Batch-Scheduling Dags for Internet-Based Computing*
(Extended Abstract)

Grzegorz Malewicz!*® and Arnold L. Rosenberg?

1 Dept. of Computer Science, Univ. of Alabama, Tuscaloosa, AL 35487, USA
2 Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA 01003, USA
3 Div. of Mathematics and Computer Science, Argonne National Lab, Argonne, IL 60439, USA

Abstract. The process of scheduling computations for Internet-based computing
presents challenges not encountered with more traditional computing platforms.
The looser coupling among participating computers makes it harder to utilize
remote clients well, and raises the specter of a kind of “gridlock™ that ensues
when a computation stalls because no new tasks are eligible for execution. This
paper studies the problem of scheduling computation-dags in a manner that ren-
ders tasks eligible for execution at the maximum possible rate. Earlier work has
developed a framework for such scheduling when a new task is allocated to a
remote client as soon as it returns the results from an earlier task. The proof in
that work that many dags cannot be scheduled optimally within this paradigm
signaled the need for a companion theory that addresses the scheduling problem
for all computation-dags. A new, batched, scheduling paradigm for Internet-based
computing is developed in this work. Although optimal batched schedules always
exist, computing such a schedule is NP-Hard, even for bipartite dags. In response,
a polynomial-time algorithm is developed for producing optimal batched sched-
ules for a rich family of dags obtained by “composing” tree-structured building-
block dags. Finally, a fast heuristic schedule is developed for “expansive” dags.

1 Introduction

Earlier work [1, 13, 15] has developed the Internet-Computing (IC, for short) Pebble
Game that abstracts the problem of scheduling computations having intertask dependen-
cies for the several modalities of Internet-based computing, including Grid computing
(cf. [1, 4, 5]), global computing (cf. [2]), and Web computing (cf. [8]). This Game was
developed with the goal of formalizing the process of scheduling computations with
intertask dependencies for IC. The scheduling paradigm studied in [1, 13, 15] is that
a server allocates a task of the dag being computed to a remote client as soon as the
task becomes eligible for allocation and the client becomes available for computation.
The quality metric for schedules is to maximize the rate at which tasks are rendered
eligible for allocation to remote clients, with the dual aim of maximizing the utilization
of remote clients and minimizing the likelihood of the “gridlock” that can arise when
a computation stalls pending completion of already-allocated tasks. These sources de-
velop the framework for a theory of IC scheduling based on this paradigm.

* A portion of the research of G. Malewicz was done while visiting the Univ. of Massachusetts
Amherst. The research of A. Rosenberg was supported in part by NSF Grant CCF-0342417.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 262-271, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Batch-Scheduling Dags for Internet-Based Computing 263

The present study is motivated by the demonstration in [I |] that there are simple
computation-dags that do not admit any optimal IC schedule. (Intuitively, any sequence
of tasks that optimizes the number of eligible tasks after the first ¢ steps of the compu-
tation is incompatible with every sequence that optimizes that number after the first ¢’
steps.) We respond here by developing a companion scheduling theory in which every
computation-dag admits an optimal schedule. This new theory is based on a batched
scheduling paradigm, which relieves the Server from the chore of selecting a new task
for allocation whenever a remote client becomes available for computation. Instead,
we now assume that the Server collects requests for new tasks and then (either peri-
odically or based on some trigger) allocates tasks for the collected requests in a batch.
(This mode of operation may be inevitable if, say, tasks take extremely long to compute
and enable many other tasks once completed.) The goal for the Server is to satisfy this
batch of requests with a set of tasks whose execution will produce a maximal number
of new eligible tasks. In contrast to the quality metric of [, 13, 15], this new step-
by-step metric can always be satisfied optimally. Moderating the news that optimality
can always be achieved in the batched paradigm is our demonstration that finding such
a schedule for an arbitrary computation-dag—even a bipartite one—is NP-Hard, hence
likely computationally intractable (Section 3). We respond to this probable computa-
tional intractability with a polynomial-time optimal algorithm for a rich family of dags
that are constructed by “composing” certain tree-structured building-block dags (Sec-
tion 5). Since the preceding timing polynomial has high degree, we also develop a fast
heuristic schedule for a more restricted family of “expansive” dags, whose eligible-task
production rate is within a factor of 4 of optimal (Section 6).

{/%f (Q

\ﬁ JWQ@\

1

0000 [0001] [1010] [1011]

Fig. 1. Clockwise from top left: an evolving (2-dimensional) mesh, the 5-level (2-dimensional)
reduction-mesh, a (binary) reduction-tree dag.

