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Abstract. In this paper we study multi-installment divisible load pro-
cessing in heterogeneous distributed systems. Divisible loads are com-
putations which can be divided into parts of arbitrary sizes, and these
parts can be processed independently in parallel. In order to reduce the
waiting time during the parallel computation initialization phase, load is
sent to the processors in multiple small installments. In a heterogeneous
system the sizes of the installments should be adjusted to the communi-
cation, and computation capabilities of the processors. We propose two
algorithms that gear the load chunk sizes to different communication and
computation speeds. The first one is an optimization branch and bound
algorithm. The second algorithm is based on genetic search. The running
times of both methods and the quality of the genetic algorithm solutions
are compared. Then, we use these algorithms to analyze features of the
scheduling problem solutions.

Keywords: scheduling and load balancing, divisible load, multi-install-
ment processing, heterogeneous systems, optimization algorithms.

1 Introduction

Divisible loads are computations which can be divided into parts of arbitrary
sizes, and these parts can be processed independently in parallel. This means
that the grain of parallelism is small, and there are no data dependencies. The
sizes of the load parts should be adjusted to the speeds of communication and
computation such that processing finishes in the shortest possible time. Examples
of real divisible applications include, among others, distributed searching for
patterns in text, audio, graphic files, database and measurement processing,
data retrieval systems, some linear algebra algorithms, and simulation. Surveys
of the divisible load theory can be found in [4, 6, 11].
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Communication delays constitute an important part of the processing time in
all distributed algorithms. To reduce the initial waiting for the data, and for ini-
tialization of the computations, load is sent in multiple small chunks rather than
in a single long message. This way of divisible load distribution and execution is
called multi-installment processing [3, 0, 8, 12]. In the earlier publications certain
assumptions were usually made on the structure of the schedule. For example,
messages of equal size were sent to processors in a round-robin fashion [0, &, 12].
It has been shown [12] that this way of multi-installment processing reduces the
length of the schedule in a homogeneous system at most egl times. Unequal
load chunk size partitioning has been also proposed [3, 6, 13], but with a tacit
assumption that the set of used processors, and their activation sequence are
given and fixed. Furthermore, it was assumed that there are no idle times, nei-
ther in the communication nor in the computations [3, 4, 6, 13]. However, to our
best knowledge, the problem of multi-installment divisible load processing with
unequal chunk sizes adjusted to the communication and computation speeds,
with selection of the set of exploited processors, and selection of their activation
sequence is open. The goals of this paper are twofold: to propose algorithms for
the multi-installment divisible load processing including selection of the set and
sequence of processors, and to study influence of the system parameters on the
quality of the scheduling problem solutions.

The rest of this paper is organized as follows. In Section 2 we formulate the
multi-installment divisible load scheduling problem for heterogeneous systems.
In Section 3 two algorithms are proposed: an optimization branch-and-bound
algorithm, and a heuristic genetic algorithm. The results of computational ex-
periments are presented and discussed in Section 4.

2 Problem Formulation

We will use the word processor to denote a processing element with CPU, mem-
ory, and communication link. In divisible load model it is classically assumed that
initially some volume of load V' (e.g. a file with data to be processed) resides on
a processor Py called originator. The originator sends the load to its neighbors
for remote processing. Each of the neighbors intercepts some part of the received
load, and immediately starts computations related with the received load. The
rest of the load is retransmitted to the still inactive neighbors. In this work we
assume a star interconnection (a.k.a. a single level tree). In the star network
the originator is located in the star center (or the root of the single level tree),

and is connected to a set Py, ..., P, of processors which perform computations.
All communications involve the originator, and there are no direct communica-
tions between processors Py, ..., P,. For simplicity of presentation we assume

that originator is communicating only. Otherwise, the computing ability of the
originator can be represented as an additional processor. Each processor P; is de-
fined by the following parameters: A; - computing rate (reciprocal of computing
speed), C; - communication rate (reciprocal of bandwidth), S; - communication
startup time. A;, C; can be expressed, e.g., in seconds per byte, and S; can be
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expressed in seconds. Computing = units (e.g. bytes) of load on processor P
takes £ A; units of time. Sending the same amount of load to P; lasts S; + xC;.
We assume that memory sizes of the processors are sufficiently big and do not
influence the construction of the schedule. To simplify the mathematical model
we assume that the results returning time is negligible. This simplification is not
limiting generality of our considerations because result gathering can be included
in the model (see e.g. applications [2, 5, 7, 12]). The computations start only
after receiving the whole message with load. We assume that processors have
independent communication hardware which allows for simultaneous communi-
cation and computations on the previously received load.

