
Parallelism for Perturbation Management
and Robust Plans�

Jan Ehrhoff2, Sven Grothklags1, and Ulf Lorenz1

1 University of Paderborn
Faculty of Computer Science, Electrical Engineering and Mathematics

Fürstenallee 11, D-33102 Paderborn
2 Lufthansa Systems Airline Services GmbH

Network Management Solutions
Am Prime Parc 9, D-65479 Raunheim

Abstract. An important insufficiency of modern industrial plans is their lack of
robustness. Disruptions prevent companies from operating as planned before and
induce high costs for trouble shooting. The main reason for the severe impact of
disruptions stems from the fact that planners do traditionally consider the precise
input to be available at planning time.
The Repair Game is a formalization of a planning task, and playing it performs
disruption management and generates robust plans with the help of game tree
search. Technically, at each node of a search tree, a traditional optimization prob-
lem is solved such that large parts of the computation time are blocked by se-
quential computations. Nevertheless, there is enough node parallelism which we
can make use of, in order to bring the running times onto a real-time level, and
in order to increase the solution quality per minute significantly. Thus, we are
able to present a planning application at the cutting-edge of Operations Research,
heavily taking advantage of parallel game tree search. We present simulation ex-
periments which show the benefits of the repair game, as well as speedup results.

1 Introduction

An important problem in aircraft planning is to react with an instant decision, after a
certain disruption hinders the company to act as planned before. This problem touches
various research directions and communities. Because the problems are often compu-
tationally hard [14] the field might become an El Dorado for parallel computing and
grid computing. A stochastic multi-stage fleet-assignment optimization problem is in
the focus of this paper. The used solution method is based on game tree search.

Multistage Decisions Under Risk. The reason for disruptions obviously stems from
the fact that planners lack information about the real behavior of the environment at

� This work has been partially supported by the European Union within the 6th Framework
Program under contract 001907 (DELIS) and the German Science Foundation (DFG), SFB
614 (Selbstoptimierende Systeme des Maschinenbaus) and SPP 1126 (Algorithmik großer und
komplexer Netzwerke).

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1265–1274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1266 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

planning time. Often, data is not as fixed as assumed in the traditional planning process.
Instead, we know the data approximately, we know distributions over the data. In the
airline example, we know a distribution over a leg’s (i.e. flight’s) possible arrival times.
Traditionally, plans are built which maximize profits over ’expected’ or just estimated
input data, but we belong to the group of people who believe that it is more realistic to
optimize the expected payoff over all possible scenarios instead. This view on the world
leads us to something that is often called ’multistage decisions under risk’, related to
linear stochastic programming [4, 16], stochastic Optimization [11], game playing [2],
replanning [10] and others [18].

Current Planning Processes in Airline Industry. An airline planning process starts
with the so called network design, which roughly tells the planning team which routes
(so called legs) should be taken into account. Then, a first ’plan’ is made which shows
when which legs are offered to the customers. Thereafter, the process contains two
layers which are of special interest for us.

Typically, airline companies have aircrafts of different types (so called subfleets),
which differ in size and economic behavior. Given a flight schedule and a set of aircrafts,
the fleet assignment problem is to determine which type of aircraft should fly each flight
segment. A solution of the fleet assignment problem and the flight schedule together
answers the question of how many aircrafts of which subfleet have to be at certain
places at certain times.

So called time-space networks, which are special flow graphs, can be used to give a
specific mathematical programming formulation for this class of problems. They were
introduced by Hane et al. in [7] to solve the fleet assignment problem. On the basis of
the fleet assignment, a so called rotation plan is generated. It describes which physical
aircraft must be at which place in the world and at which time.

The planning is dominated by deterministic models. All uncertainties are eliminated
through restrictive models. However, since some time, several large airline companies
have come to the conclusion that new models and methods are necessary in order to
exploit further potentials for cost reduction.

Game Tree Search. Game tree search is the core of most attempts to make comput-
ers play games. The game tree acts as an error filter and examining the tree behaves
similar to an approximation procedure. At some level of branching, the complete game
tree (as defined by the rules of the game) is cut, the artificial leaves of the resulting
subtree are evaluated with the help of heuristics, and these values are propagated to the
root [9, 15] of the game tree as if they were real ones. For 2–person zero-sum games,
computing this heuristic minimax value is by far the most successful approach in com-
puter games history, and when Shannon [19] proposed a design for a chess program in
1949 it seemed quite reasonable that deeper searches lead to better results. Indeed, the
important observation over the last 40 years in the chess game and some other games
is: the game tree acts as an error filter. Therefore, the faster and the more sophisticated
the search algorithm, the better the search results! This, however, is not self-evident, as
some theoretical analyzes show [1, 8, 13].