Related work. The IC Pebble Game is introduced in [13, 15], and optimal schedules
are identified for the dags of Fig. 1. A framework for a theory of scheduling for IC is de-
veloped in [1], building on the principles that enable the optimal schedules of [13, 15].
Central to the framework are a formal method for composing simple dags into complex
ones, together with a relation that allows one to prioritize the execution order of the con-

264 Grzegorz Malewicz and Arnold L. Rosenberg

stituent building-block dags of a composite dag. A probabilistic pebble game is used in
[6, 9, 10] to study the problem of executing tasks on unreliable clients; our proof of
the NP-hardness of batch-scheduling builds on tools from [0]. Although our goals and
methodology differ significantly from those of [3, 12, 14], we owe an intellectual debt to
those pioneering studies of pebbling-based scheduling models. Finally, the impetus for
our study derives from the many exciting systems- and/or application-oriented studies
of Internet-based computing, in sources such as [1, 2, 4, 5, 7, &, 16].

2 A Model for Executing Dags on the Internet

2.1 Computation-Dags

Basic definitions. A directed graph G is given by a set of nodes Ng and a set of arcs
(or, directed edges) Ag, each having the form (u — v), where u,v € Ng. A pathin G
is a sequence of arcs that share adjacent endpoints, as in the following path from node
up to node wuy,: (u1 — usg), (ug — uz), ..., (Up—2 = Un—1), (Un—1 — u,). A dag
(directed acyclic graph) G is a directed graph that has no cycles; i.e., in a dag, no path
of the preceding form has u; = u,,. When a dag G is used to model a computation, i.e.,
is a computation-dag:

— eachnode v € Ng represents a task in the computation;
- an arc (u — v) € Ag represents the dependence of task v on task u: v cannot be
executed until is.

Given an arc (u — v) € Ag, we call u a parent of v and v a child of u in G. Each
parentless node of G is called a source (node), and each childless node is called a sink
(node); all other nodes are internal. A dag G is bipartite if:

1. Ng can be partitioned into subsets X and Y such that, for every arc (u — v) € Ag,
u € Xandv €Y,

2. each node of G is incident to some arc of G, i.e., is either the node u or the node v
of some arc (u — v) € Ag. (For convenience, we prohibit “isolated” nodes.)

Sums of bipartite dags play a major role in our study. Let G4, ..., G,, be bipartite dags
that are pairwise disjoint, in that Ng, N Ng, = () for all distinct 7 and j. The sum of
G1,...,Gm,denoted G + - - - +G,,, is the bipartite dag whose node-set and arc-set are,
respectively, the unions of the corresponding sets of G1, ..., G,,. A dag is connected if,
ignoring the orientation of its arcs, there is an undirected path between any two distinct
nodes. Every bipartite dag is a sum of connected bipartite dags.

Some basic building blocks. Our study focuses on dags that are built out of bipar-
tite building blocks by the operation of composition. We present a sampler of building
blocks that will illustrate the theory we begin to develop here; see Fig. 2.

A bipartite tree-dag 7 is a bipartite dag such that, if one ignores the orientations
of 7’s arcs, then the resulting graph is a tree. The following two special classes of
tree-dags generate important families of complex dags.

For each d > 1, the (1, d)-W-dag W1,q has one source node and d sink nodes; its d
arcs connect the source to each sink. Inductively, for positive integers a, b, the (a+b, d)-
W-dag W 4,q is obtained from the (a, d)-W-dag W, 4 and the (b, d)-W-dag W, 4 by

Batch-Scheduling Dags for Internet-Based Computing 265

°
A Bipartite Tree-Dag: WW\M
° [° ° [
(1,4)-W: \'ié'/ (2,4)-W: \'ié'/ \‘;?; (1,3)—% (2,3)—M
[] []
A Bipartite Expansive-Dag: W

Fig. 2. Some bipartite building-block-dags.

identifying (or, merging) the rightmost sink of the former dag with the leftmost sink of
the latter. W-dags epitomize “expansive” computations.

For each d > 1, the (1, d)-M-dag M 4 has d source nodes and 1 sink node; its d
arcs connect each source to the sink. Inductively, for positive integers a, b, the (a+b, d)-
M-dag M+ 4 is obtained from the (a, d)-M-dag M, 4 and the (b, d)-M-dag M, 4 by
merging the rightmost source of the former dag with the leftmost source of the latter.
M-dags epitomize “contractive” (or, “reductive’) computations.

