
Dynamic Page Migration
Under Brownian Motion�

Marcin Bienkowski and Miroslaw Korzeniowski

International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, Germany

{young,rudy}@upb.de

Abstract. We consider Dynamic Page Migration (DPM) problem, one
of the fundamental subproblems of data management in dynamically
changing networks. We investigate a hybrid scenario, where access pat-
terns to the shared object are dictated by an adversary, and each proces-
sor performs a random walk in X . We extend the previous results of [4]:
we develop algorithms for the case where X is a ring, and prove that with
high probability they achieve a competitive ratio of Õ(min{ 4

√
D, n}),

where D is the size of the shared object and n is the number of nodes in
the network. These results hold also for any d-dimensional torus or mesh
with diameter at least Ω̃(

√
D).

1 Introduction

The Dynamic Page Migration problem [3, 4] arises in a network of processors
which share some global data. Shared variables or memory pages are stored
in the local memory of these processors. If a processor wants to access (read
or write) a single unit of data from a page, and the page is not stored in its
local memory, it has to send a request to the processor holding the page, and
appropriate data is sent back. Such transactions incur a cost which is defined
to be the distance between these two processors plus a constant overhead for
communication. To avoid the problem of maintaining consistency among multiple
copies of the page, the model allows only one copy of the page to be stored within
the network. Additionally, nodes can move with a bounded speed, thus changing
the communication costs. This is typical in mobile wireless networks but also
attempts to capture the dynamics of wired ones.

To reduce the communication cost, the system can migrate the page between
processors. The migration cost is proportional to the cost of sending one unit of
data times the size of the memory page. The problem is to decide, online, when
and where to move the page in order to minimize the total cost of communication
for all possible sequences of requests and network changes. The performance of
� Partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Al-

gorithmen Entwurfsmethoden Anwendungen” and by the Future and Emerging
Technologies programme of the EU under EU Contract 001907 DELIS “Dynami-
cally Evolving, Large Scale Information Systems”.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 962–971, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Page Migration Under Brownian Motion 963

an online algorithm is measured by competitive analysis [6, 11], i.e. by comparing
its total cost to the total cost of the optimal offline algorithm on the same input
sequence.

Since the input consists of two independent sequences, one describing access
patterns and one for mobility of the network, it is reasonable to assume that they
are created by two adversarial entities; by a request and a network adversary,
respectively. The thoroughly studied problem of page migration (PM) [1, 2, 5,
7, 8, 12] is a special case of DPM, in which the network is static, and only the
request adversary is present1.

Whereas there exist O(1)-competitive algorithms for PM problem [1, 2, 12] in
general networks, in [3, 4] much larger lower bounds for the DPM are given. They
are Ω(min{

√
D ·n, D}) if both adversaries are adaptive, and Ω(

√
D · log n, D2/3)

if they are oblivious. D denotes the size of the page and n is the number of
processors in the network. The size of this ratio motivates us to search for a
reasonable restriction on the adversary. Following the approach of [4] we consider
the Brownian motion scenario. In this scenario the network adversary is replaced
by a random process – each node performs a random walk on a 1-dimensional
torus, i.e., on a ring.

The Model. Following [3, 4], we describe the DPM problem formally below.
The network is modelled as a set V of n nodes (processors) labelled v1, v2, . . . , vn

placed in a metric space (X , d), where d is the distance function. In our case X
is one-dimensional discrete torus (or alternatively speaking, discrete ring) of
diameter (size) B. We assume discrete time steps t = 1, 2, We denote the
distance between two nodes vx and vy in time step t as dt(vx, vy). Since the
nodes can move, this distance can change with time. A tuple Ct describing the
positions of all nodes in a time step t is called a configuration at time t.

An input consists of a configuration sequence (Ct) and a request sequence
(σt), where σt denotes the node issuing the request at time t. These sequences
are chosen as follows. First, the adversary picks the request sequence (σt) and
the initial configuration C0 of n points on the ring. The rest of the configuration
sequence (Ct) is generated randomly, i.e. for each t, Ct+1 is generated from Ct in
the following way. For each node v its new position is chosen. Let xv(t) denote
the position (coordinate) of v at step t. For each node v we define a random
variable Zv(t).