To reduce the initial waiting for the load, and for the start of the computa-
tions, load is sent to processors in multiple small chunks rather than in a single
long message. Let n denote the number of chunks. If the sequence of processors
receiving the load chunks is known then our problem can be reduced to a linear
program. Let «; denote size of chunk i. Let d; € {1,...,m} be the number of the
processor receiving chunk i. We will denote by H; C {i,...,n} the set of chunks
sent to processor d;, starting from chunk i. C), 4, denotes schedule length. Fig. 1
depicts an example schedule with multiple installments. The linear program can
be formulated as follows:

minimize Cy,qz

on condition that:

> (Sa, +@jCa) + Aq, Y ;< Crga i=1,...,m (1)

Jj=1 JEH;

ZO@ =V (2)
=1

In constraint (1) sum E;Zl(de + a;Cy;) expresses communication time for
chunks 1,...,i. Ag, Zj cp, @ 1s computation time on processor d; starting from
chunk ¢. Thus, (1) guarantees that all processors stop computations before the
end of the schedule. All work is done by equation (2). Thus, it is possible to
find optimum distribution of the load using formulation (1)-(2) if we know the
sequence of the processor activation (i.e. values d; for i = 1,...,n).

PO S,jl +oy Cdl‘Sdz +%Cdz‘Sd3 +O('3Cd3‘ Sd4 +(X.4Cd4 ‘ commuﬂ{lications

N
P, L } oA, \L lasd,
P, computations< ’- O(QAQQ ‘ ‘ OL4Ad2 ‘
1
P; | oAy |
‘ Cra

Fig. 1. Example of load distribution pattern.
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Fig. 2. The worst case examples. a) ignoring heterogeneity, b) ignoring processor set
selection, ¢) ignoring sequencing of the processor activation.

Before proceeding to the further details let us consider worst cases that may
appear if scheduling decisions ignore certain information. Suppose that we ig-
nore the heterogeneity of the system, and send load parts of equal size to the
processors. For instance (Fig.2a), consider two processors P; with parameters
S1=0,C;y =0,A4; = B, and P, with parameters Sy =0,C9=0,A45 = 1. We di-
vide the load into two equal chunks of size 4 Resultmg schedule has length BV

|4 BV]

but processor P is idle in interval [ If we use sizes o =

B+1’ = B1»
then both processors stop computing simultaneously, and schedule length Is 577
The ratio of the two schedule lengths is £ H which can be arbitrarily big. Hence,
in the worst case solutions based on load equlpartitioning can be arbitrarily bad
in heterogeneous systems.

Suppose that we adjust chunk sizes to the parameters A;, C;, but all proces-
sors are always used. Let us present another example (Fig. 2b). There are two
processors with parameters: S; = B,A; = 1,C1 = 1,5 = 0,43 = 1,Cy = 1.
ItV < g then there is no point in using processor P; because load of this size
may be processed in a shorter time than the communication activating P;. If we
use P; then the schedule has length at least B. If we don’t, then schedule has
length V(Az + C2) = 2V. The ratio of the two lengths is at least 53> which can
be arbitrarily big. Thus, if the set of processors is always the same, the resulting
schedule can be arbitrarily bad.

Suppose that we adjust chunk sizes, and select the processors wisely, but
we always use the same sequence (Py,..., P,,) of processor activation. Let us
analyze one more instance (Fig.2c), m =2,V =2,5,=0,C1 = B,A; =1,5; =
0,Cy = Ay = 0.5. If we use sequence (Py, P») of processor activation, then the
optimum load distribution is a; = as = 1, and schedule length is B + 1. For

sequence (P, Py) the optimum distribution is oy = ﬁ,ag = ?f{%, and
schedule length is ?f{% The ratio of the two lengths is 23411 which can be

T B+fl.5

arbitrarily big.
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Thus, the subset of processors Py, ..., P, exploited in the computations and
the targets of the communications are unknown, and must be determined. This
task has combinatorial nature. In Section 3 we propose algorithms that deter-
mine destinations for the load chunks. If one ignores proper selection of the
chunk destinations, the problem becomes easier to solve because only linear pro-
gram (1)-(2) has to be solved for some assumed chunk destinations dy,ds, ..., d,.
Then, the resulting schedules can be arbitrarily bad in the worst case, as demon-
strated in the preceding paragraph. How bad the solutions can be on average,
if we skip the combinatorial part of the problem, is unknown. We attempt an-
swering this question in Section 4.

3 Optimization Algorithms

3.1 Branch and Bound Algorithm

Two elements constitute a branch-and-bound algorithm. The first is branching
procedure which divides the solution space into disjoint subsets. These subsets
are either eliminated if they do not include the optimum solution, or are further
divided until selecting a unique solution. Partition of the solution space can be
represented as a tree. Each node is a representative of a set of solutions. Dividing
such a set is equivalent to generating successors of a node. In our problem we
have to select the sequence of the targets for n load chunks. In the root of the
tree the sequence is empty. The first chunk may be sent to one of processors
P;, for i = 1,...,m. Therefore, the root has m successors each representing
sequences starting with a message sent to processor P;. The second level of the
tree includes two-processor sequences (FP;, P;). Branching a node representing a
leading sequence of [ chunk targets consists in appending one more processor
to which chunk [ 4+ 1 will be sent. The branching procedure is continued until
constructing a sequence of the assumed length n.

