
An Efficient Multi-level Trace Toolkit
for Multi-threaded Applications�

Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

LaBRI / INRIA-Futurs, Université Bordeaux 1
351, cours de la Libération

33405 Talence Cedex, France

Abstract. Nowadays, observing and understanding the behavior and
performance of a multi-threaded application is a nontrivial task, espe-
cially within a complex multi-threaded environment such as a multi-level
thread scheduler. In this paper, we present a trace toolkit that allows
programmers to precisely analyze the behavior of a multi-threaded ap-
plication. Running an application through this toolkit generates several
traces which are merged and analyzed offline. The resulting super-trace
contains not only classical information but also detailed informations
about thread scheduling at multiple levels.

1 Introduction

Bottleneck analysis, deadlock debugging, and performance understanding are
tasks which require a fine-grain analysis of the behavior of a parallel appli-
cation. The problem becomes even more tricky when dealing with multi-level
multi-threading applications. Let us recall that there are three main families of
threads: User-level threads are managed by the application, offer efficient basic
operations and, most importantly, can be tailored to the particular requirements
of the application; however as the operating system knows nothing about these
threads, they have the disadvantage of not being able to use all available sys-
tem resources, especially multi-processors resources. Lightweight processes (also
called LWPs or kernel-level threads) are managed by the kernel and have access
to kernel resources. For instance, several LWPs belonging to the same process
can be simultaneously active. The disadvantages are that they consume kernel
resources (the number of LWPs is usually limited) and tend to incur a bigger
overhead since all LWP scheduling and switching tasks require a kernel inter-
vention. Hybrid threads (multi-level threads) were introduced in order to take
advantage of the two previous techniques, the key idea is to map user-level
threads onto a pool of LWPs. This leads to a two-level scheduling: the kernel
manages LWPs which themselves manage user-level threads in a distributed fash-
ion. Although the implementation of this scheme within an operating system is
very complex [1], hybrid threads offer significant performance benefits with high
performance parallel applications involving only few I/O operations [2].
� This work has been supported by the ACI Masse de données & ACI Grid

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 166–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 167

Analyzing the scheduling of a multi-threaded application executed by an
hybrid-thread system, and observing the behavior of a such application in its
global context are difficult tasks which require support from the kernel, from the
(hybrid-)thread library and from the application. For this purpose, the code must
be instrumented in order to record selected events in one or several trace buffers.
This leads to multi-level instrumentation. In this framework, we may notice the
work of Shende [3] who has defined a strategy using multi-level instrumentation
in order to improve the coverage of performance measurement in layered soft-
ware. His approach, based on the node/process/thread model, was successfully
implemented in the TAU portable profiling and tracing toolkit. For instance, to
deal with Java’s multi-threaded environment [4], each thread creation is recorded
into a TAU’s performance database (this requiring mutual exclusion with other
threads) in order to create a per-thread performance data structure.

In [5], Xu et al use the dynamic environment Paradyn [6] to profile multi-
threaded applications through statistics. In their approach, each thread has its
own private copy of some performance counters or timers; locks are used to
access the minimal set of global book-keeping data structures.

However, in the framework of the parallel environment PM2 [2] which is
based on an hybrid-thread library, our goal is to debug and to optimize low-
level middlewares, such as a reactive communication library [7, 8], and tricky
mechanisms like scheduler activations [9, 10]. To that effect, it is important
to consider aspects such as lock mechanisms and interruption handler routines.
When dealing with such low-level middlewares and parallel processes, there is no
secret: the instrumentation must be as less intrusive as possible. Especially, we
do not want to introduce new synchronization points within the kernel or within
the thread scheduler in order to minimize interdependent intrusion effects1. In
that respect, we have defined a lightweight multi-level instrumentation toolkit
which aims to precisely trace the behavior of a multi-threaded program. In order
to be efficient, this toolkit has to meet the following requirements:

To be the less intrusive as possible. The tracing overhead must be very small
not only to allow an accurate performance analysis but also to minimize the
intrusive effect on the global scheduling of the application (which would be the
result e.g of an excessive increasing of the execution time of a critical section,
some new synchronization points or some new context switch points). Therefore,
system calls and high-level synchronization mechanisms must be avoided.

To deal with multi-level instrumentation. Since our goal is to study multi-level
schedulers and/or high performance communication libraries, we need to record
both kernel- and user-level events. For instance, we need to record all the kernel’s
scheduler decisions and all the thread library’s scheduler decisions in order to
get a complete knowledge of the scheduling of a multi-threaded application.

