
J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1069–1079, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Controlling Concurrency in Mobile Computing
Environments with Broadcast-Based Data Dissemination

José Maria Monteiro1,2 and Ângelo Brayner1

1 Departamento de Informática, UNIFOR
Av. Washington Soares 1321, 60811-905, Ceará, Brasil

{monteiro,brayner}@unifor.br
2 Departamento de Informática, PUC-Rio

R. Marquês de São Vicente 225, 22453-900 - Rio de Janeiro, Brasil
monteiro@inf.puc-rio.br

Abstract. A wireless broadcast environment is defined as a mobile computing
environment in which data are delivered to mobile clients by means of a broad-
cast-based mechanism. Of course, those applications have to see the most recent
consistent database state. For that reason, in such a scenario, database servers
should synchronize operations for ensuring data consistency and currency of
data. However, conventional serializability-based concurrency control protocols
are unsuitable for synchronizing transactions in broadcast environments. The
major goal of this work is to present a new serializability-based protocol to syn-
chronize transactions in data intensive applications. The proposed protocol
saves battery power, since it ensures that mobile clients do not have to contact
servers (for requiring locks, for example) to access data. Thus, mobile clients do
not need to listen to the broadcast continuously; they listen to the broadcast
channel to retrieve data they need. Therefore, the proposed protocol supports
client disconnections. We performed simulation analysis to evaluate the per-
formance of the new protocol. The simulation results show that the proposed
protocol offers better performance than others protocols.

1 Introduction

The integration of portable computer technology with the wireless-communication
technology has created a new paradigm in computer science, the so-called mobile
computing. In a mobile computing environment, network nodes are no longer fixed,
that means, they do not have a fixed physical location. In such an environment, mo-
bile users using a portable computer (denoted mobile client or host) may access
shared information and resources regardless of where they are located or if they are
moving across different physical locations and geographical regions.

Mobile computing technology has made possible the development of new and so-
phisticated database applications. A particular class of such applications can be char-
acterized by having a large number of mobile clients, a small number of servers and a
relatively small database. Electronic commerce applications, such as auctions, road
traffic management systems and automated industrial plants [8] are examples of data-
base applications, which require the support of the mobile computing technology.
Those applications can benefit from a broadcast mode for data dissemination (push-

1070 José Maria Monteiro and Ângelo Brayner

based approach for data dissemination). In this model, a server repetitively broadcasts
data to a client population without a specific request. In turn, clients monitor the
broadcast channel in order to retrieve their data items of interest. Conventionally, data
are delivered to clients on demand (pull-based approach for data dissemination).

Broadcasting data to mobile clients instead of sending them on demand has several
advantages. For instance, the database server is not overloaded with requests from a
large population of mobile clients and it does not have to send individual messages to
a specific client as in pull-based systems. Furthermore, data can be accessed concur-
rently by any number of clients without any performance degradation, since all mo-
bile clients can simultaneously listen to the broadcast channel.

Therefore, broadcast-based data dissemination has become a widely accepted tech-
nique of disseminating data in mobile computing. Many such systems have been pro-
posed and some commercial products for information dissemination in wireless net-
works already support broadcast. For example consider the AirMedia system [3],
which regularly sends CNN news and information to subscribers. Such subscribers
should be equipped with a receiver antenna connected to their personal computers.

A broadcast environment is defined as a mobile computing environment in which
data are delivered to mobile clients by means of a broadcast-based mechanism. Appli-
cations running in a broadcast environment need to read the most recent consistent
database state1. Therefore, the database server (database system running on a server
machine) should ensure that mobile clients “see” the most recent consistent state of
the database. In other words, the database server has to guarantee data consistency
and currency of data. However, most of the published approaches for controlling
concurrency of operations over databases in broadcast environments require that
complex control structures should be sent to mobile clients. Besides having to store
such structures, the clients need to be in active state for longer period of time in order
to manage those structures. Approaches such as invalidation report [7] and update
consistency [8] present these drawbacks. For example, in [8] an n x n matrix should
be sent to all mobile clients, where n is the number of database objects.