A large variety of significant computation-dags are “compositions” of W-dags and
M-dags, including the dags in Fig. 1: The evolving mesh is constructed from its source
outward by “composing” a (1,2)-W-dag with a (2, 2)-W-dag, then a (3, 2)-W-dag, and
so on; the reduction-mesh is similarly constructed using (k, 2)-M-dags for successively
decreasing values of k; the reduction-tree is constructed by “composing” independent
collections of (1, 2)-M-dags.

The following additional building blocks are highlighted in Section 6.

A bipartite expansive-dags £ is a bipartite dag wherein each source v has an asso-
ciated number ¢, > 2 such that: v has ¢, children that have no parent other than v and
< ¢, other children. Easily, expansive dags need not be tree-dags (cf. Fig. 2).

Compositions of bipartite dags. The following mechanism for composing a collection
of connected bipartite dags to build complex dags is introduced in [| 1].

— Start with a base set B of connected bipartite dags.
— Given dags G1,G2 € B—which could be copies of the same dag with nodes re-
named to achieve disjointness—one obtains a composite dag G as follows.

e Let the composite dag G begin as the sum, G1 +Go, of the dags G1, G2. Rename
nodes to ensure that Ng is disjoint from Ng, and Ng,.

e Select some set S of sinks from the copy of G; in the sum G; + G2, and an
equal-size set Sy of sources from the copy of G5 in the sum. (If S; = (), then
the composition operation degenerates to the operation of forming a sum dag.)

e Pairwise identify (i.e., merge) the nodes in the sets S7 and S in some way. The

resulting set of nodes is G’s node-set; the induced set of arcs is G’s arc-set.
— Add the dag G thus obtained to the base set B.

266 Grzegorz Malewicz and Arnold L. Rosenberg

Note the asymmetry of composition: G; contributes some of its sinks, while G5 con-
tributes some of its sources. The reader should note the natural correspondence between
the node-set of G and the node-sets of G1 and G».

We denote the composition operation by 1} and refer to the resulting dag G as a
composite dag of type [G1 1} G2]. The following lemma is of algorithmic importance, in
that it allows one to ignore the order in which compositions are performed.

Lemma 1 ([11]). The composition operation on dags is associative; i.e., a dag is com-

posite of type [[G1 1t Ga| 1 G3] if, and only if, it is composite of type [G1 1 [G2 Tt Gs]]-

2.2 The Batched Idealized Internet-Computing Pebble Game

A number of so-called pebble games on dags have been shown, over the course of
several decades, to yield elegant formal analogues of a variety of problems related to
scheduling dags. Such games use tokens called pebbles to model the progress of a com-
putation on a dag: the placement or removal of the various available types of pebbles—
which is constrained by the dependencies modeled by the dag’s arcs—represents the
changing (computational) status of the dag’s task-nodes.

Our study is based on the Internet-Computing (IC, for short) Pebble Game of [13].
Based on studies of Internet-based computing in, for instance, [/, 7, |6], arguments are
presented in [13, 15] that justify studying an idealized, simplified form of the Game.
We refer the reader to these sources for both the original IC Pebble Game and for the
arguments justifying its simplification. We study an idealized form of the Game here,
adapted to a batched mode of computing.

The rules of the game. The Batched IC Pebble Game on a dag G involves one player
S, the Server, who has access to unlimited supplies of two types of pebbles: ELIGIBLE
pebbles, whose presence indicates a task’s eligibility for execution, and EXECUTED
pebbles, whose presence indicates a task’s having been executed. The following rules
of the Game simplify those of the original IC Pebble Game of [3, 15].

The Rules of the Batch-IC Pebble Game

— S begins by placing an ELIGIBLE pebble on each unpebbled source node of G.
/*Unexecuted source nodes are always eligible for execution, having no parents
whose prior execution they depend on.*/

— At each step t—when there is some number, say e;, of ELIGIBLE pebbles on G’s
nodes—S' is approached by some number, say r;, of Clients, requesting tasks. In
response, S:

e selects min{e;, r;} tasks that contain ELIGIBLE pebbles,

e replaces those pebbles by EXECUTED pebbles,

e places ELIGIBLE pebbles on each unpebbled node of G all of whose parents
contain EXECUTED pebbles.

— S’s goalis to allocate nodes in such a way that every node v of G eventually contains
an EXECUTED pebble.

