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Abstract. The IBM BlueGene/L supercomputer consists of up to 65536
compute nodes connected by several networks including a three-dimen-
sional torus. The BlueGene/L control system allows a user to re-map
MPI ranks to different physical torus coordinates at run-time. Effects of
node mapping on application performance are investigated for Gray-code
mappings with differing aspect ratios, permutations of the X, Y , and Z
coordinates, random mappings and four new mapping types. Results are
presented for three NAS parallel benchmarks - BT, CG, and MG - on
128-way partitions in co-processor mode and virtual node mode on the
prototype BlueGene/L hardware.

1 Introduction

Scientific application developers are constantly looking for ways to get better per-
formance from their code to allow them to solve larger problems. One relatively
easy method of increasing performance is to ensure that the system running the
application is the best system available. For example, if the application code
assumes a certain network topology, running on a different network topology
would not provide the best performance benefits.

The IBM BlueGene/L supercomputer allows a user assign physical torus
coordinates to logical MPI ranks. While not changing the physical topology, this
logical re-arranging allows a user to make more assumptions in the code or port
code from other platforms with less work. And, performance of existing codes
might be improved by providing a more optimal node map for a given application.
This paper looks at the performance benefits of several new mapping strategies
and several existing mapping strategies on three of the NAS parallel benchmarks.

2 BlueGene/L Overview

2.1 The IBM BlueGene/L Hardware

The BlueGene/L supercomputer is a new parallel system from IBM [1],[2] . The
system consists of up to 65,536 relatively modest compute nodes. Each node
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consists of two PowerPC 440 cores - each with two 64-bit floating point units, five
network controllers. Each node has a total of 512 MB of memory. The three user-
level networks are a three dimensional torus for high-performance point-to-point
message passing, a global combining/broadcast tree for high-speed collective
operations, and a global interrupt network for extremely fast barriers. The other
two networks for low-level machine control and access to external file servers.

2.2 IBM BlueGene/L Software

The compute nodes run a custom, lightweight kernel. The kernel provides a
single address space to one running application. Therefore, there is no context
switching overhead and applications can use the majority of the 512 MB of
memory. The kernel function-ships system calls to the I/O nodes and handles
application generated signals. For more information on the BG/L software, see
[3].

The standard application programming interface (API) for BG/L application
developers is MPI. Specifically, BG/L uses an optimized MPICH [4] implemen-
tation where many collective operations are optimized to make use of the un-
derlying BG/L hardware.[5] Code is compiled with the IBM XL compilers and
the system is rather “Linux-like” in supported system calls.

2.3 IBM BlueGene/L Control System

The BG/L control system is responsible for booting the system and running
jobs. There are two main operating modes. The standard mode is called co-
processor mode. In this mode, one core is responsible for most computations
while the second core is used for message passing. The other operating mode is
called “virtual node mode” (VNM). In this mode, all of the physical resources
of a node are split in half between the two cores. Since there are half as many
packet send/receive queues per core, there can be performance degradation on
communications-intensive applications. VNM can be very beneficial to applica-
tions that are not memory intensive, nor communications-bound.

3 Mappings

The BG/L control system pieces work together to provide compute processes
their MPI rank based on their physical coordinates in the torus. For example,
a node at physical coordinates (0, 0, 0) would become MPI rank 0. A node at
(1, 0, 0) would then become MPI rank 1. In virtual node mode, a fourth coordi-
nate is required (the processor or core ID, usually referred to as ‘T’). A user may
specify an arbitrary mapping file (as long as all nodes in a partition are uniquely
accounted for in the file, even if they are not used). This allows for some inter-
esting possibilities for improving application performance. For example, many
applications might assume a two-dimensional mesh of processors. Given a proper
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mapping file, the three-dimensional BG/L torus can be made to look like a two-
dimensional mesh with no link contention. This paper looks at the performance
effects of the standard permutations of X , Y , and Z coordinates (XY Z, XZY ,
Y XZ, Y ZX , ZXY , ZXY . In virtual node mode, the core ID can come first
or last), along with Gray-code mesh mappings, and two other unique mapping
strategies with several variations. A random mapping was also used to compare
results.