In this paper, we propose a new concurrency control protocol for broadcast envi-
ronments. The protocol, denoted temporal serialization graph testing (TSGT, for
short), explores temporal information about database operations (read and write). The
proposed protocol does not require that complex structures be sent to the mobile cli-
ents. The TSGT protocol reduces the communication traffic between server and cli-
ents and minimizes the time interval in which clients need to listen to the broadcast
channel.

The rest of the paper is organized as follows. In section 2, we outline the character-
istics of broadcast environments. Section 3 describes the transactional model that we
will use in this work. In section 4, we describe and analyze the proposed protocol for
concurrency control in broadcast environments. In section 5, the most important
mechanisms for concurrency control in broadcast environments will be described and
discussed. Section 6 shows the results of our simulation experiments. Section 7 con-
cludes this work and outlines future works.

1 Roughly, we can say that a consistent database state represents an acceptable view of the real

world

Controlling Concurrency in Mobile Computing Environments 1071

2 Mobile Computing Environments
with Broadcast-Based Data Dissemination

The main components of a broadcast-based data dissemination environment are de-
scribed next. The database consists of a collection of interrelated data items. The
database server (DBMS) is responsible for storing and managing data of the database.
The broadcast server periodically broadcasts data items to clients. The clients, in turn,
are mobile computers. Applications running on mobile clients perform read and write
operations on database items which are cached by mobile clients.

The broadcast-based data dissemination differs from the traditional model for data
transfer between clients and server. Traditionally, data are sent from the servers to
clients on demand. In broadcast environments, the server periodically broadcasts data
items to a client population without a specific request. Each broadcast period is called
broadcast cycle or bcycle, while the content of broadcast is called bcast. Clients moni-
tor the broadcast channel and retrieve data items they need.

From a transaction processing point of view, it is important to note that, when data
items are broadcast to mobile clients, they are accessed by local transactions running
on those clients. On the other hand, transactions running on the database server can
update those data items after they were broadcast. Thus, it is likely that a mobile cli-
ent reads data item instances which do not exist anymore in the database. Of course,
such a phenomenon should be avoided. Furthermore, since mobile clients can be dis-
connected for long periods of time, transactions running on mobile clients are likely
to be long-living transactions.

3 Transaction Model

A database consists of a collection of disjoint objects representing entities of the real
world. The set of values of all objects stored in a database at a particular moment in
time is called database state. Database states represent snapshots of the real world.
They can only reflect static aspects of the world. However, a database must also re-
flect changes in the real world. Such changes are captured by the notion of state tran-
sition. State transitions represent “jumps” from a particular database state to another
(an updated snapshot of the real world).

The real world imposes some restrictions on its entities. Additionally, databases
must capture such restrictions, denoted consistency constraints. We can couple the
concept of database state to consistency constraints. If the values of objects of a par-
ticular database state satisfy all the consistency constraints, the database state is said
to be consistent.

Application programs containing operations on database objects are tools whereby
state transitions are realized in a database. From the concurrency control perspective,
not all operations of a program are relevant. Only database operations have to be
considered. A transaction is an abstraction which represents a sequence of database
operations resulting from the execution of an application program. Hence, transac-
tions are modeled as finite sequences of operations on database objects. We use the
notation ri(x) (wi(x)) to represent a read (write) operation by a transaction Ti on object
x. OP(Ti) denotes the set of all operations executed by Ti . We will assume that the

1072 José Maria Monteiro and Ângelo Brayner

execution of a transaction preserves the database consistency, if this transaction runs
entirely and isolation from other transactions.

We categorize transactions in a broadcast environment in two classes. One class
comprises transactions executed at the mobile clients. Transactions belonging to this
class are called mobile transactions. Transactions belonging to the second class are
called server transactions, since they run at the database server.