Parallelism for Perturbation Management and Robust Plans 1267

New Approach. Our approach [3] can roughly be described by looking at a (stochas-
tic) planning task in a ’tree-wise’ manner. Let a tree T be given that represents the
possible scenarios as well as our possible actions in the forecast time-funnel. It consists
of two different kinds of nodes, MIN nodes and AVG nodes. A node can be seen as
a ’system state’ at a certain point of time at which several alternative actions can be
performed/scenarios can happen. Outgoing edges from MIN nodes represent our pos-
sible actions, outgoing edges from AVG nodes represent the ability of Nature to act in
various ways. Every path from the root to a leaf can then be seen as a possible solution
of our planning task; our actions are defined by the edges we take at MIN nodes under
the condition that Natures acts as described by the edges that lead out of AVG nodes.

The leaf values are supposed to be known and represent the total costs of the ’plan-
ning path’ from the root to the leaf. The value of an inner MIN node is computed by
taking the minimum of the values of its successors. The value of an inner AVG node is
built by computing a weighted average of the values of its successor nodes. The weights
correspond to realization probabilities of the scenarios.

Let a so called min-strategy S be a subtree of T which contains the root of T , and
which contains exactly one successor at MIN nodes, and all successors that are in T at
AVG nodes. Each strategy S shall have a value f(S), defined as the value of S’s root.
A principle variation p(S), also called plan, of such a min-strategy can be determined
by taking the edges of S leaving the MIN nodes and a highest weighted outgoing edge
of each AVG node. The connected path that contains the root is p(S). We are interested
in the plan p(Sb) of the best strategy Sb and in the expected costs E(Sb) of Sb. The
expected costs E(p) of a plan p are defined as the expected costs of the best strategy S
belonging to plan p, e.g. E(p) = min{E(S) | p(S) = p}. Because differences between
planned operations and real operations cause costs, the expected costs associated with a
given plan are not the same before and after the plan is distributed to customers. A plan
gets a value of its own once it is published.

This model might be directly applied in some areas, as e.g. job shop scheduling
[12], not, however, in applications which are sensible to temporary plan deviations. If a
job shop scheduling can be led back to the original plan, the changes will nothing cost,
as the makespan will stay as it was before. That is different in airline fleet assignments.
Mostly, it is possible to find back to the original plan after some while, but nevertheless,
costs occur. A decisive point will be to identify each tree nodes with a pair of the system
state plus the path, how the state has been reached.

1.1 Organization of This Paper

We introduce the Repair Game as a reasonable formalization of the airline planning
task on the level of disruption fighting. Section 2 describes the Repair Game, its formal
definition, as well as an interpretation of the definition and an example. In Section 3 we
describe a prototype, which produces robust repair decisions for disrupted airline sched-
ules, on the basis of the Repair Game. Section 4 contains details of the parallelization
of the search procedure. In Section 5 we compare the results of our new approach with
an optimal repair procedure (in the traditional sense). A comparison of the sequential
and the parallel version of our prototype is additionally given. Section 6 concludes.

1268 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

2 The Repair Game

Definitions. We define the Repair Game via its game tree. Its examination gives us
a measure for the robustness of a plan and on the other hand it presents us concrete
operation recommendations.

Definition 1. (Game Tree)
For a rooted tree T = (V, E) let L(T) ⊂ V be the set of leafs of T . In this paper, a
game tree G = (V, E, h) is a rooted tree (V,E), where V = VMAX ∪· VMIN ∪· VAV G

and h : V → IN 0.

Nodes of a game tree G represent positions of the underlying game, and edges
move from one position to the next. The classes VMAX , VMIN , and VAV G represent
three players MAX , MIN , and AV G and for a node/position v ∈ Vi the class Vi

determines the player i who must perform the next move.

