step. At time 0, p(0) = p, its preselected path. If
at time t, packet π is in node vi, with current path p(t) = (vi, vi+1, . . . , vk), and
packet π successfully follows the first edge (vi, vi+1) (the packet moves forward),
then, at time t + 1, packet π appears in node vi+1 with current path p(t +
1) = (vi+1, . . . , vk). If, however, at time t + 1 packet π is deflected toward a
node vj , then at time t + 1 it appears in node vj with current path p(t + 1) =
(vj , vi, vi+1, . . . , vk). If the packet moves forward, |p(t + 1)| = |p(t)| − 1 and if it
is deflected, then |p(t + 1)| = |p(t)| + 1.

Oscillations. Suppose packet π has current path (vi, vi+1, . . . , vk). π oscillates
on edge e = (vi, vi+1) if it moves back and forth on e: if at time t, π appears
in vi, then at time t + 1, π appears in vi+1, and at time t + 2 it is back in vi,
and so on. When a packet oscillates, the length of its current path increases and
decreases by one each time. Oscillations are useful because they provide a way
to “buffer” packets on edges instead of at nodes.

Frames. We partition the levels of the network into γ non overlapping frames
F1, F2, . . . , Fγ , each containing λ levels (except for the last frame, which may

934 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

contain fewer). Frame Fi, 1 ≤ i < γ, consists of the λ levels (i − 1)λ, . . . , iλ− 1.
Frame Fγ consists of the levels (γ − 1)λ, . . . , L. Note that γ = �(L + 1)/λ�. We
will pick λ = 4α log(DN), where α is an integer constant that will be defined
later; thus, the frames have logarithmic size. (If log(DN) is not an integer, we
use � log(DN) �.)

We call the levels in frame Fi the inner-levels of Fi, and we number them from
1 to λ. Thus, inner-level k of frame Fi corresponds to real level (i−1)λ+(k−1),
where 1 ≤ k ≤ λ. The odd inner-levels are numbered 1, 3, . . . , λ−1 (recall that λ
is even). The inner level of an edge is the smaller of the inner-levels of the nodes
it is incident with. Thus, corresponding to odd inner-levels are odd inner-edges,
and similarly even inner-levels and even inner-edges.

Packet Sets and Dependency Graphs. We partition the set of packets Π
into s = 8αeC sets, Π1, Π2, . . . , Πs. Each packet is placed into one of these
sets uniformly at random. Thus, Π =

⋃s
i=1 Πi, and Πi ∩ Πj = ∅ for i �= j, so

|Π | =
∑s

i=1 |Πi| = N .
Consider the packets in Πi, and two consecutive frames Fj and Fj+1. For

each packet π ∈ Πi denote by qπ the sub-path of its preselected path that
consists only of edges in Fj and Fj+1. We define the packet dependency graph
G(i,j) = (V(i,j), E(i,j)) as follows. The nodes of V(i,j) correspond to the packets
in Πi, so |V(i,j)| = |Πi|. Let π, σ ∈ Πi, then (π, σ) ∈ E(i,j) if and only if the
paths qπ and qσ share some edge in (Fj , Fj+1), i.e., if the paths collide.

The degree of a packet π in G(i,j), denoted d(i,j)(π), is the number of edges
incident with π. The degree of G(i,j), denoted d(i,j), is the maximum degree of
any packet in V(i,j). Let d = max{i,j} d(i,j), i.e., d is the maximum degree of any
of the graphs G(i,j), for any i and j.

We show that d cannot be too big. In fact, a packet path collides with at
most 2λC other paths over two consecutive frames. Only approximately 2λC/s =
O(λ/α) of these packets are in the same set, so we expect that d = O(λ/α):

Lemma 1. d ≤ λ/α = 4 log(DN), with probability at least 1 − 1/DN .

Groups. We partition the network into groups, such that each group is a collec-
tion of γ′ consecutive frames, where γ′ = 2�D/λ � (namely, the group consists
of at most 2D + 2λ levels). We define two sets of groups. The first set of groups
is S1 = {g1, g2, . . . , gk1}, where group gi consists of frames F(i−1)γ′+1, . . . , Fiγ′ .
The group gk1 consists of the rightmost frames in the network and may contain
fewer than γ′ frames. Note that the groups in S1 do not share any levels. The
second set of groups is S2 = {h1, h2, . . . , hk2}, where group hi consists of frames
F(i−1+1/2)γ′+1, . . . , F(i+1/2)γ′ . The group hk2 , consists of the rightmost frames
in the network and may contain fewer than γ′ frames. Note that the groups in
S2 are shifted by γ′/2 frames with respect to the groups in S1.