/*This modest goal is necessitated by the possibility that G may be infinite.*/

Batch-Scheduling Dags for Internet-Based Computing 267

For brevity, we henceforth call a node ELIGIBLE (resp., EXECUTED) when it con-
tains an ELIGIBLE (resp., an EXECUTED) pebble. For uniformity, we henceforth talk
about executing nodes rather than tasks.

The Batch-IC Scheduling (BICSO) Problem. Our goal is to play the Game in a way
that maximizes the number of ELIGIBLE pebbles on G after every move by the Server
S. In other words: for each step ¢ of a play of the Game on a dag G under a schedule
2/, if there are currently e; ELIGIBLE nodes, and if r, Clients request tasks, then we
want the Server to select a set of min{e;, 7, } ELIGIBLE nodes to execute that will result
in the largest possible number of ELIGIBLE nodes at step ¢ + 1. We thus arrive at the
following optimization problem.

Batched IC-Scheduling (Optimization version) (BICSO)
Instance: 1= (G, X, E;r), where:
e G is a computation-dag;
e X and FE are disjoint subsets of Ng that satisfy the following;
There is a step of some play of the Batched IC Pebble Game on G in which
X is the set of EXECUTED nodes and F the set of ELIGIBLE nodes on .
e risin the set' [1,|E]].
Problem: Find a set R C FE of r nodes whose execution maximizes the number of
ELIGIBLE nodes on G, given that the nodes in X are already EXECUTED.

Note that solving BICSO automatically carries with it a guarantee of optimality.

The significance of BICSO—as with the IC-Scheduling Problem of [], 13, [5]—
stems from the following intuitive scenarios. (1) Schedules that produce ELIGIBLE tasks
fast may reduce the chance of the “gridlock” that could occur when remote clients are
slow in returning the results of their allocated tasks—so that new tasks cannot be allo-
cated pending the return of already assigned ones. (2) If the IC Server receives a batch
of requests for tasks at (roughly) the same time, then a Batched IC-optimal schedule
ensures that there are maximally many tasks that are ELIGIBLE at that time, hence
maximally many requests can be satisfied. This enhances the exploitation of clients’
available resources. See [!3, 15] for more elaborate discussions of these scheduling
criteria.

3 The Intractability of BICSO Optimality

Viewed via its related decision problem, BICSO is NP-hard, even for bipartite dags. The
reduction is from the problem of selecting m sets whose union has cardinality at most
b from among nonempty sets Si, . .., .S, whose union is [1,n], which is known [0] to
be NP-Complete. Our reduction also uses a result that allows us to focus on a restricted
class of schedules.

Lemma 2 ([11]). Let X' be a schedule for a dag G. If X is altered to execute all of G’s
non-sinks before any of its sinks, then it produces no fewer ELIGIBLE nodes than X

Theorem 1. BICSO is NP-hard, even when restricted to bipartite dags.

"[a,b] = {a,a +1,...,b}.

268 Grzegorz Malewicz and Arnold L. Rosenberg
4 Scheduling Composite Dags via Bipartite Dags

The computational intractability of BICSO (assuming that P # NP) is a mandate for
seeking significant classes of dags for which one can solve BICSO efficiently. Our
experience is that this goal is achievable for many classes of bipartite dags (such as the
building blocks of Section 2). While this structural restriction is not of inherent interest,
we show in this section that we can sometimes use the operation of composition to
construct significant complex dags from bipartite building blocks. And, we can often
solve BICSO for a composite dag G by solving a restricted version of BICSO for certain
connected induced bipartite subdags of the bipartite dags that G is composed from. In
the restricted version of BICSO—call it RBISCO—the bipartite subdags are connected,
and all of their sources are ELIGIBLE, so the set F (of the instance of BICSO) comprises
all sources of the subdag, and the set X is empty. The goal is to find an r-element
subset of sources that maximizes the number of ELIGIBLE sinks—which is equivalent
to solving BICSO for the restricted problem.

Theorem 2. Let the dag G be a composition of bipartite dags G1, . ..,Gm. There is a
polynomial-time algorithm that solves BICSO for G, using as subprocedures polynomial-
time algorithms for solving RBICSO for induced connected bipartite subdags of the G;.