Definition 2. (*Minimax Value)
Let G = (V, E, h) be a game tree and wv : N(v) → [0, 1] be weight functions for all
v ∈ VAV G, where N(v) is the set of all sons of a node v. The function *minimax : V →
IN 0 is inductively defined by

*minimax(v) :=

h(v) if v ∈ L(G)
max{*minimax(v′) | v′ ∈ N(v)} if v ∈ VMAX \ L(G)
min{*minimax(v′) | v′ ∈ N(v)} if v ∈ VMIN \ L(G)
∑

v′∈N(v)(wv(v′) · *minimax(v′)) if v ∈ VAV G \ L(G)

Definition 3. (Repair Game)
The goal of the Repair Game = (G,p,g,f,s) is the calculation of *minimax(r) for a
special game tree G = (V, E, g + f) with root r and uniform depth t; p ∈ L(G) is a
special leaf, g, f and s are functions. The game tree has the following properties:

– Let P = (r = v1, v2, . . . , p = vt) ∈ V t be the unique path from r to p. P describes
a traditional, original plan.

– V is partitioned into sets S1, . . . , Sn, |V | ≥ n ≥ t by the function s : V →
{Si}1≤i≤n. All nodes which belong to the same set Si are in the same state of the
system — e.g. in aircraft scheduling: which aircraft is where at which point of time
—, but they differ in the histories which have led them into this state.

– g : {Si}1≤i≤n → IN0 defines the expected future costs for nodes depending on
their state; for the special leaf p holds g(s(p)) = 0

– f :
⋃

1≤τ≤t{V }τ → IN 0 defines the induced repair-costs for every possible
(sub)path in (V, E) ; every sub-path P ′ of P has zero repair-costs, f(P’) = 0

– the node evaluation function h : V → IN 0 is defined by h(v) = g(s(v)) +
f(r . . . v); note that h(p) = 0 holds by the definition of g and f

2.1 Interpretation and Airline Example

A planning team of e.g. an airline company starts the game with the construction of a
traditional plan for its activities. The path P represents this planned schedule, which

Parallelism for Perturbation Management and Robust Plans 1269

also is the most expected path in the time-funnel, and which interestingly gets an ad-
ditional value of its own, as soon as it is generated. It is small, can be communicated,
and as soon as a customer or a supplier has received the plan, each change of the plan
means extra costs for the change. Disruptions in airline transportation systems can now
prevent airlines from executing their schedules as planned. As soon as a specific disrup-
tion occurs, the MIN-player will select a repairing sub-plan such that the repair costs
plus the expected future repair costs are minimized.

As the value of a game tree leaf v depends on how ’far’ the path (r, . . . , v) is away
from P , it will not be possible to identify system states (where the aircrafts are at a spe-
cific time) with tree nodes. Therefore, the tree nodes V are partitioned into S1∪· . . .∪· Sn.
In Si all those nodes are collected which belong to the same state, but have different
histories. All nodes in the same state Si have the same expected future costs. These
costs are estimated by the function g. The function f evaluates for an arbitrary partial
path, how far it is away from the level-corresponding partial path of P . Inner nodes of
the game tree are evaluated by the *Minimax function.

Fig. 1. The Repair Game Tree.

Figure 1 shows a rotation plan at the right. Aircrafts A, B, and C are either on
ground, or in the air, which is indicated by boxes. A shadowed box means that the
original plan has been changed. The time goes from the top down. The left part of the
figure shows a game tree, where the leftmost path corresponds to the original plan P .
When a disruption occurs, we are forced to leave the plan, but hopefully we can return to
it at some node v. The fat path from node v downward is the same as in the original plan.
Thus, at node v, we have costs for the path from the root r to v, denoted by f(r . . . v)
and future expected costs, denoted by g(s(v)). If we follow the original plan from the
beginning on, we will have the same expected costs at the time point represented by v,
but different path costs. The only node with zero costs typically is the special leaf node
p of the original plan.

3 Experimental Setup

In accordance with our industrial partner, we built a simulator in order to evaluate differ-
ent models and algorithms The simulator is less detailed than e.g. SimAir [17], but we

1270 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

believe that it is detailed enough to model the desired part of the reality. Furthermore, it
is simple enough such that the occurring problems are computationally solvable.

First of all, we discretize the time of the rotation plan into steps of d = 15 minutes.
Every departure in the current rotation plan is a possible event point, and all events
inside one d minute period are interpreted as simultaneous. When an event occurs,
the leg which belongs to that event can be disrupted, i.e. it can be delayed by 30, 60,
or 120 minutes, or it can be canceled with certain probabilities. Let T be the present
point of time. The simulator inspects the events between T and T + d, and informs a
repair engine about the new disruptions, waits for a corrected rotation plan, and steps d
minutes forward.