A packet belongs to a group if its path lies entirely within the group. A packet
belongs to at least one group (since its preselected path length is at most D and
the groups have size ≥ 2D). If the packet belongs to a group in S1, we assign it
to S1, otherwise it belongs to a group in S2, and we assign it to S2. Note that
a packet may belong to a group in S1 and to a group in S2 if its path is in the

Efficient Bufferless Routing on Leveled Networks 935

intersection of the two groups. In this case, it is assigned to S1. We denote by
Π(Si) the packets that belong to group Si, and by Π(x, Sj) the set of packets
that belong to group x of Sj .

3 Centralized Algorithm

In the centralized algorithm, we route the packets in two consecutive sessions.
First, we route the packets Π(S1) (belonging to groups in S1), and then the
packets Π(S2). Since the packets in Π(S2) are routed after the packets in Π(S1)
have reached their destinations, they cannot possibly interfere with each other.

A particular session contains packets in various groups. Since a packet’s path
is contained in a single group, and since the groups are level-wise disjoint, the
packets in one group can be routed simultaneously with all the packets in another
group without any possibility of interfering. Thus, it suffices to describe the
algorithm to route the packets in any one group. We will focus on the particular
group x = g1 of S1. The algorithm for other groups is identical. We will simplify
the notation by dropping the x and Sj dependence. Hence, from now on, Π will
denote Π(g1, S1), and Πi will denote Πi(g1, S1).

The session consists of m phases, each of duration τ time steps. Packets move
on waves, from left to right, one frame per phase. Each packet set Πi is associated
with a particular wave, and each packet in Πi uses this wave until it reaches its
destination. Packets are assigned colors with respect to the dependency graph.
Packets of the same color are routed together on a boat (level) in the wave.
Different colors use different boats.

3.1 Waves

A wave ω is a pointer to a frame. Initially the wave is NULL. The wave enters
the network (points to frame F1) at some phase φi, and points to the next
higher frame at each subsequent phase, so in phase φi+k, it points to frame
Fk+1. Eventually, ω points to the last frame Fγ′ , and then leaves the network
(becomes NULL). There are s waves ω1, . . . , ωs (equal to the number of packet
sets). Wave ωi enters the network at phase φ2i−1. The last wave ωs enters in
phase φ2s−1 and after γ′ phases, it has left the network, so the number of phases
is m = 2s + γ′ − 1. We use the wave to also denote the frame it points to.

The purpose of wave ωi is to route the packets in set Πi along with it, as
it moves from lower to higher levels. Packet π ∈ Πi is injected when wave ωi

contains π’s source. The packet then moves along its wave and is absorbed either
when the wave contains its destination or its destination is one frame ahead of the
wave. Note that waves are spaced 2 frames apart in order to avoid interference
of packets in different waves while the waves move from frame to frame.

At the beginning of each phase, packets appear inside their respective waves,
and frames between waves are empty of packets; this property is essential for
moving packets along their waves. Consider a phase φ during which wave ωi

points to frame Fj . At the beginning of φ, Fj contains only packets from Πi,

936 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

and Fj+1 is empty of packets. By the end of phase φ, the packets in Fj will move
from frame Fj to frame Fj+1. Thus, at the beginning of the next phase, all these
packets are still in the wave ωi, and frame Fj is empty (which allows packets
of Πi+1 to move along wave ωi+1). We continue by describing in detail how the
packets of Πi move from Fj to Fj+1 during phase φ.

3.2 Initial and Target Levels

Suppose that phase φ consists of time steps t1, t2, . . . , tτ . At the beginning of
phase φ, the packets of Πi that are already in wave ωi are oscillating on odd
inner-edges of Fj . Suppose π ∈ Πi is oscillating on odd inner-edge e = (v�, v�+1)
of Fj , where the inner level of v� is � (which is odd). The packet oscillates on
e so that at odd time steps t1, t3, . . . , packet π appears in v�. We say that π
oscillates at inner-level �, which is the initial inner-level of π in phase φ.

Now suppose that the current path of π at its initial inner-level � is a sub-
path of its preselected path. During phase φ, packet π will follow its current
path until it reaches a target inner-level �′ in Fj+1, where it will oscillate for
the remainder of the phase. At its target level, π’s current path will remain a
sub-path of its preselected path. The target level will become the new initial
level at the next phase, when the wave ωi points to Fj+1.

