
On-Line Bicriteria Interval Scheduling

Fabien Baille, Evripidis Bampis, Christian Laforest, and Nicolas Thibault

LaMI, CNRS UMR 8042, Université d’Evry,
Tour Evry 2, 523, Place des Terrasses 91000 Evry, France

{fbaille,bampis,laforest,nthibaul}@lami.univ-evry.fr

Abstract. We consider the problem of scheduling a sequence of intervals
revealed on-line one by one in the order of their release dates on a set of k
identical machines. Each interval i is associated with a processing time pi

and a pair of arbitrary weights (wA
i , wB

i) and may be scheduled on one of
the k identical machines or rejected. The objective is to determine a valid
schedule maximizing the sum of the weights of the scheduled intervals
for each coordinate. We first propose a generic on-line algorithm based
on the combination of two monocriteria on-line algorithms and we prove
that it gives rise to a pair of competitive ratios that are function of the
competitive ratios of the monocriteria algorithms in the input. We apply
this technique to the special case where wA

i = 1 and wB
i = pi for every

interval and as a corollary we obtain a pair of constant competitive ratios.

We consider the problem of scheduling in an on-line context a set of n intervals
on k identical machines. An interval i is defined as a tuple of five positive real
numbers (ri, pi, di, w

A
i , wB

i), where ri denotes the release date, pi the processing
time, di = ri + pi the deadline and wA

i and wB
i two arbitrary weights. We

consider the following on-line context: Intervals arrive (are revealed) one by one
in increasing order of their release dates, i.e. r1 ≤ r2 ≤ · · · ≤ ri ≤ · · · , and
they are not known before they are revealed. A revealed interval must either be
served or rejected. An interval i is said to be served or accepted if it is alloted
exclusively and without interruption (preemption is not allowed) to one of the
k machines from date ri to date di. Note that the acceptance of an interval
may lead to the interruption of already scheduled intervals. A schedule O is
valid if every served interval is scheduled at most once and if at each date every
machine schedules at most one interval. There are two objective functions that
we call the weight WA(O), defined as the sum of the first-coordinate-weights wA

i

of the accepted intervals, and the weight WB(O), corresponding to the sum of
the second-coordinate-weights wB

i of the accepted intervals in O. Note that if
an interval is rejected or scheduled and interrupted later before its deadline, it
is definitely lost and no gain is obtained from it for none of the metrics. In this
model, we search for a solution/schedule that simultaneously maximizes the two
objectives WA and WB. The particular weight function wA

i = 1 (resp. wB
i = pi)

corresponds to the well known size (resp. proportional weight) problems.
Competitive ratio. In order to analyze the performance of an on-line algorithm,
we use the notion of competitive ratio [4, 7]. Let σ1, · · · , σn be any on-line se-
quence. For every i, 1 ≤ i ≤ n, let A(σ1, · · · , σi) be the schedule returned by the

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 312–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On-Line Bicriteria Interval Scheduling 313

algorithm A at step i, i.e. when the first i intervals are revealed, and let O∗
i be

an optimal schedule of the set {σ1, · · · , σi} for some metric C. Then A is said to
be ρ-competitive for the metric C if, for all i, 1 ≤ i ≤ n, this inequality holds:

ρC(A(σ1, · · · , σi)) ≥ C(O∗
i)

For our bicriteria problem, an algorithm A is said to be (ρ, µ)-competitive if it
is simultaneously ρ-competitive for WA and µ-competitive for WB .
Previous works. To the best of our knowledge, this is the first work considering
the simultaneous maximization of two different weight functions in an on-line
context. Nevertheless, the off-line version of the bicriteria problem has been
treated in [2] where a (k

r , k
k−r)-approximation algorithm (1 ≤ r < k) has been

proposed. On the contrary, the monocriteria problems have been extensively
studied for both the off-line and the on-line versions. In particular, the off-line
versions are polynomial (see Faigle and Nawijn [6] for the size and Carlisle
and Lloyd [5] or Arkin and Silverberg [1] for the weight problems). In the
on-line context, the algorithm GOL of Faigle and Nawijn [6] is optimal for the
size problem. For the weight problem, there is a series of works going from
the paper of Woeginger, in [8], who proposed a 4-competitive algorithm for the
proportional weights problem in a single machine system, to the paper of
Bar-Noy et al. [3] who proposed the LR algorithm which is 2