The maximum number of the search tree leaves is m™. As this number grows
exponentially with n, it is necessary to prune the search tree by eliminating nodes
representing solutions certainly not better than some already known solution.
This procedure is the bound element of the algorithm. To determine if a node
should be eliminated its lower bound of the schedule length is calculated. Suppose
the node represents a sequence of [ chunks. Thus values dy,...,d; are already
determined. The remaining n — [ chunks still need to be selected. We assume
that these n — [ chunks are sent to n — [ ideal target processors. The ideal
target processor has parameters A’ = min",{4;},C* = min!" {C;}, 9" =
min}”, {S;}, and processes only one load chunk. For such a sequence of [ real
processors, and n—1 ideal ones, a linear program (1)-(2) is solved for C,,q, which
is the lower bound.

The best known solution used in comparisons with the lower bound is found
by the algorithm itself. It is the best solution found in any leaf of the search tree.
The tree is searched in the depth-first least lower bound order.
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3.2 Genetic Algorithm

Genetic algorithms imitate evolution of genome. Solutions are encoded as strings
of symbols analogously to the encoding of the chromosomes. Some initial popu-
lation of solutions is generated randomly. Genetic operators transform popula-
tions in a direction improving quality of the solutions. Selection, crossover, and
mutation are typical genetic operators. Selection elects better solutions for the
next population. Crossover operation generates offspring solutions by randomly
combining pieces of the parent strings. Though the offspring is constructed in
a random manner, the fragments of a string encoding an optimum solution are
indirectly discovered and combined due to the selection and crossover. Mutation
changes randomly some solutions to diversify the search, and to escape local
optima. Genetic search is a classic technique for solving combinatorial optimiza-
tion problems, including scheduling problems. We direct interested readers to
monographs [9, 10] for detailed presentation of the genetic search method.

In our implementation a chromosome is a string (di,...,d,) of chunk des-
tinations. The measure of a chromosome fitness is the value of schedule length
Cinaz Obtained from the linear program (1)-(2) formulated for the sequence of
chunk targets given in the chromosome. In the crossover operation two chro-
mosomes are randomly selected, and combined using one point crossover. For
example, let (a1,aq,...,ay,), (b1,be,...,b,) be two parent solutions, and let
k denote a randomly selected crossover point. The two offspring solutions are
(b1,...,bk—1,0ak,...,a,) and (a1, ...,ak—1,bg,...,b,). The total number of new
chromosomes constructed in crossover is Gpc, where G is the size of the popu-
lation, and p¢ is a tunable algorithm parameter which will be called crossover
probability. Mutation changes Gnpys random genes (i.e. d;s) to different values.
Gn is the total number of genes, pys is a tunable algorithm parameter which
we will call mutation probability. The selection of the chromosomes for the new
population is done by a combination of elitist and roulette wheel method. The
best half of the old population is always preserved. A string is passed to the
second half of the new population with probability ﬁ / ch‘::l ﬁ, where
CJ. .. is the schedule length for chromosome j. The algorithm stops after a fixed
number of iterations without an improvement in the quality of the best solution
ever found. There is also a limit on the total number of iterations.

4 Computational Experiments

4.1 Experiment Setting

All the experiments were performed on a PC computer with Pentium IV 1.8GHz,
512MB RAM memory, and Microsoft Windows XP. The executable code was
generated by Borland C++ Builder 6.0. All LP formulations were solved by a
code derived from 1p_solve [1]. Unless stated otherwise, the test instances of the
scheduling problem were generated in the following way: Processor parameters
A, C, S, were generated with uniform distribution from the range [0,1]. Problem
size was V = 1E6. The processor number was m = 4, and the number of chunks



On Optimum Multi-installment Divisible Load Processing 237

1.0030

1.00257

1.0020+

Sk

1.00157

1.00104

1.00057

107100 25250 50/500 805800 100/1E3 2002E3 3003E3 4004E3 S00/5E3

Fig. 3. Average distance from optimum  Fig.4. Average distance from optimum
vs. iteration (population) number and G.  vs. iteration limits.

was n = 8. Each point on the following charts is an average of at least 10
instances.

In the genetic algorithm genes of the initial population were generated with
uniform distribution from set {1,...,m}. The following procedure has been ap-
plied to tune the genetic algorithm. A set of 100 random instances were generated
as a reference benchmark. An indicator of algorithm performance was the average
quality of the best solutions obtained for these benchmark instances. Population
size G = 50 has been selected as the convergence improvement stops at this size
(cf. Fig. 3). For the fixed G crossover probability pc = 80%, and then mutation
probability pa; = 3% were selected. We used a limit of 10 iterations without
solution improvement, and an upper limit of 100 iterations in total, which give
acceptable solution quality on average (cf. Fig.4), but still result in a shorter
running time than other iteration limits combinations.