We define χ(i,j) different target inner-levels �1, �2, . . . , �χ(i,j) in Fj+1, where �k

is inner-level λ−(2k−1) in Fj+1. (Note that target inner-levels are odd, because λ
is even.) The parameter χ(i,j) is the chromatic number of the dependency graph
G(i,j). Since d(i,j) ≤ d, a trivial polynomial time coloring algorithm using d + 1
colors shows that χ(i,j) ≤ χ = d + 1. Each packet in Πi is thus assigned a color
between 1 and χ(i,j). Denote by Πi(k) the respective subset of Πi with color
k. Packets in Πi(k) have target level �k. Note that in the above discussion we
assume that j < γ′. If j = γ′ then all the target inner-levels are set to real level
2D−1, which are still in Fj . By construction, the paths of packets of same color
are conflict-free, i.e. do not share any edge, and thus can be routed together in
“boats” (see below). Further, the fact that the last frame extends beyond level
2D does not cause a problem because no packet will ever need to move into that
region, as it will be absorbed before that.

3.3 Boats

A boat b is a pointer to a level. We have χ(i,j) boats b1, . . . , bχ(i,j) . Initially, bk is
NULL. At time step t4k−3, boat bk points to the first inner-level of Fj (the boat
enters the wave). At each subsequent step, the boat points to the next higher
inner-level, so that at time step t4k−3+l it points to inner-level l + 1. After the
boat reaches the last inner-level of Fj it continues to the inner-levels of Fj+1 until
the boat reaches the target level �k of Fj+1, after which bk becomes NULL again.
Note that boats are spaced 4 levels away from each other, which will be important
when an oscillating packet needs to be deflected (see below). When the context is
clear, we use the term boat to refer to the inner-level it points to. Note that the

Efficient Bufferless Routing on Leveled Networks 937

last boat enters at time t4χ(i,j)−3, and takes 2λ−2χ(i,j)+1 steps to leave the wave,
so the number of time steps per phase is τ = 2(λ+maxi,j χ(i,j)−1) ≤ 2(λ+χ−1).

The packets of Πi(k) will use boat bk to move to their target level �k in Fj+1.
Suppose π ∈ Πi(k) is oscillating with initial level � at the beginning of phase φ.
Packet π will continue to oscillate until its boat bk is at inner-level �, at which
time packet π will “catch its boat” and move along with it. While on its boat
bk, π follows its current path until it reaches its target inner-level �k in Fj+1.
If, during this trip, π passes through its target node it is absorbed; otherwise
π reaches its target inner-level �k at which it will oscillate for the remainder of
the phase. Note that bk passes through odd inner-levels (in particular π’s initial
level) at odd time steps, so π is at its initial level when bk passes through it.

Packet Injection. A packet π ∈ Πi(k) with source node in frame Fj , is injected
into the network when its boat bk passes through its source node. π then moves
along with bk, following its current path, until it reaches its target level �k. While
packets move along their boats they may conflict with other packets; we now
describe how to handle such conflicts.

3.4 Packet Conflicts

Suppose π ∈ Πi(k) is on its boat bk, progressing along its current path to its
target level �k. π cannot conflict with another packet of Πi(k) because their
current paths are conflict-free (Πi(k) is an independent set in G(i,j)). Earlier
boats bk′ with k′ < k are ahead of bk, so π cannot conflict with packets in Πi(k′).
π can only conflict with packets in Πi(k′′) for k′′ > k, which are oscillating in
Fj . In such a conflict, the oscillating packet is deflected (i.e., oscillating packets
have lower priority than packets on boats). We show below that this does not
disrupt the algorithm.

Suppose π deflects packet σ ∈ Πi(k′′) which oscillates on edge e = (v�, v�+1)
(� is σ’s inner-level in Fj). Packet π deflects σ at the (odd) time step tk at which
π passes through �. Assume that σ followed edge e′ = (vl−1, vl) to reach v�. We
deflect σ along edge e′ to inner-level �− 1, (so that at time step tk+1, σ appears
in vl). Note that this is always possible because no other packet oscillating at
v� arrived there using edge e′, because the packets that are oscillating at v�

all followed the same boat, and hence had edge disjoint paths. Note also that
a packet oscillating on the first inner-level may be deflected into the previous
frame Fj−1 by an injected packet, but this causes no problem. Packet σ now
follows edge e′ to appear back in vl at the (odd) time step tk+2. This is possible
because at time step tk+1 there is no boat passing through inner-level �−1 (boat
bk+1 is two levels away), and thus σ cannot be deflected further. When packet
σ is back at inner-level �, it continues to oscillate in �. Therefore, σ is always
at level � at odd time steps, and thus it can move with boat bk′ , when it passes
through �. Clearly, deflected packets remain on their path.