1−2δ -competitive for
the proportional weight problem in a different model than ours (instead of
k machines, they consider a continuous channel where an interval requires less
than a portion δ of the total channel).
Outline of the paper. In Section 1, we describe a generic on-line algorithm for the
simultaneous maximization of two weight functions WA and WB. We prove that
it is a (k

r ρ, k
k−r µ)-competitive algorithm, for 1 ≤ r ≤ k, where ρ and µ are the

competitive ratios of the corresponding monocriteria algorithms. However, up to
our knowledge, no on-line algorithm is available for the general weight problem.
So, we focus, in Section 2, on the special case of the size and proportional weights
metrics. We combine the algorithms GOL of [6] for the size criterion and of LR of
[3] for the proportional weights criterion in our generic method. We thus propose
a bicriteria on-line algorithm and we prove that it induces a pair of constant
competitive ratios for this bicriteria case. Finally, we prove in the appendix the
competitiveness of LR.

1 Our Generic Bicriteria Algorithm

In this section, we describe our generic bicriteria on-line algorithm. It uses as
subroutines two on-line monocriteria algorithms having the following structure.
Structure of the monocriteria algorithms. At the release date ri of a new interval
σi, any on-line monocriterion algorithm can be split into two main stages. In the
first one, called the interrupting stage, a set of already scheduled intervals are
selected to be interrupted at time ri. This set can potentially be empty meaning
that no interval is interrupted when the algorithm considers σi. The second stage

314 Fabien Baille et al.

is the scheduling stage. Here, the algorithm can either reject the interval σi or
schedule it on one of the available machines.

The rough idea of our generic algorithm is the following: it simulates the
execution of two algorithms, say A for the maximization of the weight WA and
B for the maximization of the weight WB on r and k− r machines, respectively.
By doing this, it builds its own interrupting (resp. scheduling) stage from the
corresponding interrupting (resp. scheduling) stage of the input algorithms.

1.1 The Algorithm ABk

We consider the i-th step of an arbitrary algorithm for the weight problem,
i.e. the step at which interval σi is released. For any algorithm ALG and for
every execution step i of this algorithm, let Oi1 (ALG) (resp. Oi2(ALG)) be the
schedule given by ALG after the execution of its interrupting (resp. scheduling)
stage of step i.

Given two algorithms A for the maximization of the weight WA and B for
the weight WB , our generic algorithm ABk is constructed as follows: ABk builds
the final schedule by combining the schedules returned by algorithms A and B
when applied on r machines and k − r machines, respectively. For the ease of
presentation, we denote by Ar (resp. Bk−r) the algorithm A (resp. B) when
applied on r (resp. k− r) machines. We also call real (resp. virtual) the machines
involved in the algorithm ABk (resp. Ar and Bk−r).

For every execution step i of ABk, let Ri1 (ABk) (resp. Ri2 (ABk)) be the
set of scheduled intervals after the interrupting (resp. scheduling) stage of step
i on the real machines associated to ABk.

For every step i of the algorithm Ar (resp. Bk−r), let Vi1(Ar) (resp. Vi1(Bk−r))
be the set of scheduled intervals after the interrupting stage of step i on the r
(resp. k − r) virtual machines associated to Ar (resp. Bk−r), and let Vi2(Ar)
(resp. Vi2(Bk−r)) be the set of scheduled intervals after the scheduling stage of
step i on the r (resp. the k − r) virtual machines associated to Ar (resp. Bk−r).

Algorithm ABk

Input: k identical machines and an on-line sequence of intervals σ1, . . . , σn.
Output: After each step i (1 ≤ i ≤ n), a valid schedule Oi2(ABk) involving a

subset of σ1, . . . , σi on k real machines.
Step 0: V02(Ar) = V02(Bk−r) = R02(ABk) = ∅.
Step i (date ri):

1. The interrupting stage of ABk:
(a) Execute the interrupting stage of Ar (resp. Bk−r) on the r (resp.

k− r) virtual machines associated to Ar (resp. Bk−r) by submitting
the new interval σi to Ar (resp. Bk−r). Note that the set of intervals
scheduled and not interrupted by Ar (resp. Bk−r) is now Vi1(Ar)
(resp. Vi1(Bk−r)).