Transactions are executed concurrently. The concurrent execution of a set T of
transactions is realized by interleaving the operations of transactions in T. The execu-
tion of several interleaved transaction is modeled by a structure called schedule. For-
mally, a schedule over a set ℑ={T1,T2, …,Tn} of transactions represents an interleaved
sequence of operations of transactions in ℑ which is an element of the shuffle product
T1∗T2∗…∗Tn. Serial executions of transactions are modeled by means of the notion of
serial schedules. The precedence relation (execution order) between two operations in
a schedule S is represented by <S. For example, the notation p <S q indicates that op-
eration p was executed before q in schedule S. Two operations of different transac-
tions conflict (or are in conflict) if and only if they access the same object of the data-
base and at least one of them is a write operation. It is important to note that not all
schedules are valid; only some of them preserve database consistency. Hence, identi-
fying whether a schedule is correct is a key point in transaction management.

Let S be a schedule over a set ℑ={T1, T2, …, Tn} of transactions. The serialization
graph for S, denoted GS(S), is defined as the directed graph SG(S) = (N,E) in which
each node in N corresponds to a transaction in ℑ. The set E contains edges of the form
Ti → Tj, if and only if Ti, Tj ∈ N and there are two operations p ∈ OP(Ti), q ∈
OP(Tj), where p conflicts with q and p <S q. A schedule S is conflict serializable if and
only if the serialization graph for S (SG(S)) is acyclic. A schedule S is correct if it is
serial or conflict serializable.

4 Synchronizing Database Operations
in a Broadcast Environment

In this section, we will describe and analyze the concurrency control protocol we
propose for synchronizing database operations (belonging to different mobile and
server transactions) in a broadcast environment. The proposed protocol, called tempo-
ral serialization graph testing (TSGT), ensures that broadcast environment applica-
tions access consistent and current data.

The TSGT protocol is based on a similar strategy used by the conventional seriali-
zation graph testing protocol [5]: the dynamic monitoring and management of an
always acyclic conflict graph. In contrast to the classic serialization graph testing, the
TSGT exploits temporal information w.r.t. the moment in which a mobile transaction
operation (read or write) is executed on a given database item.

In our approach, we have decided to distribute concurrency control functions
among mobile clients and the database server. Thus, we assume that the server and
the clients execute specific functionalities, in order to manage the transaction process-
ing in a broadcast environment. In the following, we describe such functionalities.

During each broadcast cycle, the server broadcasts the data items together with a
timestamp. We will assume that data item values sent in broadcast during each cycle
correspond to the database state immediately before the beginning of the broadcast

Controlling Concurrency in Mobile Computing Environments 1073

process. In other words, data instances sent during a broadcast correspond to them
produced by all the transactions that had executed commit operations until the begin-
ning of the broadcast cycle. Such transactions will be called “committed” transac-
tions. Accordingly, the database server should store two versions of each data item Oi:

(i) a version corresponding to the result yield by the last committed transaction
which has updated Oi, and;

(ii) a version corresponding to the result yield by the last non-committed transaction
which has updated Oi;

The server is also responsible for building and managing the temporal serialization
graph for a schedule, named global schedule, consisting of operations belonging to
mobile and server transactions. A global schedule models the temporal execution
order in which operations of mobile and fixed transactions are executed. This is pos-
sible because mobile clients send to the server timestamps for database operations
they execute. In Section 4.2, we describe how those timestamps are defined.

Periodically, clients must send a package (message) to the server. Such a package
consists of database objects on which a mobile transaction has executed a database
operation (read or write) and the operation type. This information is sent together with
the corresponding timestamp. Information of operations already informed does not
need to be sent again. When a client receives a commit or an abort request of a mobile
transaction Ti, it sends a message to the server consisting of request (commit or abort).
After that, the client waits for an acknowledgement from the server in order to exe-
cute the commit or abort operation.

4.1 Running Example

We motivate the applicability and feasibility of our proposal by describing an applica-
tion of electronic commerce. In such an application the stock of the main technology
companies is available to auction in an electronic stock exchange. Now consider the
following set of transactions, which read and update values of the stock: T1:
r1(IBM)r1(SUN)C1; T2: w2(IBM)C2; T3: r3(IBM)r3(SUN)C3; T4: w4(SUN)C4; T5:
w5(SUN)C5

The transaction T2 , T4 and T5 are executed at the server. On other hand, the transac-
tion T1 is executed on the client A, while the transaction T3 on client B. Now consider
the global schedule GS presented in figure 1.