The aim is to compare two different repair approaches with each other. The first one
is called ’Myopic MIP’ solver and it repairs a plan after a disruption with the help of a
slightly modified time-space network such that the solution of the associated network
flow problem is an optimal one, under the assumption that no more disruptions will
ever occur. This engine represents traditional deterministic planning. It only needs a
modified cost function because the repair costs are mainly determined by the changes
on the original plan, rather than by leg profits.

The second engine, called ’T3’, is an engine which plays the Repair Game. It com-
pares various solutions of the modified time-space network flow problem and examines
various scenarios which might occur in the near future. The forecast procedure makes
use of the dynamics time-locally around time T and T + d as follows: Instead of gener-
ating only one myopic MIP optimal solution for the recovery, we generate several ones.
They are called our possible moves. A simple, certainly good heuristic is to demand that
these solutions have nearly optimal costs concerning the cost function which minimizes
the cost for changes. For all of these possible moves, we inspect what kind of relevant
disruptions can come within the next d minutes. On all these scenarios, we repair the
plan again with the help of the myopic MIP solver, which gives us value estimations
for the arisen scenarios. We weight the scenarios according to their probabilities, and
minimize over the expected values of the scenarios. Concerning the new part of the plan
we have not optimized the costs over expected input data, but we have approximately
minimized the expected costs over possible scenarios. The following algorithm is a sim-
plified version of the algorithm shown in [2]. We refer to [3] for further details of the
repair engines.

value *minimax(node v, value α, value β)
1 generate all successors v1, . . . , vb of v; let b be the number of successors
2 value val := 0;
3 if b = 0 return h(v) /∗ (leaf eval)∗/
4 for i := 1 to b
5 if v is MIN-node {
6 β := min(β, *minimax(vi, α, β)); if α ≥ β return β; if i = b return β
7 } else if v is AVG-node { // let w1, .., wb be the weights of v1, .., vb

8 val+ = *minimax(vi, α, β) · wi;
9 if val + L · ∑b

j=i+1
wj ≥ β return β; if val + U · ∑b

j=i+1
wj ≤ α return α

10 if i = b return val
11 } else { // v is MAX-node. Analogously to v is a MIN-node }

Parallelism for Perturbation Management and Robust Plans 1271

4 Parallelization

The basic idea of our parallelization is to use dynamic load balancing and to decom-
pose the search tree, to search parts of the search tree in parallel and to balance the load
dynamically with the help of the work stealing concept. This works as follows: First,
a special processor P0 gets the search problem and starts performing the *minimax
algorithm as if it would act sequentially. At the same time, the other processors send re-
quests for work, the REQUEST message, to other randomly chosen processors. When
a processor Pi that is already supplied with work, catches such a request, it checks,
whether or not there are unexplored parts of its search tree, ready for evaluation. These
unexplored parts are all rooted at the right siblings of the nodes of P ′

is search stack.
Either, Pi sends back that it cannot serve with work with the help of the NO-WORK
message, or it sends such a node (a position in the search tree etc.) to the requesting
processor Pj . That is done with the help of the WORK message. Thus, Pi becomes a
master itself, and Pj starts a sequential search on its own. The master/worker relation-
ships are dynamically changed during the computation. A processor Pj being a worker
of Q at a certain point of time may become the master of Q at another point of time.
In general, processors are masters and workers simultaneously. If, however, a processor
Pj has evaluated a node v, but a sibling of v is still under examination of another pro-
cessor Q, Pj will wait until Q sends an answer message. When Pj has finished its work
(possibly with the help of other processors), it sends an ANSWER message to Pi. The
master-worker relationship between Pi and Pj is released, and Pj is idle again. It again
starts sending requests for work into the network.

When a processor Pi finds out that it has sent a wrong local bound to one of its
workers Pj , it makes a WINDOW message follow to Pj . Pj stops its search, corrects
the window and starts its old search from the beginning. If the message contained a
cutoff, Pj just stops its work. A processor Pi can shorten its search stack due to an
external message, when e.g. a CUTOFF message comes in which belongs to a node
near the root. In absence of deep searches and advanced cutting techniques, however,
CUTOFF and WINDOW messages did not occur in our experiments.