3.5 Routing Time

Since λ must be large enough to accommodate 2χ levels in Fj+1 (at least χ odd
target inner-levels), and χ ≤ d + 1, λ = 4α log(DN) ≥ 2(d + 1). From Lemma 1,

938 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

d ≤ 4 log(DN) w.h.p., so we can choose α = 3. The routing time is O(m · τ) (m
phases, each of duration τ). Using m = O(s + γ′) = O(C + D/ log(DN)), and
τ = O(λ + χ) = O(log(DN)) w.h.p. (Lemma 1), we get

Theorem 1. The routing time of the centralized algorithm is O(C log(DN) +
D), with probability at least 1 − 1/DN .

4 Distributed Algorithm

We show how to make the centralized algorithm (Section 3) distributed when
all nodes know C, D, and N (a commonnly made assumption [7, 13]). Given
C, D, N , nodes can compute λ, γ′, s, m, τ . (Nodes do not need information about
the paths of packets other than the one they inject.)

The setup is similar to the centralized algorithm: packets follow boats on
waves to their destinations. The major difference with the centralized algorithm
is that the new algorithm provides a distributed coloring of the dependency
graphs G(i,j). The distributed coloring is accomplished with the method of re-
verse simulation that is described below.

4.1 Reverse Simulation

In the distributed algorithm, we define χ = 2λ/α (with α = 12) which will be an
upper bound on the number of colors assigned to the packets. Packets of set Πi

follow wave ωi. Suppose ωi points to frame Fj . We define the initial and target
levels in Fj , Fj+1 as in the centralized algorithm. The set of packets A ⊆ Πi

which are oscillating at their initial inner levels in frame Fj at the beginning of
the phase will move to Fj+1, where they will oscillate at their target levels.

A phase is divided into ξ rounds r1, . . . , rξ, each of length 2τ time steps, twice
as long as a phase in the centralized algorithm. Each round has χ boats and target
levels as in the centralized algorithm. At the beginning of round r1, each packet
in A chooses a color randomly among χ colors. Let A1 be the set of packets with
a valid color, and A′

1 the packets with an invalid color. (A = A1 ∪ A′
1.)

During round r1, all packets in A will follow their respective boats. The
packets in A1 will not be deflected, and they follow their respective boats to
successfully reach their target levels where they will oscillate for the rest of the
round. Some packets, A′′

1 ⊆ A′
1, will collide with non-oscillating packets as they

follow their boats. Such packets can mark themselves as members of A′
1. These

packets need to choose new colors and try again. At the end of round r1, all
packets in A return to their initial level (see below). In round r2, packets in set
A′′

1 choose a new color, and a subset A′
2 ⊆ A′′

1 will still have an invalid color. A
subset A′′

2 ⊆ A′
2 will collide with non-oscillating packets, and will need to choose

new colors in the next round. Continuing in this way, in round k, the packets in
A′′

k−1 choose new colors, and those in A′
k ⊆ A′′

k−1 still do not have a valid color.
Of these packets, A′′

k will collide with non-oscillating packets. We will show A′
ξ

is empty w.h.p, i.e., all packets have a valid color by the last round. Thus, in

Efficient Bufferless Routing on Leveled Networks 939

the last round, all the packets reach their target inner-levels, where they will
oscillate till the next phase. We give the details below.

We define 4 levels of priority, 0, 1, 2, 3. When two or more packets collide,
the packet with highest priority always wins, and ties are broken randomly.
A packet which successfully reachs its target level in round k (without being
deflected by non-oscillating packets) keeps its color in all subsequent rounds and
attains priority 3 for the remainder of the phase, whenever it is not oscillating.
An oscillating packet has priority 1. A packet that chooses a new color in a
round attains priority 2 for the round. If, during the round, it collides with any
priority 2 or 3 packet, it immediately attains priority 0 for the remainder of the
round, and will select a new color in the next round. Such priority 0 packets do
not “distract” other forward going packets, and they follow arbitrary paths, due
to deflections, for the remainder of the round.

At the end of a round, all packets in A (with valid or invalid coloring) need
to appear back at their initial levels. Let t be the time step that the last boat
in the round leaves the network. After time t, all packets follow, in reverse, the
path that they followed from the beginning of the round. Thus, by the end of
the round, they appear at their initial level where they oscillate until the next
round. The path reversal is accommodated by having the nodes store all their
computations from the beginning of the round up to time t. After time t, the
nodes simply do the reverse computations, since routing is a reversible operation.
(This is why we need the round to be twice as long as τ .)