We assume that, in the execution scenario presented in figure 1, the packages con-
taining information about the read operations of mobile transactions during the bcy-
clen arrive at the server before sending bcastn+1. The serialization graph for the sched-
ule GS is illustrated in figure 2 (a). Observe that the graph presents a cycle of the
form T1 → T2 → T3 → T4 → T1. Therefore, schedule SG is not conflict serializable
(correct).

Fig. 1. Schedule GS

1074 José Maria Monteiro and Ângelo Brayner

 (a) Serialization Graph for GS (b) Serialization Graph for GS’

Fig. 2. Serialization Graphs for Schedules GS and GS’

Fig. 3. Schedule GS’

Now, we assume that, for some reason (problems in the communication links, for
example), the package which contains the information about the read operations exe-
cuted by transaction T3 during bcycle2 is late. In this case, the server will see the
schedule GS' which is showed in figure 3. The serialization graph for GS’ is depicted
in figure 2 (b).

In figure 2 (b), the serialization graph for GS’ does not present cycles. Conse-
quently, the schedule GS' will be considered conflict serializable, that is, it is correct.

However, observing the database state we can see that it is not consistent. That
means, the correct edge between T3 and T4 in the serialization graph should be T3 →
T4 (as depicted in figure 2 (a)) and not T4 → T3 (figure 2 (b)). Therefore, an incorrect
execution was considered correct improperly. Therefore, the conventional serializa-
tion graph is not sufficient to identify incorrect schedules in broadcast environments.
To avoid the occurrence of such phenomenon, we propose the TSGT protocol, which
will be described in the next section.

4.2 The Temporal Serialization Graph Testing Protocol

The TSGT protocol consists basically of monitoring and management an always
acyclic graph. The graph maintained by TSGT protocol is called temporal serializa-
tion graph. This graph is constructed based on temporal information about the mo-
ment when a data item was read or updated.

Definition 1. C(pi(x)) denotes the timestamp value for the operation pi(x). The value
for C(pi(x)) is defined as follows. If Ti is a transaction executed on the server, then
C(pi(x)) is the cycle number when the operation pi(x) is executed. On the other hand,
if Ti it is a mobile transaction, then C(pi(x)) represents the cycle number in which a
transaction Tj has executed its commit operation, if wj(x) ∈ OP(Tj) and Tj is the last
transaction which has performed a write operation on x. When a mobile transaction Tk
executes an operation pk(x), this timestamp will be associated to pk(x).

Definition 2. The temporal precedence relation (temporal execution order) between
two operations in a schedule S is denoted by ≺t

S. For example, p ≺t

S q indicates that

Controlling Concurrency in Mobile Computing Environments 1075

operation p is temporally executed before q in a schedule S. Let p and q operations in
a Schedule S, we define that p ≺t

S q if and only if one of the following conditions

holds:
i) C(p) < C(q)

ii) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti is a mobile transaction, q <s p, Tj
commits in a cycle, whose number is greater than C(p).

iii) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti and Tj are transactions executed on
the server, p <s q.

iv) C(p) = C(q) and p ∈ OP(Ti), q ∈ OP(Tj), Ti is a mobile transaction, Tj is a transac-
tion executed on the server, p <s q.

Definition 3. Let S be a schedule over a set ℑ={T1,T2,...,Tn} of transactions. We de-
fine the temporal serialization graph (TSG) for S, denoted TSG(S), as a directed graph
TSG(S) = (N,E), where:

(i) N=ℑ, that is, each node in N represents a transaction in ℑ, and;
(ii) E represents the set of edges Ti → Tj, where

• Ti, Tj ∈ N;
• there are two operations p ∈ OP(Ti) and q ∈ OP(Tj), which are in conflict and;
• p ≺t

S q.

