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Abstract. A widespread method in parallel scientific computing is SPH,
a grid-free method for particle simulations. Lots of libraries implement-
ing this method evolved in the past. Since most of them are written in
FORTRAN or C, there is a lack of integration of object-oriented concepts
for scientific applications. These libraries are therefore hard to maintain
and to extend. In this paper, we describe the design and implementation
of sph2000, a parallel object-oriented framework for particle simulations
written in C++. Its key features are easy configurability and good ex-
tensibility for the users to support their ongoing development of the SPH
method. The use of design patterns lead to an efficient and clear design
and the implementation of parallel I/O improved the performance sig-
nificantly. A sample application was implemented to test the framework.

1 Introduction

Within the Collaborative Research Center (CRC) 382 physicists, mathematicians
and computer scientists work together to research new aspects of astrophysics
and the motion of multiphase flows, evolve them to models and run parameter
studies to verify these models. Several particle codes are used to simulate these
physical problems.

A well known particle simulation method is Smoothed Particle Hydrodynam-
ics (SPH). SPH is a grid-free Lagrangian method for solving the hydrodynamic
equations for compressible and viscous fluids. It was introduced in 1977 by [/]
and [7] and has become a widely used numerical method for astrophysical prob-
lems. Nowadays the SPH approach is also used in fields of material sciences, for
modeling multiphase flows [9] and the simulation of brittle solids [2].

Resolution and accuracy of a simulation depend on the number of used par-
ticles and interaction partners. Actual physical problems need large numbers to
achieve reasonable results. Thus, high-performance computers are indispensable.
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As a result, most users in the domain of physical simulations developed self-made
parallel scientific libraries. Although object-oriented programming became most
recently state-of-the-art in parallel programming, almost all libraries are still im-
plemented in FORTRAN or C, leading to a lack of integration of object-oriented
concepts for parallel scientific applications.

Our group has a strong effort to develop fast parallel particle libraries, which
are portable to all important parallel platforms. Therefore, we developed a paral-
lel object-oriented SPH framework which is clearly structured, easy to configure,
maintain and extendable by the advantages of object-oriented programming and
design patterns. The main goals were to provide a general framework for SPH-like
particle simulations and to reduce the parallel overhead and serial parts, which
limit the overall speedup. To apply object-orientation to parallelization, we use
TPO++, an object-oriented communication library set up on top of MPI [5].
It was developed in our working group and provides the same functionality and
efficiency as MPI 1.2. Recently, we extended it by an object-oriented interface
for parallel I/O. A sample application points up the usability of our approach.

This paper is organized as follows. In Section 2, we present related work.
Section 3 contains the design and implementation of the framework. In Section
4 we present a sample application and in Section 5 we conclude.

2 Related Work

Cactus [1] is a large framework for parallel physical simulations with many mod-
ules, called thorns, which offers interfaces for different languages, e.g. for C++.
POOMA [11] is as well a wide-spread framework for parallel physical computa-
tions. Both libraries, like most others, are laid out for grid methods. Although
POOMA supports moving particles, they have to be arranged in arrays. The
focus is on interactions and transformations between the particle arrays and the
grid fields.

Besides other SPH libraries [6], Gadget [12] is a large SPH library which
offers standard algorithms for astrophysics with self-gravitation. However, like
most SPH libraries, it is not object-oriented.

The embedding of pure particle methods in object-oriented libraries is not
very common. To use the given object-oriented libraries, the developer of particle
methods must take along the overhead of grid methods, deal with a higher
complexity and learn the concepts of the library, although not every concept is
needed. Using the procedural SPH libraries means to abandon the advantages
of object-oriented programming.

3 Design and Implementation

3.1 Design Goals

Our main goal was to develop a parallel object-oriented SPH-framework with
extensibility, maintainability and reusability of the code. A main concern in the
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design was the strict decoupling of parallelization and physics. Another goal
was to prove the feasibility of the object-oriented approach in the performance
critical domain of particle simulations without loosing efficiency. The result is
a parallel object-oriented particle simulation framework written in C++, called
sph2000. Classes modeling the elements of the problem domain generate a well
structured design. The use of several design patterns [3] helped to organize the
classes clearly and efficient. They are introduced to structure the class library,
to separate and group the application elements, as well as to define uniform
interfaces. Additionally, they allow to insert extensions more simply because of
decoupled elements. Table 1 shows the application elements and its correspond-
ing design patterns.

Table 1. Application elements and corresponding design patterns.