In many applications, the computation at each node is fast in relation to the ex-
change of a message. E.g. there are chess programs which do not use more than 1000
processor cycles per search node, including move generation, moving end evaluating
the node. In the application presented here, the situation is different. The sequential
computations at each node takes several seconds if not even minutes, such that the la-
tency of messages is not remarkably important. Therefore, the presented application is
certainly well suited for grid computing, as well. However, it is necessary to overlap
communication and computations. We decoupled the MIP solver from the rest of the
application and assigned a thread to it.

In distributed systems, messages can be delayed by the system. Messages from the
past might arrive, which are outdated. Therefore, for every node v a processor generates
a local unique ID, which is added to every message belonging to node v. Thus, we are
always able to identify misleading results and to discard invalid messages. We refer to
[5] for further details.

1272 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

Table 1. The daily-average profit of T3 over Myopic, two different weeks, six measure points
each.

run 1 run 2 run 3 run 4 run 5 run 6

week 1 2320 27696 32261 -9238 -15799 13150

week 2 11040 48778 11580 -1253 9144 8389

5 Results

The basis for our simulations is a major airline plan plus the data which we need to
build the plan and its repairs. The plan consists of 20603 legs, operated by 144 aircrafts
within 6 different subfleets. The MIP for this plan has 220460 columns, 99765 rows,
and 580793 non-zeros. Partitioned into single days, the resulting partial plan for any
single day consists of a corresponding smaller number of columns and non-zeros.

All experiments are performed on a 4-node-cluster of the Paderborn University.
Each node consists of two Pentium IV/2.8 GHz processors on a dual processor board
with 1 GB of main memory. The nodes are connected by a Myrinet high speed inter-
connection network. The cluster runs under the RedHat Linux operating system.

We simulated 14 days, and we divided this time period into 14 pieces such that
we arrived at a test set with 14 instances. Moreover, time is divided into segments
of 15 minutes, and everything happening in one 15 minute block is assumed to be
simultaneous. We compare the behavior of the ’myopic MIP’ and the ’T3’ engines. We
appropriately choose the probabilities for disruptions and control the performance of
the objective function c(TIM, ECH, CNL, revenue) = 50 ·TIM +10000 ·ECH +
100000·CNL−revenue, TIM being time-shifts, ECH meaning that the aircraft type of
a leg had to be changed, CNL being the number of necessary cancellations and revenues
being the traditional cost measure for the deterministic problem. A test run consists of
about 1400 single decisions, and first tests showed benefits of more than three percent
cost reductions over the myopic solver. Although a benefit of more than three percent
looks already promising, statistical significance cannot be read out of a single test run.
The engines make nearly 100 decisions per simulated day. However, these decisions
cannot be taken as a basis for significance examinations, because the single decisions
are part of a chain and not independent from each other. The results of the single days
seem to form no normal distribution and, moreover, depend on the structure of the
original plan. Therefore, we made further test runs and grouped those outcomes of each
simulated week to one. We measure the average daily profit of a week, in absolute
numbers (see Table 1). The profit, which is statistically significant, is the benefit of the
T3-engine over the Myopic-MIP engine.

5.1 Speedups

We measure speedups of our program with the help the first three days of the test set
which consists of the 14 single days, mentioned above. The time for simulation of
the days using one processor is compared with the running time of several processors.
The speedup (SPE) is the sum of the times of the sequential version divided by the

Parallelism for Perturbation Management and Robust Plans 1273

Table 2. Speedups.

proc simtime day 1 SPE day1 simtime day 2 SPE day2 simtime day 3 SPE day3

1 226057 1 193933 1 219039 1
2 128608 1.76 111612 1.73 126915 1.73
4 68229 3.31 59987 3.23 66281 3.30
8 46675 4.84 40564 4.78 46065 4.75

sum of the times of a parallel version [6]. Each test day consists of 96 single measure
points. Table 2 shows the speedups which we could achieve. We are quite satisfied with
these speedups because they bring the necessary computations on a real-time level. Of
course, the question arises how the work load and the search overhead behave. As the
sequential and the parallel version do indeed exactly the same, search overhead does
not exist. Neither the costs for communication are relevant. The only reason that we
cannot achieve the full speedup are the large sequential computing periods, caused by
the commercial MIP solver.