A schedule S is conflict serializable if and only if the temporal serialization graph
for S (TSG(S)) is acyclic. A schedule S is correct if it is serial or conflict serializable.

Next, we describe how a TSGT scheduler manages the temporal serialization
graph. When a scheduler starts running, the TSG is created as an empty graph. During
each broadcast cycle, the server broadcasts the values of data items (last value written
by committed transactions) with the respective timestamp. The timestamp for each
data item can be sent in the message header or together with each data item. For each
read operation, the client stores the value and the identification of the read item, to-
gether with the respective timestamp. Periodically, clients should inform to the server,
which read operations they have executed. That is, a client sends periodically a pack-
age containing the item identification and the respective timestamp for each read
operation. As soon as the scheduler receives the first operation of a new transaction
Ti, a node representing this transaction is inserted in the TSG. For each operation pi(x)
∈ OP(Ti) which is received, the scheduler executes the algorithm shown in Figure 4.

In order to illustrate the correctness of the TSGT protocol, consider the example
presented in Section 4.1. Observe that the graph produced by the basic TSGT protocol
corresponds to the correct serialization graph for the schedule GS (see figure 1). The
protocol described above ensures that the scheduler identifies that C(w4(SUN)) >
C(r3(SUN)), inserting, thus, the edge T3 → T4, and not T4 → T3. Therefore, the TSGT
protocol captures the information that the operation r3(SUN) was temporally executed
before w4(SUN).

Thus far, we have analyzed global schedules with mobile transactions involving
only read operations. However, the protocol proposed in this work can control con-
currency in environments with mobile transactions involving write (update) opera-
tions as well, while ensuring database consistency. Next, we show how the TGST
protocol can be used to control concurrency in such environments. First, we need to
make the following observation. The semantic of write operations of a mobile transac-

1076 José Maria Monteiro and Ângelo Brayner

tion stays that an operation wi(x) is in fact executed, when it arrives at the database
server.

Remark 1. Let C(pi(x)) be the timestamp value for the operation wi(x), where Ti is a
mobile transaction. C(pi(x)) represents the cycle number when the operation pi(x)
arrives at the server.

Step 1. The scheduler checks if there exists a conflicting operation q
j
(x) ∈ OP(T

j
) which has

been already scheduled. If there is such an operation q
j
(x), then the scheduler inserts

an edge between T
i
 e T

j
. In order to include such an edge correctly, two different

cases should be considered:
Case 1. T

i
is a transaction executed on the server. In this case, the scheduler will exe-

cute the following temporal verification:
If C(q

j
(x)) ≤ C(p

i
(x))

Then, the scheduler inserts an edge on the form T
j
 → T

i
.

Else
The scheduler inserts an edge on the form T

i
 → T

j
.

Case 2. T
i
 is a mobile transaction. In this case, the scheduler will execute the follow-

ing temporal verification:
If C(q

j
(x)) < C(p

i
(x))

The scheduler inserts an edge on the form T
j
 → T

i

Else
If C(q

j
(x)) > C(p

i
(x))

The scheduler inserts an edge on the form T
i
 → T

j

Else
If T

j
 has already executed the commit operation
The scheduler inserts an edge of the form T

j
 → T

i

Else
The scheduler inserts an edge of the form T

i
 → T

j

Step 2. The scheduler verifies if the new edge introduces a cycle in the temporal serialization
graph. In the affirmative case, the scheduler rejects the operation p

i
(x), undoes the ef-

fect of the operations of T
i
 and removes the edge inserted. Otherwise, p

i
(x) is ac-

cepted and scheduled

Fig. 4. A scheduler implementing the TGST protocol

4.3 Correctness of the TGST Protocol

Next, we prove that schedules produced by the TSGT protocol are conflict serializ-
able. That means, the TSGT protocol ensures database consistency.

Theorem 1. Let TSGS be the set of schedules over the set ℑ={T1, T2, ... , Tn} of
transactions produced by a TSGT protocol and CSR the set of all conflict serializable
schedules over ℑ. Then TSGS=CSR [6].