Zv(t) =

−1 with probability 1/3
0 with probability 1/3
1 with probability 1/3

(1)

The position of v in step t + 1 is defined as xv(t + 1) = xv(t) + Zv(t). This is
further referred to as the movement rule.

Any two nodes are able to communicate directly with each other. The cost
of sending a unit of data from node vx to node vy at time step t is defined in the
following way by a cost function ct(vx, vy). If vx and vy are the same node (which

1 In fact, in the PM model we do not have a constant overhead, but this may change
the competitive ratio in this model only by a constant factor.

964 Marcin Bienkowski and Miroslaw Korzeniowski

we denote by vx ≡ vy), then ct(vx, vy) = 0. Otherwise, ct(vx, vy) = dt(vx, vy)+1.
We have one shared, indivisible memory page of size D, initially stored at the
node v1. The cost of moving the whole page from vx to vy in time step t is equal
to D · ct(vx, vy).

In time step t ≥ 1, the positions of the nodes are set according to Ct, and
then a request is issued at the node σt. Let PALG(t) denote a node keeping
the algorithm Alg’s page. First, Alg has to pay ct(PALG(t), σt) for serving the
request. Then it can optionally move the page to a new position P ′

ALG(t) paying
the cost D · ct(PALG(t), P ′

ALG(t)). Sometimes, we will abuse the notation by
writing that an algorithm is at vi or moves to vj , meaning that the algorithm’s
page is at vi or the algorithm moves its page to vj .

We consider only online algorithms, i.e. the ones which make decision in step
t solely on the basis of the initial part of the input up to step t, i.e. on the
sequence C1, σ1, C2, σ2, . . . , Ct, σt.

In order to analyze the performance in Brownian motion scenario, we follow
[4] and adapt classical competitive analysis [6, 11] for the model, where the input
sequence is created both by the adversary and the stochastic process. We say
that an algorithm Alg achieves competitive ratio R (or is R-competitive) with
probability p, if there exists a constant A, s.t. for all request sequences (σt) holds

Pr(Ct)

[

CALG(Ct, σt) ≤ R · COPT(Ct, σt) + A

]

≥ p ,

where CALG(Ct, σt) and COPT(Ct, σt) are costs of Alg and the optimal al-
gorithm, respectively. The probability is taken over all possible configuration
sequences generated by the random movement (1).

Contribution of the Paper. We present three deterministic online algo-
rithms: MajL, MajM, and MajS, for long, middle and short diameters, respec-
tively. Let γ =

√
2 · ln(n · B4) and Q = min{

√
B,

√
D/B, n}. We prove that

these algorithms, with high probability, attain the competitive ratio O(R) =
Õ(min{ 4

√
D, n}).

Algorithm diameter R
MajL long: B ≥ 64 · γ

√
D γ2 · max{1, Q}

MajM middle: 3
√

D ≤ B ≤ 64 · γ
√

D γ2 · max{1, Q} · log B

MajS short: B ≤ 3
√

D γ2

This extends the result of [4], where an O(log2 D)-competitive algorithm, work-
ing only for B = Θ(

√
D) and for a constant n was presented. Furthermore,

similarly to [4], it is possible to extend the result for long diameters to any d-
dimensional torus or mesh of diameter B = Ω(γ ·

√
D), losing only a factor of d

in the competitive ratio2.

2 In this case, each node performs a random walk which is a superposition of indepen-
dent random walks (1) in each dimension.

Dynamic Page Migration Under Brownian Motion 965

2 The Algorithms

In this section we present MajL, MajM and MajS. Although they differ in
details, their framework is essentially the same. For the sake of this presentation,
we denote the algorithm by Maj; the three algorithms will be just refinements
of the Maj framework.