(b) On the k real machines associated to ABk, interrupt the intervals of
R(i−1)2(ABk) such that after this interruption we get:

Ri1(ABk) = Vi1(Ar) ∪ Vi1(Bk−r).

On-Line Bicriteria Interval Scheduling 315

2. The scheduling stage of ABk:
(a) Execute the scheduling stage of Ar (resp. Bk−r) on the r (resp. k−r)

virtual machines associated to Ar (resp. Bk−r) by serving or rejecting
the new interval σi.

(b) On the k real machines associated to ABk, switch to the appropriate
case:
i. If Ar and Bk−r reject σi, then ABk does not schedule (rejects)

σi. Thus, we have:
Ri2(ABk) = Ri1(ABk).

ii. If Ar or Bk−r serves σi (including the case in which both Ar and
Bk−r serve σi), then ABk schedules σi on any free real machine
at time ri. Thus, we have:

Ri2(ABk) = Ri1(ABk) ∪ {σi}.

1.2 Competitiveness of ABk

Here, we analyze the competitiveness of ABk. We start with the following lemma
which states that ABk returns a valid schedule and executes the same set of
intervals as the union of Ar and Bk−r .

Lemma 1 For every step i of the algorithm ABk, the schedule Oi2(ABk) is
valid and we have:

Ri2(ABk) = Vi2(Ar) ∪ Vi2(Bk−r)

Proof. We prove this lemma by induction on the execution steps i of ABk.
The basic case (step 0): By definition V02(A

r) = V02(B
k−r) = R02(ABk) = ∅

and thus, Oi2(ABk) is valid and of course R02(ABk) = V02(Ar) ∪ V02(Bk−r).
The main case (step i): Let us assume that O(i−1)2(ABk) is valid and that
R(i−1)2(ABk) = V(i−1)2(A

r) ∪ V(i−1)2(B
k−r) (assumption of induction).

1. The interrupting stage: We first need to prove that:
Ri1 (ABk) = Vi1(Ar) ∪ Vi1(Bk−r) and that Oi1(ABk) is valid.
(a) By definition ABk interrupts a subset of intervals of R(i−1)2(ABk) in

such a way that:

Ri1(ABk) = Vi1(A
r) ∪ Vi1(B

k−r) (1)

We have to show that there is always a subset of R(i−1)2 (ABk) that can
be removed such that the above equality is possible.
Since Vi1(Ar) ⊆ V(i−1)2(A

r), Vi1(Bk−r) ⊆ V(i−1)2(B
k−r) and given that

R(i−1)2 (ABk) = V(i−1)2(A
r) ∪ V(i−1)2(B

k−r) (by the assumption of in-
duction), we have Vi1(Ar) ∪ Vi1(Bk−r) ⊆ R(i−1)2(ABk).

(b) By definition, ABk interrupts only intervals scheduled in O(i−1)2(ABk),
and by the induction hypothesis, O(i−1)2(ABk) is valid. Thus, Oi1(ABk)
is clearly valid.

316 Fabien Baille et al.

2. The scheduling stage: Now, we have to prove that:
Ri2 (ABk) = Vi2(A

r) ∪ Vi2(B
k−r) and that Oi2(ABk) is valid. By the defi-

nition of ABk, several cases may occur:
(a) If Ar and Bk−r reject σi, then ABk does not schedule σi and we have:

i. Ri2(ABk) = Ri1 (ABk) (by the definition of ABk)
= Vi1(Ar) ∪ Vi1(Bk−r) (by (1))
= Vi2(Ar) ∪ Vi2(Bk−r)

(since Ar and Bk−r reject σi, we have:
Vi1(Ar) = Vi2(Ar) and Vi1(Bk−r) = Vi2(Bk−r))

ii. Oi2(ABk) = Oi1(ABk). Thus Oi2(ABk) is valid (because in item 1b
of this proof, we have already seen that Oi1(ABk) is valid).