6 Conclusion

Playing the Repair Game leads to more robust (sub-)plans in airline scheduling than
traditional deterministic planning can provide. Our forecast strategy outperforms the
myopic MIP solver by means of simulations. We have parallelized the search in order
to drop the computation times to real time. Next, we will look for more clever and
selective search heuristics, examine heuristics which give us fast new moves, and refine
the simulator.

We presented an application which we think is a typical example for the benefits of
cluster parallelism and grid computing. The stochastic fleet assignment problem that we
presented in the frame of game tree search makes profit from its speed. The faster the
application can be performed, the larger is the gained profit. Planning under uncertainty
becomes more and more important in Operations Research. The resulting problems are
hard to solve and can often only be approximated. We are convinced that parallel game
tree search will become an important part of that area.

References

1. I. Althöfer. Root evaluation errors: How they arise and propagate. ICCA Journal, 11(3):55–
63, 1988.

2. B.W. Ballard. The *-minimax search procedure for trees containing chance nodes. Artificial
Intelligence, 21(3):327–350, 1983.

3. J. Ehrhoff, S. Grothklags, and U. Lorenz. Das Reparaturspiel als Formalisierung von Planung
unter Zufallseinflüssen, angewendet in der Flugplanung. In Proceedings of GOR conference:
Entscheidungsunterstützende Systeme in Supply Chain Managment und Logistik, pages 335–
356. Physika-Verlag, 2005.

4. S. Engell, A. Märkert, G. Sand, and R. Schultz. Production planning in a multiproduct batch
plant under uncertainty. Preprint 495-2001, FB Mathematik, Gerhard-Mercator-Universität
Duisburg, 2001.

1274 Jan Ehrhoff, Sven Grothklags, and Ulf Lorenz

5. R. Feldmann, M. Mysliwietz, and B. Monien. Studying overheads in massively parallel
min/max-tree evaluation. In 6th ACM Annual symposium on parallel algorithms and ar-
chitectures (SPAA’94), pages 94–104, New York, NY, 1994. ACM.

6. P.J. Flemming and J.J. Wallace. How not to lie with statistics: the correct way to summerize
benchmark results. CACM, 29(3):218–221, 1986.

7. C.A. Hane, C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and G. Sigismondi.
The fleet assignment problem: solving a large-scale integer program. Mathematical Pro-
gramming, 70:211–232, 1995.

8. H. Kaindl and A. Scheucher. The reason for the benefits of minmax search. In Proc. of the
11 th IJCAI, pages 322–327, Detroit, MI, 1989.

9. D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence,
6(4):293–326, 1975.

10. S. Koenig, D. Furcy, and Colin Bauer. Heuristic search-based replanning. In Proceedings
of the International Conference on Artificial Intelligence Planning and Scheduling, pages
294–301, 2002.

11. P. Kouvelis, R.L. Daniels, and G. Vairaktarakis. Robust scheduling of a two-machine flow
shop with uncertain processing times. IIE Transactions, 32(5):421–432, 2000.

12. V.J. Leon, S.D. Wu, and R.h. Storer. A game-theoretic control approach for job shops in the
presence of disruptions. International Journal of Production Research, 32(6):1451–1476,
1994.

13. D.S. Nau. Pathology on game trees revisited, and an alternative to minimaxing. Artificial
Intelligence, 21(1-2):221–244, 1983.

14. C. H. Papadimitriou. Games against nature. Journal of Computer and System Science,
31:288–301, 1985.

15. A. Reinefeld. An Improvement of the Scout Tree Search Algorithm. ICCA Journal, 6(4):4–
14, 1983.

16. W. Römisch and R. Schultz. Multistage stochastic integer programming: an introduction.
Online Optimization of Large Scale Systems, pages 581–600, 2001.

17. J. M. Rosenberger, A. J. Schaefer, D. Goldsman, E. L. Johnson, A. J. Kleywegt, and G. L.
Nemhauser. Simair: A stochastic model of airline operations. Winter Simulation Conference
Proceedings, 2000.

18. S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. 2003. Prentice Hall
Series in Artificial Intelligence.

19. C.E. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41:256–
275, 1950.

	Parallelism for Perturbation Management and Robust Plans
	1 Introduction
	1.1 Organization of This Paper

	2 The Repair Game
	2.1 Interpretation and Airline Example

	3 Experimental Setup
	4 Parallelization
	5 Results
	5.1 Speedups

	6 Conclusion
	References