Maj works in phases of fixed length K. K = D for MajL, K = B2 · log B
for MajM, and K = Θ(D

B · log(B · n)) for MajS. In a phase P , Maj remains in
one node denoted PMAJ(P). For any time interval I and a node v, weight of v
in I, denoted by wI(v), is defined as the number of requests issued by v during
I. The name Maj is an abbreviation of Majority. Namely, if there exists a node
v∗ �≡ PMAJ(P) s.t. wP (v∗) ≥ K/2, then Maj decides to move to v∗. For long
diameters it moves immediately in the last step of P ; for middle and short ones
it waits for a good opportunity for the next 6 · B2 · log B steps. These steps are
called migration sequence. Good opportunity means that PMAJ(P) and v∗ come
to each other at the distance of at most 1. If this occurs, Maj moves in this case
to v∗, otherwise it moves at the end of the migration sequence. The next phase
begins right after the migration sequence.

Theorem 1. Maj achieves competitive ratio O(R) in the Brownian motion
scenario of the DPM, with high probability (w.h.p.).

We show that there exists a constant cB,D,n (depending on B, D, and n),
s.t. for any α, any input sequence (σt) and any starting configuration C0, if (Ct)
is generated according to (1), then for S = ((Ct), (σt))

Pr[CMAJ(S) ≤ O(R) · COPT(S) + α · O(cB,D,n)] ≥ 1 − 2 · D−α . (2)

Let cB,D,n = D ·B+R·B3 ·log(B ·D ·n). We group phases (and corresponding
migration sequences) in epochs. For MajL an epoch consists of �B2/D� phases;
for MajM and MajS an epoch consists of just one phase, optionally with its
migration sequence. This guarantees that each epoch’s length is at least B2 and
at most Lp = O((D/B +B2) · log(Bn)). An important property of such division
into phases and epochs is the independence of the configuration sequence or the
algorithm, i.e. the division can be determined entirely on the basis of the request
sequence (σt).

We fix any input sequence S and divide it into epochs M1, M2, We note
that the cost of communication on the ring is bounded by �B/2� + 1 ≤ B (we
may assume that B ≥ 2), and thus the cost of moving the page is at most D ·B.
For any epoch, MajL moves the page at most �B2/D� times, whereas MajM
and MajS move the page at most once. Since the total cost of serving requests
is at most Lp · B, the total cost of Maj in the first two epochs is bounded by
O(D ·B +B3 · log(Bn)) = O(cB,D,n). We may also safely assume that the input
sequence consists of finished epochs only, because we can hide the Maj’s cost in
the last (unfinished) epoch in the additive term of (2), too.

Thus, it is sufficient to relate the cost of Maj to the cost of optimal offline
algorithm Opt in any epoch, but the first and the second one.

966 Marcin Bienkowski and Miroslaw Korzeniowski

Lemma 1 (Crucial Lemma). For any j ≥ 3 holds E[CMAJ(Mj)] ≤ O(R) ·
E[COPT(Mj−1 � Mj)]. The expected value is taken over all random movements
in Mj−2, Mj−1, and Mj.

We defer the proof of the Crucial Lemma to the next subsection, and we
sketch the proof how Theorem 1 follows from this lemma. The complete proof
will be presented in the full version of the paper.

Proof (of Theorem 1). Fix any constant α. We already bound the cost in the
two first epochs. We divide the remaining ones into three disjoint sets M0, M1,
and M2. Mk := {Mj : j ≡ k mod 3}. From the average argument, there exists
χ ∈ {0, 1, 2}, s.t. CMAJ(Mχ) ≥ 1

3 ·CMAJ(M0�M1�M2). By Lemma 1 we have
E[CMAJ(Mχ)] ≤ O(R) · E[COPT(S)].

We consider the value of CMAJ(Mχ). If it is smaller than α ·O(R·B3 · ln D),
then the whole cost of Maj might be hidden in the additive constant of (2).
Otherwise, for all each epoch M ∈ Mχ, the random variables CMAJ(Mj) and
COPT(Mj) are independent. Formally speaking, they are not independent, but
the bounds on the costs of Opt and Maj, which we use there, depend only
on the randomness of the random walks in Mj and two preceding epochs (i.e.
depend on disjoint events). Thus, we may apply Hoeffding bound [9] to get that
both costs of COPT(S) and CMAJ(Mχ) deviate by more than a constant factor
from their expected values with probability at most D−α. The calculations are
similar to the calculations presented in [4]. Thus, Maj is O(R)-competitive with
probability 1 − 2 · D−α.
�

3 Proof of the Crucial Lemma

Fix any time interval I. We introduce a simple but useful notion of auxiliary
weight. As we see later, we can use this notion to obtain a lower bound for
COPT(I), and an upper bound for CMAJ(I). Let vmax be the node which has the
maximal weight in interval I, with ties broken arbitrarily. We define auxiliary
weight of I as WA(I) = |I| − wI(vmax). We note that WA(I) is a measure of
requests’ discrepancy in I. If it is low, then there exists a node vmax, s.t. the
algorithm, which remains in this node within I, pays relatively few. On the other
hand, if it is high, there is no good single position for the page. Naturally, it can
happen, that even if WA(I) is high, all nodes are very close to each other, which
means that the cost of the algorithm in I could be very low. However, such a
configuration sequence is very unlikely to occur.

We keep this rationale in mind, while describing a rough idea of the Crucial
Lemma’s proof. For a set of intervals I, let span(I) denote the shortest time
interval containing all I ∈ I. For any epoch Mj (for j ≥ 3) we prove the
existence of a so-called critical set of disjoint intervals I(Mj), s.t.

1. span(I(Mj)) ⊆ Mj−1 � Mj ,
2. E[CMAJ(Mj)] = O(R1) · B ·

∑
Ii∈I(Mj)

WA(Ii),
3. E[COPT(Mj)] = Ω(1/R2) · B ·

∑
Ii∈I(Mj)

WA(Ii),

Dynamic Page Migration Under Brownian Motion 967

where the expected values are taken over the random walks in Mj−2, Mj−1, and
Mj . R1 and R2 are defined as follows.

Algorithm R1 R2

MajL γ2 · max{1, Q} 1
MajM γ2 · max{1, Q} · log B 1
MajS 1 γ2

Clearly, if the conditions above are fulfilled, then the Crucial Lemma holds, since
R = R1 · R2.

In this paper, we focus on proving the Crucial Lemma for long and middle
diameters. The proof for short ones can be found in the full version of the paper.
Due to space limitations we also moved the proofs of technical lemmas to the
full version of the paper.

For any fixed epoch Mj (j ≥ 3), we construct the critical set I(Mj), with
the properties described above. Additionally, we will have

1. |span(I(Mj))| ≤ B2

(32γ)2 , and

2. for all Ii ∈ I(Mj), holds |Ii| ≤ B2

(16γ)2·Q and |Ii| = O(D).

3.1 Relating CMAJ to Auxiliary Weight

First, we present a useful characterization of the Maj’s phases. Fix any phase P
of length K. By Pmigr we denote the corresponding migration sequence (if there
is none, then Pmigr = ∅). We distinguish between three cases.

1. Wait phase occurs, if wP (PMAJ(P)) > K/2. Maj does not move and pays
only for requests issued not at PMAJ(P). Since each request incurs a cost of
at most B, CMAJ(P) ≤ (K − wP (PMAJ(P)) · B.

2. Mixed phase occurs, if for all nodes v, wP (v) ≤ K/2. We have a trivial upper
bound, CMAJ(P) ≤ B · K.

3. Change phase occurs, if there exists a node v∗ �≡ PMAJ(P) s.t. wP (v∗) > K/2.
CMAJ(P) ≤ B · K. For long diameters Maj pays at most B · D = B · K for
moving the page. For middle ones it pays B · 6 · B2 · log B = O(B · K) for
requests in Pmigr and the expected cost for moving the page is 1

B · B · D +
(1 − 1

B) · D = O(D) = O(B · K/ logB) as follows from the technical lemma
below.

Lemma 2. Consider any two nodes va and vb. If both move according to the
movement rule, then with probability at least 1 − 1/B there exists a time step t
within next 6 · B2 · log B steps s.t. dt(va, vb) ≤ 1.

For any phase P , we denote the phase preceding it by Pprev. As a conclusion
from the phase characterization we get the following lemma.

Lemma 3. For any phase P , E[CMAJ(P � Pmigr)] = O(1) · B · WA(Pprev � P).

968 Marcin Bienkowski and Miroslaw Korzeniowski

Proof. If P is a wait phase, then CMAJ(P) ≤ B · WA(P). If P is a mixed
phase, then wP (v) ≤ K/2 for all v, and hence WA(P) ≥ K/2. It follows that
E[CMAJ(P)] ≤ 2·B ·WA(P). Since Pmigr = ∅ and WA(·) is monotonic, the lemma
holds in these cases.