4.2 Packet Injections

So far we considered only the oscillating packets in Πi, that already appear in Fj

at the beginning of phase φ. We also need to consider the set of packets B ⊆ Πi

that will be injected in Fj during φ. Packets of B can be further partitioned into
two sets: B1, which are the packets of B whose source are at odd inner-levels of
Fj , and B2, which have sources at even inner-levels of Fj . Packets of B1 and B2

are treated separately so that they can not interfere with each other.
We divide phase φ into three sub-phases φA, φB1 , and φB2 in which we send

the packets of the respective sets A, B1 and B2 to Fj+1. Each sub-phase consists
of ξ rounds. We also divide the frame Fj+1 into three disjoint regions FA, FB1 ,
and FB2 , each consisting of 2χ inner-levels and containing χ target levels. Region
FA occupies the upper one-third (right) inner-levels of Fj+1, FB1 the middle one-
third inner-levels, and FB2 the lower (left) one-third inner-levels. Packets of set
A, B1 and B2, have their target levels in FA, FB1 and FB2 , respectively.

During phase φA the packets of set A will move to region FA, using the
algorithm we described in Section 4.1. During φB1 , the packets of B1 are injected
into the network, and then they move to their target levels in region FB1 using
the reverse simulation technique that was used for packets in set A. The initial
levels of the packets in B1 are the inner-levels of their sources, and the packets are
injected at the beginning of phase φB1 . Since a node injects at most 1 packet, the
packets are guaranteed to be able to oscillate on their initial inner-levels during
the reverse simulation. At the beginning of phase φB2 , the packets of set B2 are

940 Costas Busch, Shailesh Kelkar, and Malik Magdon-Ismail

injected into the network. Those packets will move to their target levels in region
FB2 during phase φB2 using the reverse simulation technique that was used for
packets in set A. Those packets will also oscillate on their initial inner-levels,
which are even (as opposed to packets in A and B1 which have odd initial inner-
levels). In order to handle the even levels, during this phase the boats enter the
frame Fj from inner-level 2.

4.3 Routing Time

Since χ ≥ 2d w.h.p, a packet picks a valid color with probability ≥ 1
2 , thus only

O(log(DN)) rounds are needed for every packet to pick a valid color, adding an
extra factor of log(DN) to the centralized routing time. (We omit the details.)

Theorem 2. The routing time of the distributed algorithm is O(C log2(DN) +
D log(DN)), with probability 1 − O(1/DN).

References

1. S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Direct routing on trees.
In Proc. SODA, pages 342–349, 1999.

2. P. Baran. On distributed communications networks. IEEE Transactions on Com-
munications, pages 1–9, 1964.

3. A. Ben-Dor, S. Halevi, and A. Schuster. Potential function analysis of greedy
hot-potato routing. Theory of Computing Systems, 31(1):41–61, Jan. / Feb 1998.

4. S. N. Bhatt, G. Bilardi, G. Pucci, A. G. Ranade, A. L. Rosenberg, and E. J.
Schwabe. On bufferless routing of variable-length message in leveled networks.
IEEE Trans. Comput., 45:714–729, 1996.

5. A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato
routing. IEEE Tran. on Parallel and Dist. Sys., 8(6):587–596, June 1997.

6. A. Broder and E. Upfal. Dynamic deflection routing on arrays. In Proc. STOC,
pages 348–358, May 1996.

7. C. Busch. Õ(congestion + dilation) hot-potato routing on leveled networks. Theory
Comput. Syst., 37(3):371–396, 2004.

8. C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. In Proc. STOC,
pages 278–285, May 2000.

9. C. Busch, M. Magdon-Ismail, and M. Mavronicolas. Universal bufferless routing.
In Proc. 2nd Workshop on Approximation and Online Algorithms (WAOA), pages
239–252, 2004.

10. C. Busch, M. Magdon-Ismail, M. Mavronicolas, and R. Wattenhofer. Near-optimal
hot-potato routing on trees. In Proc. Euro-Par, pages 820–827, 2004.

11. U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Proc. FOCS,
pages 553–562, 1992.

12. C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays.
In Proc. SPAA, pages 273–282, 1993.

13. F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing
and sorting on fixed-connection networks. J. Algorithms, 17(1):157–205, 1994.

14. F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays - Trees - Hypercubes. Morgan Kaufmann, San Mateo, 1992.

15. F. Meyer auf der Heide and C. Scheideler. Routing with bounded buffers and
hot-potato routing in vertex-symmetric networks. In Proc. ESA, 1995.

	Efficient Bufferless Routing on Leveled Networks
	1 Introduction
	2 Preliminaries
	3 Centralized Algorithm
	3.1 Waves
	3.2 Initial and Target Levels
	3.3 Boats
	3.4 Packet Conflicts
	3.5 Routing Time

	4 Distributed Algorithm
	4.1 Reverse Simulation
	4.2 Packet Injections
	4.3 Routing Time

	References