Sketch of Proof. It is easy to show that TSGS ⊂ CSR. We only need to observe that
every global schedule S produced by the TSGT protocol has an acyclic temporal seri-
alization graph. By definition, TGST(S) represents the conventional serialization
graph for S, with additional temporal information to capture the correct execution
order of the operations in S. In other words, if the TSG for S is acyclic, the serializa-
tion graph is too. Therefore, S∈CSR, consequently, TSGS⊂CSR. To prove that
TSGS⊃CSR, we have to show that every schedule S ∈ CSR can be produced by a
TSGT protocol. We can show this by induction on the length of S that every operation

Controlling Concurrency in Mobile Computing Environments 1077

p in S may not originate a cycle in the TSG and, thus, p may be executed. As already
mentioned, the TSG represents the conventional serialization graph for S, with tempo-
ral information.

5 Related Work

In this section, we will describe and analyze the most important proposals for the
concurrency control in broadcast environments. Initially, we will discuss the invalida-
tion reports approach proposed in [7]. According to this approach, each bcast is pre-
ceded by an invalidation report. Such a report represents a list of all data items that
was updated on the server during the previous broadcast cycle. Client read the invali-
dation report periodically. A mobile transaction T is aborted if an object x previously
read by T appears in the invalidation report. This approach discards some conflict
serializable schedules. Moreover, the client cannot be disconnected for long periods
of time, since the client needs to read every invalidation report.

The multiversion broadcast mechanism [2] consists of keeping previous versions of
data items, in order to reduce the number of aborts of mobile transactions. In this
approach, the server, besides broadcasting database objects, broadcasts multiple ver-
sions for each object. Let C0 be the broadcast cycle number during which the client
transaction T performs its first read operation. To each new read operation, the trans-
action T tries to read the value with the largest version number Cn, such that Cn ≤ C0.
If this version is not available the transaction is aborted. Therefore, this approach does
not eliminate the necessity of aborting mobile transactions. Moreover, it generates an
overhead in the execution of the read operations and to maintain the multiple versions
for each database object..

Shanmugasundaram et al. [8], proposes a mechanism which uses as correctness cri-
terion an extension of the criterion called update consistency. According to this pro-
posal, in each bcycle the server broadcasts an n x n matrix, where n is the number of
database objects. This matrix will be used by clients in order to ensure the consistency
of read operations. For that, clients should listen to the broadcast channel during a
larger period of time in order to retrieve the control matrix. It is important to note that
the clients also have to store the control matrix.

As we can observe, most of the proposals described in this paper requires that con-
trol structures are transmitted by the server during each broadcast cycle and that mo-
bile clients store and manage such structures. For this reason, we can claim that TSGT
protocol is more efficient for the concurrency control in broadcast environments than
the existing proposals.

6 Experimental Results

In order to evaluate the performance of the proposed protocol, we compared it with
the F-MATRIX [8] and multiversion [2] protocols. We evaluated the performance of
these protocols based on the following metrics:

! Transaction Response Time: This metric indicates the time interval between the
time a transaction T is submitted by a client and the time that T ends its execution
through a commit operation (including the time involved in restarts).

1078 José Maria Monteiro and Ângelo Brayner

! Transaction Restart: This metric indicates the number of restarts occurred for a
set of concurrent transactions. Observe that this metric indirectly measures the
abort rate.

6.1 Simulation Environment

The simulation environment is based on the model used in [8]. It consists of a server,
a client, and a broadcast server for transmitting both the data objects and the required
control information. A mobile transaction is processed until it is committed. Only
read-only transactions are executed on the client. Update transactions are executed on
the server. A small database (300 data objects) helps to intensify data conflicts by
creating hot-spot effect. The objects that the transactions access are determined using
a random distribution function. The transaction length indicates the number of opera-
tions in a transaction. In the simulation experiments we used 8 operations with the
default value for the server transaction length.

6.2 Simulation Results

Fig. 5 show the results of our simulation experiments. TSGT outperforms F-MATRIX
and Multiversion in all the experiments. Furthermore, TSGT is highly scalable with
respect to client transaction length and server transaction length.