If P is a change phase, then there exists a node v∗ �≡ PMAJ(P), to which
Maj moved at the end of P . However, wPprev (v∗) ≤ K/2, because otherwise
Maj would have moved to v∗ after phase Pprev, and would have been in v∗ in
the whole phase P . Therefore, wPprev�P (v∗) ≤ 3

2 ·K. This inequality holds also for
any vi. Indeed, since wP (v∗) > K/2, for any node vi �≡ v∗ holds wP (vi) < K/2,
and hence wPprev�P (vi) < 3

2 ·K. Therefore, WA(Pprev �P) ≥ K/2, and thus the
lemma holds.
�

Constructing I(Mj) for middle diameters. For middle diameters, an epoch Mj

consists of only one phase. Therefore, E[CMAJ(Mj)] = O(1)·B ·WA(Mj−1�Mj).
The set {Mj−1�Mj} could be our critical set, consisting of one interval, but this
interval is too long, i.e. has length Θ(B2 ·log B). We may shorten it to the desired
length min{ B2

(32γ)2 , B2

(16γ)2·Q} losing at most a factor of O(γ2 ·max{1, Q}· logB) =
O(R1) in auxiliary weight, using the following technical lemma.

Lemma 4. For any interval I and any length 3 ≤ � ≤ |I|, there exists an
interval J ⊆ I of length �, s.t. WA(J) ≥ Ω(1) · �

|I| · WA(I).

Constructing I(Mj) for long diameters. In case of long diameters finding critical
set is more complicated, because each epoch consists of multiple phases, and we
cannot apply Lemma 3 directly. Mj consists of κ := �B2

D � phases P1, P2, . . . , Pκ,
each of length D. Let P0 be the last phase of Mj−1. Let L = B2/(32γ)2 ≥ 4 ·D
be the desired span(I(Mj)) length. First, we find a contiguous sequence A of
phases, such that the cost of Maj in A is large. Precisely, there is a sequence A

of �L/D� − 1 phases from Mj such that CMAJ(A) ≥ Ω(�L/D�−1
κ) ·CMAJ(Mj) =

Ω(1
γ2) · CMAJ(Mj).
Let A′ be a subset of A created by taking each second phase from A, in

such way that CMAJ(A′) ≥ 1
2 · CMAJ(A). As a consequence, each two change

phases from A are separated by at least one phase not belonging to A′. Let
I0 := {(Pprev � P) : P ∈ A′}. All intervals from I0 are disjoint and their union
contains whole A. Moreover, I0 is contained in �L/D� consecutive phases, and
hence |span(I0)| ≤ L. By Lemma 3 we get

∑
Ii∈I0

WA(Ii) ≥
∑

Ii∈I0
Ω(1

B) ·
CMAJ(Ii) = Ω(1

B) · CMAJ(A) = Ω(1
γ2) · 1

B · CMAJ(Mj).

Since each interval from I0 has length at most B2

(32γ)2 , we can use Lemma 4

to shorten each Ii ∈ I0 to length B2

(16γ)2·Q losing additional factor of max{1, Q}.
Let I(Mj) be the set of shortened intervals from I0. Then, CMAJ(Mj) = B ·
O(γ2 · max{1, Q}) ·

∑
Ii∈I(Mj)

WA(Ii).

3.2 Relating COPT to Auxiliary Weight

Let I(Mi) be the critical set chosen as described in the previous subsection.
Consider any single interval Ii ∈ I(Mj). Informally, a condition for incurring a

Dynamic Page Migration Under Brownian Motion 969

R2R4

R1

R3

R′
i sets

R′′
2 and R′′

4 sets

Fig. 1. Ring partitioning

high cost on any algorithm (in particular, on the optimal offline) in Ii, is that
the nodes have to be distributed on the ring, so that the requests are issued
from the different parts of the ring. This would assure, that an algorithm which
remains at any node v in Ii pays Ω(B) for any request not at v, which amounts
to at least Ω(B) · WA(Ii).