Element Responsibility Design Pattern

Initialization |Configuration, Object Creation |Builder, Configuration Table

Mathematics |Time Integration Strategy, Iterator, Index Table

Physics Particles, Interactions, Strategy, Compositum, Iterator,
Right Hand Side (RHS) Index Table

Parallelization |Communication, Decomposition,|Strategy, Mediator, Proxy
Load Balancing
Geometry Simulation Domain, Subdomains|Strategy, Decorator

The independent elements can be extended, causing no changes in other
classes. The classes within an element can be easily exchanged because of uniform
interfaces. Once implemented this enables the user to form new classes by simply
copying and adapting the existing ones. Thus, extensions supplement the code
instead of changing it.

3.2 Configuration of Simulation Runs

Another goal was to simplify the configuration of simulations, which mainly
means to configure a simulation run after the compilation at runtime by reading
a parameter file. To avoid conditional compilation with preprocessor directives,
as it is often seen in C libraries, the Strategy pattern, which is based on the
object-oriented concept of polymorphism is used. With this pattern the program
instantiates objects at runtime due to the configuration parameters.

The complete configuration with all parameters of a simulation is stored in an
object of the class ParameterMap (Configuration Table pattern). Every object
which needs parameters owns a reference to the ParameterMap object. Thus all
objects can access the configuration uncomplicatedly. Mainly the initialization
objects (Builder pattern) access the ParameterMap to realize the exchangeability
of the components. Every Strategy offers an accordant parameter to determine
which concrete implementation must be used in the simulation. In every simu-
lation run, the Builders create and initialize only the needed objects.
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The concept of the configuration table makes the configuration data available
for all auxiliary programs which work with simulation data. Such supplementary
tools adopt the existing ParameterMap class without changes.

3.3 A Quantity Index Store

The flexibility of the framework is mainly up to the used physics. Because of en-
hancing the framework simultaneously with the physical method, the integration
of additional physical quantities and the exchangeability of different calculation
methods has to be guaranteed.

An SPH particle is a sampling point of the differential equations which moves
with the flow and represents a volume element of the moving fluid. It contains
all physical quantities of a fluid element, their interactions between each other
have to be evaluated and they have to be communicated among the subdomains.

To protect the user from adapting the Particle class for every application,
we introduced the class IdStore as an index table. The Particle class contains
only the administrative structure for the communication by message passing and
two STL containers for the scalar and the vector variables. The initialization
determines the fixed number of needed variables within a simulation and writes
them into the index table. Thus the particles can adapt themselves dynamically
at start time to the respective simulation.

The basis for this design are two classes, the QuantityBuilder and the IdStore.
The QuantityBuilder implements references to the used physics and initializes
the IdStore object. It evaluates the parameters from the ParameterMap and
reserves an index in the IdStore for every physical variable (e.g. position, speed
and density). The physical variables are stored inside the particle in the order of
these indices. Since the particle itself has no idea about the contained variables,
classes needing a particles’ variable have to get the information through the
IdStore, which represents the interface to the variables.

3.4 Object-Oriented View of the Right Hand Side

The QuantityBuilder class is designed according to the Builder pattern. Besides
the initialization of the IdStore it establishes the QuantityList, an STL container
of calculation objects for the physical quantities. Since there are no general SPH
formulas for the equations of motion, many different approaches evolved in the
past. To achieve a high flexibility, the calculation objects are defined as a Strategy
with a Quantity base class.

The QuantityBuilder knows all possible quantities and their dependencies.
By reading the physical parameters from the ParameterMap, quantities are se-
lected and stored in the QuantityList in respect to the physical dependencies
(see Fig. 1). In each time step an RhsCalculator object iterates through the
QuantityList to compute the right hand side (RHS) of the differential equations.

Like most elements of the framework, the Integrator class is also implemented
as a Strategy and thus configurable and extendable like the quantity classes. The
several Runge-Kutta and adaptive integrators of the framework are based on an
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Fig. 1. Simplified class diagram of the sph2000 calculation classes.

abstract Integrator class. It defines interfaces to iterate through all particles’
differential variables to integrate the right hand side and to store intermediate
integration steps. The Strategy pattern is very easy to apply, since the user only
has to write a configuration file, e.g. which Integrator should be utilized, and
the Builders only create the needed objects of each Strategy.

3.5 Parallelization and Domain Decomposition

Geometrical Point of View. For an efficient parallelization we implemented a
domain decomposition, dividing up the simulation area into several rectangular
subdomains. These are equally spaced at the beginning of the simulation but
dynamically change their size during runtime to keep the load balanced between
all processors. The size is thereby given by the number of interaction partners,
since this linear effects the calculation time.