Figure 5 (a) shows that our protocol presents a lower abort rate than the F-Matrix
and Multiversion protocols. It shows that our protocol is scalable w.r.t the length of
transactions as well.

Figure 5 (b) shows that transactions are executed in smaller time intervals than the
F-Matrix and Multiversion protocols. Observe that, if we have smaller time intervals
for executing transactions, we increase the throughput of the system.

Although energy usage has not been evaluated in our simulations we claim that
TSGT (in comparison with F-MATRIX and Multiversion protocols) provides reduc-
tion in the use of this important and scarce resource, since it reduces the time that
mobile clients need be connected (in “active” mode). This is because mobile clients
do not require to listen to the broadcast channel continuously; they listen to the broad-
cast channel only to retrieve data they need. Moreover, with lower abort rates and
smaller response times client transactions will commit more quickly, saving energy.

0

20

40

60

80

100

120

140

1 2 3 4 5

Client Transaction Length

Re
st

ar
ts

TGST F-MATRIX Multiversion

0

100

200

300

400

500

1 2 3 4 5

Client Transaction Length

Re
sp

on
se

 T
im

e

TGST F-MATRIX Multiversion

 (a) Abort Rate (b) Comparison of Response Times

Fig. 5. Simulation Results

Controlling Concurrency in Mobile Computing Environments 1079

7 Conclusions

In this paper we have proposed a new mechanism for concurrency control in broad-
cast environments. The proposed protocol, called temporal serialization graph testing
protocol (for short, TSGT), ensures that applications in broadcast environments have
access to consistent and current data. The TSGT protocol ensures that clients do not
need to contact the server to perform their operations. Clients just have to listen to the
broadcast channel in order to retrieve data items of interest and can be disconnected
for long periods of time. Moreover, clients do not need to store nor to manage com-
plex structures as proposed in [2], [7] and [8]. We performed simulation studies to
evaluate the performance of the new protocol. The analysis of simulation results
showed that the proposed protocol presents a better performance than F-Matrix [8]
and Multiversion [2] protocols.

References

1. Victor C.S. Lee and Sang H. Son. On Transaction Processing with Partial Validation and
Timestamp Ordering in Mobile Broadcast Environments. IEEE Transactions on Computers,
Vol. 51, No. 10, 2002.

2. Evaggelia Pitoura and Panos K. Chrysanthis. Multiversion Data Broadcast. IEEE Transac-
tions on Computers, Vol. 51, No. 10, 2002.

3. Web Page of Airmedia inc. White Paper, http:// www.airmedia.com
4. A. Brayner, T. Härder and N. Ritter. Semantic Serializability: A Correctness Criterion for

Processing Transactions in Advanced Database Applications. DATA & KNOWLEDGE
ENGINEERING, 31, 1999.

5. M.A. Casanova. The Concurrency Problem of Database Systems. In Lectures Notes in
Computer Science, 116, 1981.

6. J.M. Monteiro. Temporal Serialization Graph Testing: An Approach to Control Concur-
rency in Broadcast Environments. Msc. Dissertation, Universidade Federal do Ceará, Octo-
ber, 2001 (in Portuguese).

7. E. Pitoura e P. Chrysanthis, Scalable Processing of Read-Only Transactions in Broadcast
Push, IEEE International Conference on Distributed Computing Systems, 1999.

8. J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran e K. Ramamritham. Efficient
Concurrency Control for Broadcast Environments. Proceedings of the ACM SIGMOD Con-
ference, 1999.

	Controlling Concurrency in Mobile Computing Environments with Broadcast-Based Data Dissemination
	1 Introduction
	2 Mobile Computing Environments with Broadcast-Based Data Dissemination
	3 Transaction Model
	4 Synchronizing Database Operations in a Broadcast Environment
	4.1 Running Example
	4.2 The Temporal Serialization Graph Testing Protocol
	4.3 Correctness of the TGST Protocol

	5 Related Work
	6 Experimental Results
	6.1 Simulation Environment
	6.2 Simulation Results

	7 Conclusions
	References