We show that it is sufficient that nodes are well distributed at the beginning
of span(I(Mj)), and that they behave nicely, i.e. they never run away quickly
from their starting positions. First, we formally define these two properties.
Then we prove that for a single fixed interval Ii ∈ I(Mj), these properties
are fulfilled with a constant probability. Finally, we show that if they hold, then
COPT(Ii) = Ω(1) ·B ·WA(Ii). From this immediately follows that E[COPT(Ii)] =
Ω(1) ·B ·WA(Ii), and by linearity of expectation we get E[COPT(Mj−1�Mj)] =
Ω(1) ·B ·

∑
Ii∈I(Mj)

WA(Ii). This would finish the proof of the Crucial Lemma.

Definition 1. Fix any nodes configuration C and an interval I. We say that
the nodes are I-distributed, if it is possible to partition the ring into 4 disjoint
contiguous parts R1,R2,R3,R4, each containing B/4 points from X , s.t. both
wI(R1) and wI(R3) are at least 1

16 · WA(I). wI(Ri) denotes the total weight
accumulated in the part Ri, i.e., wI(Ri) =

∑
v∈Ri

wI(v) 3.

Definition 2. We call a configuration sequence of length � convergent, if for
any 1 ≤ i < j ≤ � and any node v, positions of node v in time step i and j
differ by at most γ ·

√
j − i. For any time interval I, we denote the event that a

configuration sequence is convergent in I by conv(I).

Clearly, between the beginning of Mj−2 (called a starting point) and the
beginning of span(I(Mj)) ⊆ Mj−1 � Mj , there are at least B2 steps. We call
them a mixing sequence. We observe, that for any configuration at the starting
point, at the beginning of span(I(Mi)) the position of any node is a random
variable with an almost uniform distribution. Formally, let D be the set of all
probability distributions over our space X , whose variation distance4 to the
uniform distribution on X is at most 1/64. Any ν ∈ D we call an almost uniform
distribution. If for each node v ∈ V , its position is a random variable with
distribution ν ∈ D, and all these variables are independent, then we denote it by
3 By v ∈ A we mean that the position of v is in the set A.
4 In our discrete case, the variation distance between two probability distributions ν1

and ν2 is defined as ‖ν1 − ν2‖ := maxA⊆X |ν1(A) − ν2(A)|.

970 Marcin Bienkowski and Miroslaw Korzeniowski

V ∼ D. The technical lemma below is a reformulation of [4, Observation 10], and
follows from the convergence rate of Markov chain [10] induced by the random
walk (1).

Lemma 5. If a node v starts from any position xv(t) ∈ X at some step t, then
its position after k ≥ B2 steps is a random variable with an almost uniform
probability distribution.

Thus, we may safely assume that V ∼ D at the beginning of span(I(Mj)).
The next two lemmas are proven in the full version of the paper.

Lemma 6. Fix any interval I. If V ∼ D, then the probability that nodes are
I-distributed is at least 1/7.

Lemma 7. For any time interval I starting with any configuration C, if |I| ≤
B2, then Pr[conv(I)] ≥ 1/2.

We are interested in the events conv(I(Mj)) and that nodes are Ii-distributed
at the beginning of span(I(Mj)). These events are independent, as they rely
on disjoint random experiments (random walk inside and before span(I(Mj)),
respectively). Thus, their intersection occurs with probability 1/14. It remains
to show that, if they both occur, then COPT(Ii) = Ω(1) · B · WA(Ii)

We observe, that if conv(I(Mj)), then the speed restriction imposed on the
nodes’ movement creates a tradeoff: an algorithm either moves its page from one
point of X to another slowly, or it has to pay much. To formalize this observation
we need the following definition.

Definition 3 (Trails). Fix any interval I. By a trail T (I) we denote the se-
quence of points of X , in which Opt had its page in interval I. The trail in one
step t, T (t) is defined as (POPT(t)) if Opt does not move, and as the sequence
of points on the shortest path between POPT(t) and P ′

OPT(t) if Opt moves.

Lemma 8. Fix any time interval I of length � ≤ B2

(16γ)2·Q . If conv(I) and Opt’s
trail T (I) contains two points from X lying at the distance of at least B/8, then
COPT(I) = Ω(min{1, 1/Q}) · D · B.