4.2 Performance of the Algorithms

Running Times. The execution times of the algorithms are collected in Fig. 5,
and 6. The running time of the branch and bound is denoted by B&B, and of the
genetic algorithm by GA. It can be seen that the branch and bound algorithm
has exponential running time in n for fixed m (cf.Fig.5). The execution time
grows slower as a function of m for fixed n (cf.Fig.6) because the maximum
number of the search tree leaves is m'™. Nevertheless, execution time of the
branch and bound algorithm allows only for solving instances with small m,
and n. Execution time of the genetic algorithm grows with n (Fig.5) because
the length of the string encoding solution is n. For m = 3,...,20 execution
time grows less than twice (Fig.6). We also tested dependence of the execution
times on size V' of the problem. For small V' execution time of the branch and
bound was shorter than for big sizes because less processors had to be activated,
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and therefore the search trees were smaller. The execution time of the genetic
algorithm was independent of V.

Quality of the Solutions. The results of our study on the quality of solutions
are collected in Fig.7-8. The instances in Fig.7 had A parameter equal to a
given value on all processors. The remaining C, S parameters were generated as
described previously. Analogously, for Fig. 8 parameter C was fixed on all pro-
cessors, and A, S were randomly generated. Each figure represents quality of the
solutions, i.e. the relative distance from the optimum, in three cases: the average
solution of a genetic algorithm (denoted GA), the average random solution (de-
noted RND), and the worst selection of the chunk targets ever observed (denoted
Worst). Note that the worst case (Worst) has its own ’y’ axis different than RND,
and GA cases. The random solutions (RND) have random chunk destinations.
In all cases load chunk sizes were calculated by linear program (1)-(2).

These three cases demonstrate weaknesses and strengths of the two parts in
the solution of our problem: the combinatorial part which finds targets for the
chunks (d;s), and the linear programming part which calculates optimum chunk
sizes (qys) for the given destinations. It can be seen that genetic algorithm con-
structs solutions that are very close to the optimum. On average its solutions
were not further 0.2% from the optimum. The worst solution obtained by the ge-
netic algorithm was 1.1% away from the optimum. Thus, the genetic algorithm is
a practical replacement for the optimization branch and bound algorithm which
has exponential running time. The random solutions (RND) are also good on
average because their distance from the optimum is not greater than approxi-
mately 30%. This is good news because solving a complex combinatorial problem
of determining chunk targets (be it by a branch and bound or by a genetic algo-
rithm) may be too time consuming and unprofitable on average. A random, or
reasonable selection of processors and their activation sequence, supplemented
by a linear program (1)-(2) gives solutions of acceptable quality on average. This
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tells us also about the nature of the problem we are solving. Since relatively good
results can be obtained only by adjusting chunk sizes (even for random chunk
destinations), the chunk size selection is an important element in the solution
of our problem. In other words, linear programming can compensate for some
bad decisions in combinatorial part of the algorithms. It can be said that on
average the combinatorial part of our problem (i.e. target selection) improves a
random solution by approximately 30%. Finally, the worst case really exists. In
the worst observed case of the chunk target selection a schedule 35 times worse
than optimum was constructed (cf. Fig. 8).

It is possible to infer from Fig. 7-8 on the features of the solutions and per-
formance of the algorithms. With growing A, C' the quality of the random and
the worst case is improving. When A is very big, the schedule length becomes
dominated by the computation time. The selection of the chunk destinations
is nearly meaningless because the schedule length is determined by the compu-
tation time which is approximately AWV. Similar conclusions can be drawn for
parameter C'. When C'is very big, chunk target selection tends to be immaterial
because the schedule length is determined by the communication time which
is approximately VC. We also tested dependence on S in range [1E-3,1E3]. It
turned out that S constitutes at most ~ 2% of the communication time, and
hence this dependence was not strong.

5 Conclusions

In this paper we studied multi-installment divisible load processing in hetero-
geneous distributed system. The problem we analyzed consists in determining
optimum destinations for the load chunks and adjusting their sizes to the speeds
of processors and communication links. Hence, we divided solution methods into
two parts: combinatorial one which finds destinations for the load chunks, and
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linear programming part which finds optimum chunk sizes for the given targets.
We have shown that in the worst case solutions can be arbitrarily bad if any of
the two parts is ignored. In a set of computational experiments we demonstrated
that on average the combinatorial part improves the solution quality by approx-
imately 30 %. The linear part is a very important element in the construction of
the schedule, and to some extent it is able to compensate bad decisions in the
combinatorial part.
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