(b) If Ar (resp. Bk−r) serves σi and Bk−r (resp. Ar) rejects σi, then ABk

schedules σi on any free real machine at time ri. We have:
i. Ri2(ABk) = Ri1 (ABk) ∪ {σi} (by the definition of ABk)

= Vi1(A
r) ∪ Vi1(B

k−r) ∪ {σi} (by (1))
= Vi2(Ar) ∪ Vi2(Bk−r)

(since Ar (resp. Bk−r) serves σi and Bk−r (resp. Ar) rejects σi, we
have: Vi2(Ar) = Vi1(Ar)∪{σi} (resp. Vi2(Bk−r) = Vi1(Bk−r)∪{σi})
and Vi2(Bk−r) = Vi1(Bk−r) (resp. Vi2(Ar) = Vi1(Ar))).

ii. Since Oi1(ABk) is a valid schedule (by the item 1b of this proof)
and Oi2(ABk) is built by adding σi to Oi1(ABk) only once, the only
reason for which Oi2(ABk) could not be valid would be because σi

is scheduled by ABk at time ri whereas there is no free machine at
time ri, i.e. because there is at least k + 1 intervals of Ri2(ABk)
scheduled at time ri by ABk. Let us prove that this is impossible.
Indeed, since Ar and Bk−r build at each time valid schedules, there
are at most r + k − r = k intervals of Vi2(Ar)∪Vi2(Bk−r) scheduled
at time ri by Ar and Bk−r , and thus, there are at most k intervals of
Ri2(ABk) scheduled at time ri by ABk (because we have just proved
above that Ri2 (ABk) = Vi2(Ar) ∪ Vi2(Bk−r)). Thus, Oi2(ABk) is a
valid schedule.

(c) If Ar and Bk−r serve σi, then ABk schedules σi on any idle machine at
time ri and we get:
i. Ri2(ABk) = Ri1 (ABk) ∪ {σi} (by the definition of ABk)

= Vi1(Ar) ∪ Vi1(Bk−r) ∪ {σi} (by (1))
= Vi2(A

r) ∪ Vi2(B
k−r)

(since Ar and Bk−r serve σi, we have Vi2(Ar) = Vi1(Ar) ∪ {σi} and
Vi2(Bk−r) = Vi1(Bk−r) ∪ {σi})

ii. We prove that Oi2(ABk) is valid in the same way as before. ��

A direct consequence of Lemma 1 is that ABk is better than Ar (resp. Bk−r)
for the weight function that Ar (resp. Bk−r) maximizes.

Corollary 1 Let WA and WB be two arbitrary weight functions. For every input
sequence σ1, . . . , σn and for each step i (1 ≤ i ≤ n) of ABk, we have:

WA(Vi2(Ar)) ≤ WA(Ri2 (ABk)) and WB(Vi2 (Bk−r)) ≤ WB(Ri2 (ABk))

On-Line Bicriteria Interval Scheduling 317

Proof. By Lemma 1, for every step i of the algorithm ABk, we have
Ri2 (ABk) = Vi2(A

r) ∪ Vi2(B
k−r) and thus Corollary 1 is valid. ��

In the following lemma, we analyze, for any type of weight function W ,
the competitive ratio of the algorithm A applied on r (r ≤ k) machines when
compared to the optimal schedule on a system of k machines.

Lemma 2 Let σ1, · · · , σn be any on-line sequence of intervals. Let A be an on-
line algorithm with competitiveness ρ on r machines (r ≤ k) and O∗

k (resp. O∗
r)

be an optimal schedule of σ1, · · · , σn for the weight function W on k (resp. r)
machines and Or be the schedule returned by Ar on σ1, · · · , σn on r machines.
Then,

W (O∗
k) ≤ k

r ρW (Or)

Proof. Since A is ρ-competitive, we have by definition W (O∗
r) ≤ ρW (Or). If we

multiply both sides of this inequality by k
r , we get k

r W (O∗
r) ≤ k

r ρW (Or).
Let O1 be the schedule composed of the first r machines of O∗

k in the de-
creasing order of their weights. Since O1 is an r-machine schedule, its weight is
at most W (O∗

r). We thus have:

k

r
W (O1) ≤ k

r
W (O∗

r) ≤ k

r
ρW (Or) (2)