At the beginning of span(I(Mj)), it is possible to partition the ring into four
parts R1,R2,R3,R4 (see Fig. 1), s.t. wIi(R1), wIi (R3) ≥ WA(Ii)/16. Intuitively,
since the configuration sequence in span(I(Mj)) is convergent, this partition is
approximately preserved within whole span(I(Mj)), and thus in Ii. Formally, we
define sets R′

1,R
′
2,R

′
3 and R′

4 as shown in Fig. 1. R′
1 (or respectively R′

3) has R1

(R3) in its center and contains B/4+2 ·B/32 points. R′
2 (or R′

4) is located in the
center of R2 (or R4) and contains B/8 points. It follows that each pair of points
from different R′

i sets is separated by a distance at least B/32. We define R′′
1

(or respectively R′′
3) as the part of length 3/8 · B having R′

1 (R′
3) in its center.

Thus, R′′
1 , R′

2, R′′
3 and R′

4 create a partition of the whole ring. We make two key
observations.

Dynamic Page Migration Under Brownian Motion 971

First, each node initially placed in R1 (or respectively in R3) can move by
at most γ ·

√
|span(I(Mj))| ≤ B/32, and thus remains within the set R′

1 (or R′
3)

during the whole span(I(Mj)). This means that the number of requests issued
in Ii at points from R′

1 (or R′
3) is at least wIi (R1) ≥ WA(Ii)/16.

Second, Opt can either remain in R′′
1 � R′

2 � R′
4, remain in R′′

3 � R′
2 � R′

4 or
its trail has to contain either all the points from R′

2 or all the points from R′
4.

We consider two cases, the other two are symmetric.

1. Opt remains in R′′
1 � R′

2 � R′
4 for the whole Ii. Then it has to pay at least

B/32 for each of the requests issued at the points from R′
3, i.e. for at least

WA(Ii)/16 requests. Thus, COPT(Ii) = Ω(B · WA(Ii)).
2. The trail of Opt’s page contain whole C′

2. Since |Ii| ≤ 1
(16γ)2·Q · B2, we can

apply Lemma 8 to get COPT(Ii) = Ω(min{1, 1/Q}) · D · B.

Thus, COPT(Ii) ≥ Ω(B ·min{D, D/Q, WA(Ii)}) = Ω(B ·WA(Ii)), which finishes
the proof.

References

1. B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In
Proc. of the 25th ACM Symp. on Theory of Computing (STOC), pages 164–173,
1993.

2. Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task
systems. Theoretical Computer Science, 268(1):43–66, 2001.

3. M. Bienkowski, M. Dynia, and M. Korzeniowski. Improved algorithms for dynamic
page migration. In Proc. of the 22nd Symp. on Theoretical Aspects of Computer
Science (STACS), pages 365–376, 2005.

4. M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide. Fighting against
two adversaries: Page migration in dynamic networks. In Proc. of the 16th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), pages 64–73, 2004.

5. D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University, 1989.

6. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

7. M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook. Page migration al-
gorithms using work functions. In Proc. of the 4th Int. Symp. on Algorithms and
Computation (ISAAC), pages 406–415, 1993.

8. C. Lund, N. Reingold, J. Westbrook, and D. C. K. Yan. Competitive on-
line algorithms for distributed data management. SIAM Journal on Computing,
28(3):1086–1111, 1999.

9. S. Rajesekaran, P. M. Pardalos, J. H. Reif, and J. Rolim. Handbook of Randomized
Computing, volume II. Kluwer Academic Publishers, 2001.

10. J. S. Rosenthal. Convergence rates for Markov chains. SIAM Review, 37(3):387–
405, 1995.

11. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

12. J. Westbrook. Randomized algorithms for multiprocessor page migration. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 7:135–150,
1992.

	Dynamic Page Migration Under Brownian Motion
	1 Introduction
	2 The Algorithms
	3 Proof of the Crucial Lemma
	3.1 Relating $C_{\rm MAJ}$ to Auxiliary Weight
	3.2 Relating $C_{\rm OPT}$ to Auxiliary Weight

	References