A class SubSimulation was implemented, which defines the base methods of
a subdomain like administrating the geometry, the adjacent domains and the
particles within the subdomain. It is based on the Strategy pattern to be able to
differentiate between subdomains with different tasks. The framework knows two
specialized types of SubSimulations. The BoundarySimulation extends the Sub-
Simulation by methods for reflecting and absorbing particles at the boundaries.
The InletSimulation, based on the Decorator pattern, can decorate the latter
with additional methods for inserting new particles to the simulation through
an inlet. The ParameterMap includes the initial and behavioral values of these
three types.

Domain Decomposition by Grouping Objects. In every time step each
subdomain has to process the same tasks, like preparing the calculation, com-
municating particles to other subdomains, computing lists which contain the in-
teraction partners, calculating the right hand side, or integrating the equations
of motion. Each subdomain therefore contains classes and objects respectively
for these tasks. From an object-oriented view each subdomain is a group of
objects, which represent this area geometrically. The communication and appli-
cation flow within a group is implemented using an intra node Mediator, which
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knows all contained objects, coordinates the chronological processing of the tasks
and uncouples all objects within a group from each other.

To communicate particles and other information to and from the adjacent
subdomains, an inter node Mediator is needed. This Communicator encapsu-
lates the information about the whole domain and communication structure.
The implementation follows the design patterns Strategy and Mediator. The
class BaseCommunicator defines the interface between intra node and inter node
communication (see Fig. 2).

@ % SPH, physics % geometry

«mediator»

subdomain

Mediator

«mediator, strategy»
BaseCommunicator

[ singleCommunicator | [ TpoCommunicator

Fig. 2. Simplified diagram of a subdomain in sph2000. The upper part shows the
modules with the SPH classes and the intra node mediator. The lower part shows the
class diagram for the communication strategy. The Communicator classes encapsulate
the whole inter node communication. The calculation objects are completely decoupled
from the parallelization.

The major advantage of this concept is, that it enables the user to easily
divide up the simulation domain into as many subdomains as processors are
available. For communication between the processors the message passing ob-
ject TpoCommunicator is generated, which uses TPO++. In case of a single
processor simulation this communicator only has to be replaced by a single-
node communicator. The user only has to exchange the communicators in the
configuration file, leaving the code unchanged.

To coordinate all subdomains a special master subdomain is implemented,
which is extended by several administration objects. These are objects for time-
keeping and administrating all particles as well as particle-I/O objects for saving
and restoring particle allocations.

3.6 Parallel I/O

The first results of sph2000 showed a significant lack in performance due to
sequential I/0. Since current standards like MPI 2 [3] only support procedural
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interfaces for parallel I/O, we extended TPO++ by an object-oriented interface
for parallel I/O [10].

The initial version of sph2000 implements an I/O strategy with one master
process gathering the part results from all other processes and saving the whole
data in ASCII format to disk. The new strategy using the parallel I/O interface
was to implement collective I/O. Thereby, all processes can access the same file in
parallel, which improves the performance significantly, since the communication
to the master process is needless and the whole parallel I/O bandwidth can be
used for transferring the data to and from disk. In addition, the library internally
calculates the correct offsets within the file where each process has to place its
part, avoiding any extra implementation by the user.

To provide sph2000 with parallel I/O, the particle-1/O class of the framework
had to be adapted. The following listing shows the adapted method saveDataFile
and represents the simple usage of the interface:

#include<tpo++.H>

void ParticleIO::saveDataFile(const ParticleContainer& particles, string name)
{
TPO: :File fh;
int code = fh.open(TPO::CommWorld, name, TPO_MODE_CREATE);
fh.write_all(particles.begin(), particles.end());
fh.close();

This implementation of using a single collective call ( fh.write_all) reduces
the size of the original code by about 100 lines of code. The call is needed to
save the containers of particle objects of each processor to disk simultaneously.
Two iterators begin() and end() thereby define the beginning and ending of the
container. This syntax also enables the user to store only a sub-set of particle
objects to disk.

The performance improvement through the usage of parallel I/O within the
framework depends on the application as well as on the ratio between the pro-
portion of computation and I/O within the application. To determine the real
performance gain we inserted it in our sample application, which is presented in
the next section.