To deal with a huge amount of data. The toolkit may need to record a lot of
events such as scheduler decisions, starting and termination points of functions

1 Note that, Malony et al [11] have shown that while it is possible to compensate
overhead due to the intrusion in a single process application, parallel overhead com-
pensation is a more complex problem because of interdependent intrusion effects.

168 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

executed by a thread or by the kernel. This may generate several mega bytes of
data per second.

In this paper, we propose a solution based on two independent buffer traces:
the first one containing kernel-level events, the second one containing user-level
events. We will first present the Fast Kernel Trace toolkit which is the basis
of our work. Then we will justify our approach and give some technical details.
Finally, we will analyze the introduced overhead on two applications.

2 From Kernel Tracing to Multi-level Tracing

2.1 The Fast Kernel Traces (FKT) Toolkit

Kernel instrumentation may be done at compilation time [12, 13] or dynamically
at run-time like in KernInst [14]. It is worth noting that operating systems
such as Linux 2.6.10 and Solaris 10 (DTrace) already provide a dynamic
instrumentation toolkit which allows to instrument the running operating system
kernel. For our purpose, we chose to use the FKT toolkit [13] which is a simple and
efficient SMP Linux kernel-dedicated trace toolkit. It is based on a source-level
instrumentation, which is achieved thanks to a set of macro-functions. Therefore,
the modification of a tracing call requires to recompile the source code and
to restart the kernel. Nevertheless, basic operations such as tracing start,
tracing stop or tracing store can be executed from the user-level space.
It is worth knowing that FKT uses a well-optimized storage mechanism [15]
which allows to use TLB mechanisms to directly write buffer’s pages on the
disk, avoiding useless memory copy and limiting memory consumption.

#define FKT_PROBE2(KEYMASK,CODE,P1,P2) \

do { \

if(KEYMASK & fkt_active) \

fkt_header(((unsigned int)(CODE)), \

(unsigned int)(P1), (unsigned int)(P2));\

} while(0)

Fig. 1. A definition of a FKT macro for an event with two parameters.

Figure 1 shows the details of an FKT macro. The KEYMASK argument and the
kernel variable fkt_active allows to enable/disable the tracing. A new system
call is defined to set the variable fkt_active from the user-space. The CODE
argument denotes the recorded event. P1 and P2 are two integer arguments left
to the programmer (it is possible to record up to five integer arguments).

2.2 Meeting Hybrid Scheduling’s Requirements

In order to precisely rebuild the behavior of multi-threaded programs, it is nec-
essary to be able to determine at any time the current running user-level threads

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 169

on the SMPs. Note that a kernel view is insufficient: indeed, the kernel has no
knowledge about user-level threads which are scheduled by the LWP pool. On
the other side, an user-space’s view is also insufficient: LWPs are usually un-
aware of kernel’s context switches, so it is difficult, from the user-space point
of view, to get the identifiers of the running LWPs at a given date and to get
the processor identifier on which the user code is running. To solve these prob-
lems, new system calls might be created to request the identifier of the processor
which is recording an event, for instance, or to notify the kernel scheduler about
the user-level scheduler’s context switches. However, such a solution is too in-
trusive: system calls are expensive (see micro benchmarks given in Section 3.3)
and, moreover, this solution would introduce a higher number of context-switch
points than the uninstrumented execution would encounter. Another solution
would be to define a mechanism based on up-calls : in order to transmit the ker-
nel view to the user-space level, the kernel forces the application to call a given
function, like the POSIX signal’s mechanism does. However this solution is also
expensive since the thread state must be saved at each up-call.

Our proposition is to generate a trace from both point of views. The ker-
nel’s trace will be generated by FKT and the user-level trace will be generated
by Fast User Trace (FUT), a tool similar to FKT. The key-points of this
solution are: (1) Dealing with hybrid scheduling, Kernel- and user-level traces
are both necessary to get a full description of a multi-threaded application run.
Both traces use the cycle counter register to stamp the events since this clock is
very accurate. (2) Dealing with SMP, the cycle counter register of each processor
is perfectly synchronized with each other registers at the hardware level. (3) All
context switches (user’s and kernel’s) are recorded, so that we will be able to
deduce what happens from a scheduling point of view within the system.