Proof Sketch. Consider instance 1 = (G, X, E; r) of BICSO, where G is as in the the-
orem. We can focus on the modified goal of finding R among G’s non-sinks. Using a
result of [1], we can relate the number of ELIGIBLE nodes of G to the number of sinks
of the G; that are ELIGIBLE when the only EXECUTED nodes of G, are the sources of G;
that correspond (in the natural manner emerging from the definition of composition) to
EXECUTED nodes of G. The latter number, however, can be calculated by focusing on
a certain induced subdag of G,;. This subdag is obtained by taking all sources of G; that
correspond to nodes ELIGIBLE in G, and all sinks of G; all whose parents correspond to
either ELIGIBLE or EXECUTED nodes in G and at least one whose parent corresponds
to ELIGIBLE node (These sinks are not ELIGIBLE but they may become so when we ex-
ecute nodes of the G that we choose). The subdag is a sum of (> 0) isolated nodes and
(> 0) connected bipartite dags. Let S, . . ., S, be the connected bipartite dags obtained
from the m subdags. We maximize the number of ELIGIBLE nodes by executing the r
nodes of G that correspond to the 7 sources of the connected bipartite dags that maxi-
mize the number of ELIGIBLE sinks on the dags. That latter maximum can be found by
first computing a maximum individually for each connected bipartite dag S; and each
r; at most , and then combining the maxima using a dynamic programming algorithm
resulting from an observation that the ; must sum up to 7.

Now the goal of solving BICSO for G reduces to the goal of solving BICSO for the
connected bipartite dags.

5 Tractable BICSO Optimality for Composite Trees

We develop a polynomial-time algorithm that solves BICSO for the family T of dags
that are obtained from bipartite tree-dags via composition.

Batch-Scheduling Dags for Internet-Based Computing 269

Theorem 3. There is a polynomial-time algorithm Yiyc. that solves BICSO for any
composite tree-dag T € T.

Proof. We develop a dynamic program X'pp that solves RBICSO for any bipartite tree-
dag; Theorem 2 will extend X'pp to Xiree.

Lemma 3. There is a polynomial-time algorithm Xpp that solves RBICSO for any
bipartite tree-dag.

Proof Sketch. Any bipartite tree-dag 7 arises from “folding” a (undirected, unrooted)
tree 1" and orienting its edges. We label T"”s nodes “sources” and “sinks” according to
their roles in 7. The key idea of X'pp is that we can find the maximum number of
ELIGIBLE sinks for a “deep” tree inductively from shallow trees.

We recursively decompose T into subtrees by choosing some source w and letting it
act as a root, thereby producing T',,. We traverse T, breadth first, starting from w. Each
time we descend from a sink v to a source u during the traversal, we produce a subtree,
T, which is a copy of the subtree of T',, rooted at u. We use the natural correspondence
between the node-sets of T, and T, to refer to corresponding nodes by the same name.
We thus produce a sequence of subtrees (beginning with 7;,), each including shorter
ones that occur later in the sequence. 2'pp processes the subtrees in the reverse order
of this sequence, computing certain values for a subtree from analogous values for
shorter ones. 2’pp chooses the nodes to execute by recursively calculating the following
functions. Pick any subtree T, with, say, s sources.

— Forany r € [1, s], let E4 (T,) be the maximum number of ELIGIBLE sinks on Ty,
when the root v and some other » — 1 of its sources are EXECUTED.

Ey(Ty,) is trivial to calculate when T3, has height 0 or 1.

— Forany r € [0,s — 1], let Ex(T, r) be the maximum number of ELIGIBLE sinks
on 7’, when the root u is not EXECUTED but some r other of its sources are.

Eo(Ty,r) = 0 when T, has height 0 or 1. For r € [0, s], the maximum number of ELI-
GIBLE sinks in 7T, when r of its sources are EXECUTED is calculated from Ey and F.
Ypp computes Ey(Ty,,r) and Ey1(Ty,, r) for any r € [0, (the number of sources in T)],
as follows. We may consider only subtrees of heights > 2. We decompose trees as
depicted in Fig. 3. Focus on a subtree 7T;, of height > 2, with s sources. Consider all
sinks of T, that are linked to u. Some of these sinks—say, vy, ..., vy—are also linked
to some other source, while some & of the sinks are not. Since T}, has height > 2, we
have k > 1; it is possible that h = 0. For any i € [1, k], sink v; is connected to some
gi > 1 sources other than u—call them w; 1, . . ., u;,4,. Consider the subtrees T, ;, for
i € [1,k], j € [1, gi]; each has height strictly smaller than T,’s. Let s; ; be the number
of sources in Ty, ,, so that s = 1 + Zle g;l si ;. We can calculate £y and E; for
T, from Ey and E for each T, ;, because we can control which of the v; become
ELIGIBLE.
We now apply Lemma 3 in Theorem 2, to complete the proof of Theorem 3.