4 Sample Application

A first sample application was implemented to test the whole framework. It
simulates the injection of diesel into an air filled chamber. Diesel engine manu-
factures are interested in an optimal injection of the diesel into the combustion
chamber. A perfect mixing of diesel and air means an efficient use of the fuel
and therefore reduces emission. For this reason the breakup of the diesel jet must
be examined and understood. When injected into the cylinder of an engine, the
diesel jet undergoes two stages of breakup. In the primary breakup large drops
and filaments split off the compact jet. These turn into a spray of droplets dur-
ing the secondary breakup. This secondary process is well known and can be
modeled as a spray, but the understanding of the primary breakup is only in the
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initial stages. The physical effects that might influence the primary breakup are
the pressure forces in the interface region of diesel and air, instabilities of the jet
induced by cavitation inside the injection nozzle, surface tension and turbulence.
In this area SPH simulations are not very common. There are several problems
concerning the physics of multiphase flows and the requirements in terms of
compute power are very high. Due to its extensibility sph2000 is very applicable
for this area and enables the user to easily and fast implement new physical
concepts. So far the framework provides 5 kernel functions, 6 integrators, and 20
quantities to calculate the state equations and the equations of motion for the
air and diesel particles.

Fig. 3. 3D simulation of diesel injection with 2.5 million particles. The picture shows
the injected diesel. First drops are already split off the jet. The injection causes a
density wave traveling in front of the liquid stream.

2D and 3D simulations with up to 2.5 million particles reveal a broadening
and breakup of the diesel jet leading to turbulences behind the dispartment.
After a while single drops are separated from the compact jet, see Fig. 3.

The performance of the sample application was conducted on Kepler [13], a
self-made clustered supercomputer based on commodity hardware. It consists of
two parts: An older part with 96 dual Pentium IIT (650 MHz) nodes with 1 GB
of memory, and a newer part with 32 dual AMD Athlon (1.667 GHz) nodes, each
sharing 2 GB of memory. We measured two different simulation setups: The first
running on the Pentium nodes with disabled I/O and the second on the Athlons
with I/O enabled in every second time step, to compare the performance of
sequential and parallel I/O. We always used only one processor per node.

Table 2 shows the performance results of the first setup. Due to memory
shortage of the Pentium nodes, the measurements were made starting with 2
nodes. The parallelization scales very good up to 64 processors leading to a
remarkable speedup of 44.10.
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Table 2. Results of the first simulation setup with 1 million particles on Pentium III.

Processors 1 2 4 1 8|16 | 24 | 32 | 64
Time per step (in s)| - [116.9/58.8|33.8/ 16.4 | 11.3 | 9.7 | 5.3
Speedup - 12.00 [3.98]6.90|14.24|20.68|24.10|44.10

The results of the second simulation setup show the significant effect of par-
allel I/O on the performance (see Table 3). The I/O part could be improved by
a factor of 20 when using 32 processors working on a parallel file system with
32 distributed disks. Since I/O is only a small proportion of the whole simula-
tion, the overall gain using parallel I/O reduces to a - still remarkable - factor of
3.5 (64 processors). Note that even the sequential simulation with parallel 1/0
is faster than without parallel 1/O, due to changing from ASCII file format to
binary format and less code overhead for saving the particles.

Table 3. Results of the second simulation setup with 1 million particles on Athlon.

Processors 1 2 4 8 16 | 24 | 32 | 64
Execution time (in s)

- sequential I/0O 2090.2{1050.91530.4|407.0|349.4|305.1|272.4|251.6
- parallel 1/O 1223.5| 617.2 |312.5{191.4(130.9] 96.5 | 79.8 | 71.3
Speedup

- sequential I/0O 1 1.98 [3.94|5.13|5.98 | 6.85 | 7.67 | 8.30
- parallel 1/O 1 1.98 [3.916.39 |9.34 [12.67|15.33|17.15

5 Conclusion and Future Work

The application of object-oriented development methods has improved the qual-
ity of our simulation codes. The implementation is very easy to maintain and
extend, e.g. to add the physics of surface tension or turbulence. The result of
object-oriented techniques with design patterns is a framework, in which classes
have clear and strictly separated responsibilities. Different methods can be inter-
changed without influencing other code. The use of our parallel I/O library and
optimizations for communication reduced the sequential parts of the framework
to a minimum. These lead to a well scaling parallel performance.

In the future, we focus on the development of models for simulating surface
tension and turbulence. Due to an increased number of particles which is needed
to simulate these effects meaningful, we are investigating solutions to decrease
the amount of calculated interactions without increasing the runtime of the sim-
ulations. Since optimizing the communication is not sufficient, we furthermore
try to exclude less important calculations: First, we try to separate the density
wave of the injected diesel from the outer air, and second, the air particles shall
be generated during runtime according to the motion of the jet. The idea is to
calculate only air regions, which are affected by the diesel jet. Both leads to
notedly less calculation overhead.
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