3.1 Gray-Code Mappings

When hyper-cubic machine topologies were more common in the early 1990s,
work was done on embedding different order hyper-cubic graphs in whatever di-
mension hypercube was available on the physical hardware of a given machine.
See [6] or [7]. This was done using Gray codes [8]. Gray code sequences are usu-
ally constructed using a binary reflected Gray code algorithm. For example, the
sequence for 8 values (3 bits) would be: 000, 001, 011, 010, 110, 111, 101, 100. For
a simple discussion on embedding a lower-order graph in a higher order topology,
see [6]. The general strategy is to realize that a k-way partition can be written
as k = 2n for some n. Each node in the partition then has an n-bit “address”.
If each node exists in a three-dimensional torus, then the n-bit address can be
broken down into three sub-addresses (x-bits, y-bits, z-bits) for the physical co-
ordinates. To embed a two dimensional mesh in the three-dimensional torus, the
three sub-addresses are split into two sub-addresses with m-bits and n-bits for
location information. This is shown with an example. The 128-way partitions on
the BG/L development machine are 8x4x4 nodes. Each node can then be rep-
resented as n = x1x2x3y1y2z1z2. To embed a 16x8 mesh we convert each node
“address” n to look like n = a1a2a3a4b1b2b3. For example, a Z-first Gray-code
mesh would have n = z1z2x1x2x3y1y2 to then convert to a mesh “address”. The
T Gray-code meshes have the core ID first.

010 01 00

0 000

1 001

2 011

3 010

4 110

5 111

6 101

7 100

3 102 111 010 00

3 10

2 11

1 01

0 00

00
0

0 000 00
1

00
2

00
3

00
4

00
5

00
6

00
7

00
8

00
9

01
0

01
1

01
2

01
3

01
4

01
5

01
6

01
7

01
8

01
9

02
0

02
1

02
2

02
3

02
4

02
5

02
6

03
2

04
8

06
4

08
0

09
6

11
2

03
3

04
9

06
5

08
1

09
7

11
3

03
4

05
0

06
6

08
2

11
4

03
5

05
1

06
7

08
3

09
9

09
8

11
5

03
6

05
2

06
8

08
4

10
0

11
6

03
7

05
3

06
9

08
5

10
1

11
7

03
8

03
9

04
0

04
1

04
2

02
7

02
8

02
9

03
0

03
1

04
3

04
4

04
5

04
6

04
7

05
4

05
5

05
6

05
7

05
8

05
9

06
0

06
1

06
2

06
3

07
0

08
6

10
2

11
8

10
3

07
1

07
2

07
3

07
4

07
5

07
6

07
7

07
8

07
9

08
7

08
8

08
9

09
0

09
1

09
2

09
3

09
4

09
5

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

1 001

2 011

3 010

4 110

5 111

6 101

7 100

0 0000

1 0001

2 0011

3 0010

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000

010 0 |1 00

Fig. 1. Embedding 16 by 8 mesh in 128-Way BG/L Partition

The utility developed to generate all of the maps also allows the user to
specify the dimensions of the mesh to control the aspect ratio of the 2D mesh.
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3.2 Other Mapping Strategies

Because the Gray-code mesh mappings move some nodes away from each other
that would normally be neighbors, another map type called “unfolding” was
developed to try to keep more neighbor nodes next to each other while creating
a mesh-like mapping. Ranks increase along the orientation axis, then increase in
a perpendicular axis and back-track along the orientation axis. This continues
until all nodes are mapped.

In virtual node mode, three different ways of counting the core ID - corefirst
(CF), corelast (CL), and coreplanes (CP) were investigated. In corefirst unfolds,
MPI rank 0 corresponds to physical coordinates (0, 0, 0, 0) while MPI rank 1
corresponds to physical coordinates (0, 0, 0, 1).

In corelast unfolds, the ranks progress along the orientation axis, then move
to the second core and progress back along the orientation axis before increasing
the next orthogonal coordinate.

In coreplane unfolds, the ranks increment along the orientation axis, then
increase on the orthogonal axis, and continue increasing as the physical coordi-
nate decreases. When the physical coordinate is back at 0, the processor core is
increased and the process repeats. These three mappings are shown in 2 for two
rows from an 8x8x8 torus.

F i g. 2. VNM Unfolding Types

4 Procedure

In Sect. 5, results from three NAS benchmarks are presented. The three bench-
marks included show the most variability between mappings. They are BT (block
tri-diagonal), CG (conjugate gradient), and MG (multi-grid). For more informa-
tion on the NAS benchmarks see [9], [10], and [11]. For the results of other NAS
benchmarks (and other benchmarks in general), see [12].
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The NAS benchmarks come in multiple problem sizes called classes. Results
are shown for classes A, B, and C. Class A is the smallest class available for
parallel machines and tends to be communications-bound on larger partitions
such as 128-way. Class C was the largest class that still showed variation be-
tween mappings on 128-way partitions (in co-processor or virtual node mode),
though there is a class D version of most of the NAS benchmarks. Results are
presented for 128-way BG/L partitions in co-processor mode and virtual node
mode (therefore utilizing 128 or 256 processors).