After the execution of the application, both traces are merged into a so-called
super-trace which contains the following event data: the event code, time-stamp,
size and parameters; the identifiers of the user-level thread, the LWP and the
processor which executed the recording. By reconciling the kernel- and the user-
level sides, this toolkit allows to trace multi-threaded applications and, moreover,
it allows to put the application run back into its execution context, as any kernel
event may be recorded. Hence it is possible to get an accurate analysis of low-
level middlewares such as a multi-threaded communication library.

2.3 Description of the Tracing Toolkit

The multi-level tracing toolkit FUT has been implemented on top of the Mar-

cel/Linux/x86 system which is the hybrid-thread library of the portable par-
allel environment PM2 [2].

In order to instrument the kernel, users need to apply a given patch against
the Linux kernel. This patch introduces instrumented points in the kernel code
allowing to record events such as context switches, starting/termination points
of hardware interruption (IRQ) and software interruptions (system calls). The
thread library Marcel is instrumented in order to record user-thread scheduling
decisions; for instance, events such as user-level context switches, creation and

170 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

termination of LWPs are recorded. Moreover, this instrumentation allows to
trace any function call of the library Marcel. This way, one may accurately
trace the performances of the library and determine the cause of the preemption
of a user-level thread (elapsed time-slice, unacquired lock,...).

The API of FUT is similar to the FKT’s one. Event recording is done
by FUT PROBEx() macros and some event types are already defined. A basic
code instrumentation tool is also implemented in order to automatically add at-
tributes to the starting/termination points of each function. The PROF IN() and
PROF OUT() macros may be used to trace the call and the termination of a func-
tion. The code instrumentation may either be called directly by programmers or
be inserted automatically by compilers, like gcc does.

Once both traces have been recorded, they are merged in a super-trace in
which events are ordered with respect to the time-stamps. During the merge, the
relationship between user-level events, user-level threads, LWPs and processors
is established. However, some kernel events, such as those which are recorded
during interruption routines, are not to be associated with any user-level thread.

We have developed a tool (called sigmund) which allows to apply filters to
the super-trace in order to extract a sub-trace from it. One may filter events
matching some criteria (a given kind of event, a given user-thread, a time-slice).
Some basic measures may also be computed like, for instance, the (active) exe-
cution time of a given thread or the reactivity of the communication library to
a given communication event (the elapsed time between the detection of a given
event by the kernel and its treatment by the application). Moreover, a specific
filter has been developed to translate the super-trace format into the file format
of Pajé [16], a generic graphic trace viewer.

Figure 2 shows two requests getting information about the user-level thread
15 from a given super-trace. The instrumented program was executed on a SMT
bi-processors machine (thus 4 logical processors, numbered from 0). For this
execution, 4 LWPs were defined by the 2-level thread library to execute the
user-level threads. Figure 3 shows how one may observe thread’s reactivity.

3 Implementation Details and Performance Analysis

We are addressing in this section some technical issues we encountered in order
to limit the intrusion of the tracing mechanisms. We will first detail the time-
stamping, the trace format and the concurrent recording mechanism. Then we
will discuss about the overhead introduced by the instrumentation.

3.1 About the Time-Stamping and the Trace Format

FKT and FUT use the cycle counter register as a time reference; this register
stores the number of elapsed cycles since the last time the machine was started
up. It is directly readable from the user-space. It is as accurate as possible and
it is 64 bit wide. This leads to a 136 years period (232 s) on a 4 GHz (232 Hz)
machine, moreover cycle counter registers of a SMP machine are synchronized.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 171

$> sigmund --trace-file supertrace.log --thread 15 \

--event CONTEXT_SWITCH --list-events

type date_tick pid cpu thr code name param(s)

[...]

USER 97615576 7137 1 7 23014 USER_CONTEXT_SWITCH 15

USER 97757052 7137 1 15 23014 USER_CONTEXT_SWITCH 8

USER 98006248 7136 0 6 23014 USER_CONTEXT_SWITCH 15

KERN 98139183 7136 0 15 23014 KERN_CONTEXT_SWITCH 6152

KERN 98638163 2352 2 ? 23014 KERN_CONTEXT_SWITCH 7136

USER 99060185 7136 2 15 23014 USER_CONTEXT_SWITCH 7

[...]