270 Grzegorz Malewicz and Arnold L. Rosenberg

Fig. 3. Decomposing T',: shaded nodes are sources; blank nodes are sinks.

6 Solving BICSO Efficiently for Expansive Dags

Because the timing polynomial of Y, has high degree, we have sought nontrivial
classes of dags for which we could solve BICSO approximately optimally, but much
faster than X, ¢.. The initial result of our quest is Xy}, which approximates an optimal
solution to BICSO for the family E of composite expansive dags. Y., implements the
following natural, fast heuristic. For each source v of any £ € E, say that ¢, nodes
have v as their sole parent, and 1, nodes have other parents also. Say that £ has |E|
ELIGIBLE nodes and that we must execute the best r of these. Yy, selects the r nodes
that have the largest associated ¢,. This ploy solves BICSO to within a factor of 4 of
optimally for the family E.

Theorem 4. For any instance 1 = (£, X, E;r) of BICSO, where £ € E, Yoy, will, in
time O(|E)|), find solution to BICSO, whose increase in the number of ELIGIBLE nodes
is at least one-fourth the optimal increase.

Proof Sketch. We implement Y., by using a linear-time selection algorithm. One
notes that each node v selected by an optimal algorithm adds at most 2¢,, distinct ELI-
GIBLE nodes, while each node w selected by the heuristic adds at least %gaw such nodes.

References

—

. R. Buyya, D. Abramson, J. Giddy (2001): A case for economy Grid architecture for service
oriented Grid computing. /0th Heterogeneous Computing Wkshp.

2. W. Cirne and K. Marzullo (1999): The Computational Co-Op: gathering clusters into a meta-

computer. /3th Intl. Parallel Processing Symp., 160-166.

S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst. Scis. 9, 308-316.

4. 1. Foster and C. Kesselman [eds.] (2004): The Grid: Blueprint for a New Computing Infras-
tructure (2nd edition), Morgan-Kaufmann, San Francisco.

5. L. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid: enabling scalable virtual
organizations. Intl. J. Supercomputer Applications.

6. L. Gao and G. Malewicz (2004): Internet computing of tasks with dependencies using unre-

liable workers. 8th Intl. Conf. on Principles of Distributed Systems, 315-325.

hed

10.

11.

12.

13.

14.

15.

16.

Batch-Scheduling Dags for Internet-Based Computing 271

D. Kondo, H. Casanova, E. Wing, F. Berman (2002): Models and scheduling guidelines for
global computing applications. Intl. Parallel and Distr. Processing Symp.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000): SETI@home: mas-
sively distributed computing for SETIL. In Computing in Sci. and Engr. (P.F. Dubois, Ed.)
IEEE Computer Soc. Press, Los Alamitos, CA.

G. Malewicz (2005): Parallel Scheduling of Complex Dags under Uncertainty. 17th ACM
Symposium on Parallelism in Algorithms and Architectures, to appear.

G. Malewicz (2005): Implementation and Experiments with an Algorithm for Parallel
Scheduling of Complex Dags under Uncertainty. Submitted for publication.

G. Malewicz, A.L. Rosenberg, M. Yurkewych (2005): On Scheduling Complex Dags for
Internet-Based Computing. [EEE Intl. Parallel and Distr. Processing Symp., 66.

M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project MAC Conf. on Con-
current Systems and Parallel Computation, ACM Press, 119-127.

A.L. Rosenberg (2004): On scheduling mesh-structured computations for Internet-based
computing. IEEE Trans. Comput. 53, 1176-1186.

A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling. Computing 31, 115—
139.

A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some common
computation-dags for Internet-based computing. IEEE Trans. Comput. 54, 428-438.

X.-H. Sun and M. Wu (2003): GHS: A performance prediction and task scheduling system
for Grid computing. IEEE Intl. Parallel and Distributed Processing Symp.

	Batch-Scheduling Dags for Internet-Based Computing
	1 Introduction
	2 A Model for Executing Dags on the Internet
	2.1 Computation-Dags
	2.2 The Batched Idealized Internet-Computing Pebble Game

	3 The Intractability of BICSO Optimality
	4 Scheduling Composite Dags via Bipartite Dags
	5 Tractable BICSO Optimality for Composite Trees
	6 Solving BICSO Efficiently for Expansive Dags
	References