The result reported by the NAS benchmarks is “MOp/s” (millions of opera-
tions per second). The graphs in Sect. 5 show the MOp/s divided by number of
processors used. Larger values of MOP/s indicate better performance. The NAS
BT benchmark requires a square number of processors so only 121 processors
are used for the co-processor mode results. However, the results get reported as
if 128 processors were actively used. Therefore the MOp/s per processor values
are recalculated for only 121 nodes.

The benchmarks were all run on first generation prototype hardware and were
compiled with the significantly less efficient (compared to IBM XL) GNU com-
pilers. Because of this, the numbers are not meant to represent absolute BG/L
performance. Instead, they are meant to show the relative effects of mappings on
performance. Re-running the benchmarks with the XL compilers should lessen
computational time without affecting communications so the results should show
differences between mappings more clearly.

5 Results

Typically, a smaller problem class performs fewer MOP/s per processor so it is
possible to plot all three classes on the same graph to conserve space. However, a
few smaller problem classes out-performed or performed similarly to larger class
problems for a given mapping. This obscures the larger problem results. This is
especially true in the CG benchmark.

Figure 3 shows the results for the NAS BT benchmark in co-processor mode
for classes A, B, and C.

The most variation between mappings is seen in the class A runs. This is
probably because less time is required for computation in the small problem sizes.
Because the 128-way partition is physically arranged as 8 by 4 by 4 nodes, the
mappings that hide the latency from the fact that there are an average of twice
as many hops in the X direction as Y or Z show reasonably good performance
increases. For example, the Y ZX and ZY X stock mappings show approximately
a fifteen percent improvement over the default XY Z mapping. Similarly the
X-first Gray-codes have the X coordinates as the most significant bit so the
physical X location changes slowly through the MPI ranks. The unfold Y map
counts along the Y axis, then Z before incrementing X . Finally, the Blocks - X
mapping also increases the X coordinate most slowly. Figure 4 shows the results
of running the CG benchmark with the mappings and Fig. 5 shows the results
from MG with 128 processors in co-processor mode. Both results are somewhat
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Fig. 3. BT 128 Processors

Fig. 4. CG 128 Processors

Fig. 5. MG 128 Processors
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similar in that there was not much variation between the mappings, especially
MG. The MG results are similar to the BT results - the mappings that have the
X coordinate varying the slowest had the best performance.

Figure 6 shows the BT results with a 128-way partition booted in virtual node
mode. Because BT assumes a square mesh of processes, it makes sense that the
square meshes are the best Gray-code performers. As in the co-processor case,
the maps that hide the latency of twice as many hops in X showed the best
performance in general. Figure 8 shows the MG results. As in the 128-way case,
there is less variation than with BT. There was very little variation between the
Gray-code mappings as a function of aspect ratio. The virtual node mode unfold
maps oriented along Y performed well since those mappings cause the physical
X coordinate to vary slowly. Figure 7 shows the results for CG. The results were
somewhat unexpected. Gray-code meshes that were more rectangular tended to
perform better than the square meshes. However, the unfold and stock results
were similar to the BT and MG results. The Gray-code mapping results will
require more investigation of the CG code.

6 Conclusions

Changing the MPI rank mapping on BlueGene/L can show very good perfor-
mance increases (as much as fifteen percent over the default XY Z mapping).
This is especially true if the mapping hides the latency from extra network hops
in asymmetric partition sizes. The majority of BlueGene/L partition sizes are
not perfect cubes so there is potential for performance increases with minimal
effort for most configurations.

Changing the logical node mapping is also an easy thing for an application
developer to try. At the very minimum, the BG/L control system provides the
stock permutations to the user, and developing mapping files is not difficult.

Fig. 6. BT 256 Processors
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Fig. 7. CG 256 Processors

Fig. 8. MG 256 Processors

Generally, mappings that can reduce or hide latency from extra physical dis-
tance from node to node show the best improvement. The performance benefits
should be even better on larger configurations (unfortunately, many of the NAS
benchmarks do not run on large partition sizes to test this) For example, the full
4096-way prototype system at IBM Rochester is thirty-two by eight by sixteen
nodes. On that system, mappings that decrease the X coordinate slowest should
perform very well.

Even in extremely powerful supercomputers, it is important to get as much
performance as possible from the given hardware and software. Node mappings is
one area where very little effort is required for possibly large gains in application
performance.
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