$> sigmund --trace-file supertrace.log --thread 15 --active-time

130193845 cycles

type: event level – date tick: event date – pid: LWP identifier
cpu: processor identifier – thr: user-thread level identifier
code: event code – name: event name – param(s): associated parameter values

In this example, we can see that the user-level thread 15 was firstly scheduled on LWP
7137 on CPU 1; then it was scheduled on LWP 7136 on CPU 0. Then following the
preemption of LWP 7176 by the kernel (in order to schedule another application), it was
scheduled on CPU 2. Then the user-level scheduler preempted the thread 15 in order to
run the thread 7. Here we can see that this 2-level scheduler does not take into account
the affinity of the threads.

Fig. 2. Super-trace analysis using sigmund.

Note that only 32 bits are required to stamp the kernel events. Indeed, from the
first recording of the cycle register, there is enough kernel events (such as kernel
scheduling decisions or clock interruptions) that are recorded during a defined
period (232 cycles) to infer the 32 higher bits. However, this argument does not
hold for user-level threads which may not produce any event for several seconds.

In order to limit the intrusiveness, event buffers are created and initialized
before the real launching of the application. An initial section containing context
information (function names, running LWPs) is also recorded in both buffers.
The size of the initial section is about several hundred of kilobytes.

3.2 Mutual Exclusion Mechanism

Dealing with threads and SMP machines, we have to take care of concurrent
accesses to the trace buffers. Actually this problem of concurrency appears as
soon as we want to record asynchronous events such as hardware interrupts or
signals, even on a single processor machine. Indeed, asynchronous events may
be raised at any time and we do not want to try to block them in order to
avoid interferences with the scheduler. Therefore the instrumentation code must
be fully reentrant. The basic idea of our approach is to atomically increment
the buffer length variable. However, high-level mutual exclusion mechanisms
are forbidden. We have solved this problem using the atomic CPU instruction

172 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

type date_tick pid cpu thr event param(s)

USER 5150163706 2732 2 8(work/6) USER_CONTEXT_SWITCH 1(daemon)

KERN 5150169922 2732 2 1(daemon) SYSTEM_CALL 142(select)

USER 5150182646 2732 2 1(daemon) USER_CONTEXT_SWITCH 11(work/9)

USER 5152816866 2733 3 9(work/7) USER_CONTEXT_SWITCH 12

KERN 5170071750 1630 0 ? IRQ 24(eth0)

USER 5176768370 2731 1 10(work/8) USER_CONTEXT_SWITCH 5(work/3)

USER 5179394810 2732 2 11(work/9) USER_CONTEXT_SWITCH 13(work/11)

USER 5182046038 2733 3 12(work/10)USER_CONTEXT_SWITCH 14(work/12)

USER 5205964954 2731 1 5(work/3) USER_CONTEXT_SWITCH 15(work/13)

USER 5208624942 2732 2 13(work/11)USER_CONTEXT_SWITCH 17(work/15)

USER 5211315302 2733 3 14(work/12)USER_CONTEXT_SWITCH 18(work/16)

USER 5235191514 2731 1 15(work/13)USER_CONTEXT_SWITCH 19(work/17)

USER 5237854634 2732 2 17(work/15)USER_CONTEXT_SWITCH 20(work/18)

USER 5240544282 2733 3 18(work/16)USER_CONTEXT_SWITCH 21(work/19)

USER 5264421734 2731 1 19(work/17)USER_CONTEXT_SWITCH 4(work/2)

USER 5267084698 2732 2 20(work/18)USER_CONTEXT_SWITCH 2(work/0)

USER 5269736086 2733 3 21(work/19)USER_CONTEXT_SWITCH 3(work/1)

USER 5293652362 2731 1 4(work/2) USER_CONTEXT_SWITCH 6(work/4)

USER 5296353186 2732 2 2(work/0) USER_CONTEXT_SWITCH 7(work/5)

USER 5298968062 2733 3 3(work/1) USER_CONTEXT_SWITCH 8(work/6)

USER 5322881710 2731 1 6(work/4) USER_CONTEXT_SWITCH 1(daemon)

KERN 5322893274 2731 1 1(daemon) SYSTEM_CALL 142(select)

USER 5322907374 2731 1 1(daemon) USER_EVENT received_msg

Our tracing toolkit allows to emphasis the reactivity of multi-threaded applications. One
can compute the elapsed time between the network message arrival (a hardware interrupt
is raised by the network card) and the processing of this message by the appropriate
user-level thread in the application.
This figure shows the relevant parts of a trace of a run where 20 threads are devoted
to some computation (denoted work/0 to work/19) and one special thread (denoted
daemon) is listening to the network in order to process the incoming messages as soon
as possible. In this program, the daemon thread executes a non-blocking system calla

select() and calls pthread yield() to yield its execution in favor of another thread
when no message is available.
Here the considered algorithm leads to very bad latencies, as the daemon thread has to
wait for all the other threads to use their quantum before getting active even though
messages could have already been received by the OS. However, most of thread libraries
do not provide any mechanism to deal efficiently with this kind of problem. A description
of an adequate support within thread libraries to improve thread reactivity to external
asynchronous events can be found in [17].

a blocking system call must be avoided when using user-level thread library.

Fig. 3. Using our mechanisms to observe thread’s reactivity.

cmpxchgl. The idea is to store the buffer’s length value in a register, then to
store the new buffer’s length in a second register and finally to call cmpxchgl

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 173

Fig. 4. Kernel and user-level trace entry layout.

in order to set the new buffer’s length. This subroutine is repetitively called
until the cmpxchgl call is successful. As a result, the event trace may be not
time-stamp ordered, thus the merging tool may have to reorder the trace.

3.3 Analysis of the Tracing Overhead

In table 1, we compare the cost of recording a single trace sample with the cost of
a few other operations. Let us note that according to [11], the TAU measurement
overhead per (flat) event is about 1400 cycles on a Xeon processor.

Table 1. Micro benchmarks (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

Function/Macro cycles

Macro PROF IN 260

System call getpid() 1900

buffered io printf(‘‘test’’) 672

We also measured the overhead and the size of generated traces. These two
values depend on the instrumentation level and on the application. Here we have
considered three instrumentation levels: no instrumentation, scheduling instru-
mentation and complete instrumentation (where system calls and all the func-
tions of the application and of the hybrid-thread library Marcel are traced). It
is worth noting that there is no need to recompile the source code: the degree of
instrumentation is defined through the use of the global variable fkt_active.

The Sumtime program can be seen as a torture test for the hybrid-thread
library: it recursively builds a complete binary tree of threads for a given height.
As a matter of fact, this program spends most of its execution time in creating,
synchronizing and destructing user-level threads. Hence highly frequent schedul-
ing events have to be recorded. This leads to a 23% overhead for the scheduler-
level instrumentation and a 80% overhead for a complete instrumentation. This
is the worst case, clearly this is not the best way to analyze the performances of
our toolkit, however the gathered information may prove to be useful for debug-
ging purposes. The second program is a multi-threaded direct solver for sparse

174 Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier

Table 2. Overhead measures (Linux 2.6.4 bi-Xeon SMT 2.8 GHz).

execution time # recorded events (size) Rate (MB/s)

Sumtime program

without any profiling 230 ms - -

profiled (context switches) 288 ms (+23%) 161 484 (3.72 MB) 13
profiled (all events) 430 ms (+80%) 821 844 (13.4 MB) 31

SuperLU MT program

without any profiling 7.17 s - -

profiled (context switches) 7.30 s (+1.8%) 374 (0.007 MB) 0.001
profiled (all events) 7.50 s (+4.6%) 836054 (8.39 MB) 1.1

systems of linear equations based on the library SuperLU [18]. As there is a
lot of computation within threads, the overhead of the instrumentation becomes
quite reasonable.

4 Conclusion

Hybrid-thread scheduling’s approach allows to efficiently exploit SMP architec-
ture, as basic operations on threads are efficient and several user-level threads
of a given application can run in a true parallel way. However, analyzing the
performance of such programs is delicate, mainly because some events occur
within the kernel and some others in user space. Thus, instrumentation of these
programs has to be carried out at both levels. Our toolkit allows to instrument
a multi-threaded program in order to conduct a precise analysis of executions
of this program. It avoids the introduction of synchronization points or system
calls during the execution, including basic thread operations such as creation,
destruction and synchronization.

Our toolkit is available on SMP x86 / Itanium architectures, Linux and
the hybrid-thread library Marcel. The required modifications of the Linux

kernel and of the library sources are localized. Therefore thread libraries such
as NGPT, NPTL or LinuxThread can easily be adapted to our toolkit. The
implementation of our toolkit onto other CPU architectures relies on the avail-
ability of an instruction similar to the instruction cmpxchgl (which usually exists
on modern processors) and on an accurate and CPU synchronized clock (such
as cycle counter registers).

We are currently implementing our toolkit on NUMA machines where cycle
counter registers are nearly synchronized. To deal with this problem, we have
to introduce calibration steps. Some other interesting improvements include the
recording of the performance of the counter registers and the translation of our
trace format into other trace format such as Vampir.

An Efficient Multi-level Trace Toolkit for Multi-threaded Applications 175

References

1. Sun microsystems: Multithreading in the solaris operating environment. http:

//www.sun.com/software/whitepapers/solaris9/multithread.pdf (2002)
2. Namyst, R., Méhaut, J.F.: PM2: Parallel Multithreaded Machine. A computing

environment for distributed architectures. In: Parallel Computing (ParCo ’95),
Elsevier Science Publishers (1995) 279–285

3. Shende, S.: The Role of Instrumentation and Mapping in Performance Measure-
ment. PhD thesis, University of Oregon (2001)

4. Malony, A.D., Shende, S.: Performance Technology for Complex Parallel and Dis-
tributed Systems. In: Distributed and parallel systems: from instruction parallelism
to cluster computing, Kluwer Academic Publishers (2000) 37–46

5. Xu, Z., Miller, B.P., Naim, O.: Dynamic instrumentation of threaded applica-
tions. In: PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, ACM Press (1999) 49–59

6. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Kar-
avanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance
measurement tool. Computer 28 (1995) 37–46

7. Aumage, O., Bougé, L., Méhaut, J.F., Namyst, R.: Madeleine II: A portable and
efficient communication library for high-performance cluster computing. Parallel
Computing 28 (2002) 607–626

8. Danjean, V., Namyst, R.: Controling Kernel Scheduling from User Space: an Ap-
proach to Enhancing Applications’ Reactivity to I/O Events. In: HiPC ’03. Volume
2913 of LNCS., Hyderabad, India, Springer-Verlag (2003) 490–499

9. Anderson, T., Bershad, B., Lazowska, E., Levy, H.: Scheduler Activations: Efficient
kernel support for the user-level managment of parallelism. In: Proc. 13th ACM
Symp. on Operating Systems Principles (SOSP 91). (1991) 95–105

10. Danjean, V., Namyst, R., Russell, R.: Integrating Kernel Activations in a Mul-
tithreaded Runtime System on Linux. In: (RTSPP ’00. Lect. Notes in Comp.
Science, Cancun, Mexico, Springer-Verlag (2000)

11. Malony, A.D., Shende, S.S.: Overhead Compensation in Performance Profiling. In:
Proc. Europar 2004 Conference, LNCS (2004)

12. Yaghmour, K., Dagenais, M.R.: Measuring and Characterizing System Behavior
Using Kernel-Level Event Logging. In: Proceeding of the 2000 USENIX Annual
Technical Conference. (2000)

13. Russell, R.D., Chavan, M.: Fast Kernel Tracing: a Performance Evaluation Tool
for Linux. In: Proc. 19th IASTED International Conference on Applied Informatics
(AI 2001), IASTED (2001)

14. Tamches, A., Miller, B.P.: Using dynamic kernel instrumentation for kernel and
application tuning. The International Journal of High Performance Computing
Applications 13 (1999) 263–276

15. Thibault, S.: Developping a software tool for precise kernel measurements. Master’s
thesis, University of New Hampshire (2003)

16. de Kergommeaux, J.C., de Oliveira Stein, B.: Pajé: an extensible environment for
visualizing multi-threaded programs executions, EuroPar2000 (2000)

17. Bougé, L., Danjean, V., Namyst, R.: Improving Reactivity to I/O Events in Mul-
tithreaded Environments Using a Uniform, Scheduler-Centric API. In: Euro-Par
2002. Volume 2400 of LNCS., Paderborn, Germany (2002) 605–614

18. Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal al-
gorithm for sparse gaussian elimination. SIAM J. Matrix Anal. Appl. 20 (1999)
915–952

	An Efficient Multi-level Trace Toolkit for Multi-threaded Applications
	1 Introduction
	2 From Kernel Tracing to Multi-level Tracing
	2.1 The Fast Kernel Traces (FKT) Toolkit
	2.2 Meeting Hybrid Scheduling's Requirements
	2.3 Description of the Tracing Toolkit

	3 Implementation Details and Performance Analysis
	3.1 About the Time-Stamping and the Trace Format
	3.2 Mutual Exclusion Mechanism
	3.3 Analysis of the Tracing Overhead

	4 Conclusion
	References