Since O1 is an r-machine-schedule executing the intervals scheduled on the r
machines generating the maximum weight in O∗

k, the average weight per machine
in O1 is greater than the average weight per machine in O∗

k. So, we have: W (O∗
k)

k ≤
W (O1)

r . Combining this result with (2), we get: W (O∗
k) ≤ k

r ρW (Or). ��
Theorem 1 Let σ1, · · · , σn be any on-line sequence of intervals. If Ar is a ρ-
competitive algorithm for the weight function WA on r machines and Bk−r is a
µ-competitive algorithm for the weight function WB on k− r machines, then the
algorithm ABk using Ar and Bk−r as subroutines is (k

r ρ, k
k−r µ)-competitive.

Proof. Let O∗
k(A) be an optimal schedule of σ1, . . . , σn on k machines for the

weight function WA and O∗
k(B) be an optimal schedule of σ1, . . . , σn on k ma-

chines for the weight function WB . By Lemma 2, we have:
WA(O∗

k(A)) ≤ k
r ρWA(Vi2 (Ar)) and WB(O∗

k(B)) ≤ k
k−r µWB(Vi2(Bk−r))

Moreover, using Corollary 1, we have:
WA(O∗

k(A)) ≤ k
r ρWA(Ri2 (ABk)) and WB(O∗

k(B)) ≤ k
k−r µWB(Ri2(ABk))

Thus ABk is (k
r ρ, k

k−r µ)-competitive. ��

2 Application to the SIZE and the PROPORTIONAL WEIGHT

Given that, to the best of our knowledge, we do not know on-line algorithm with
constant competitive ratio for general weight functions, we focus in this section
on the particular case where wA

i = 1 and wB
i = pi for every i = 1, . . . , n, i.e. for

the size and proportional weights metrics. We first show that the optimal on-line

318 Fabien Baille et al.

algorithm GOL of Faigle and Nawijn [6] can be described following the two-
stages structure presented in the previous section. We also present in this form
the on-line algorithm LRk of Bar-Noy et al. [3]. Recall that GOLk is optimal for
the size problem while LR deals with proportional weights (but for a different
model than the one adopted here). Then, we use these algorithms as input of
our generic method.

Here is a description of the algorithm GOLk. It is the original algorithm
GOL of [6] (using k machines) except that it is split into an interrupting stage
and a scheduling stage.

Algorithm GOLk[6]

At the arrival of interval σi do:
Interrupting stage: If there are k served intervals intersecting the date ri,
let σmax be the one with the maximum deadline.
If σmax does not exist (there is a free machine), do not interrupt any interval.
If dmax ≥ di then interrupt σmax.
If dmax < di then do not interrupt any interval.
Scheduling stage: If an interval has been interrupted (a machine became
idle) or if there is a free machine, then schedule σi on any free machine. Else,
reject σi.

We now adapt the algorithm LR. In [3], LR is described as an algorithm running
on a continuous channel, where each interval requires a portion (not necessarily
contiguous) of this channel. In our model we consider k machines (instead of a
continuous channel), and each interval requires exactly one (discrete) machine.
That is why we give the description of LRk (the adaptation of LR on a discrete
model of k ≥ 3 machines). The proof of its 2

1− 2
k

-competitiveness is given in
the appendix because Lemma 3 and Theorem 2 are adaptations of the proof of
competitiveness of LR coming from [3] to our model.

Algorithm LRk(adaptation of [3])

We define Ft as the set of scheduled intervals containing date t.
When σi is revealed do:
Interrupting stage:
• If |Fri | < k, then do not interrupt any interval
• If |Fri | = k, then:

1. Sort the k + 1 intervals of Fri ∪ {σi} by increasing order of release
dates, if several intervals have the same release date, order them in
the decreasing order of their deadlines and let L be the set of the⌈

k
2

⌉
first intervals.

2. Sort the k+1 intervals of Fri ∪{σi} by decreasing order of deadlines
(ties are broken arbitrarily) and let R be the set of the

⌊
k
2

⌋
first

intervals.
If σi ∈ L ∪ R then interrupt any interval σj of Fri − L ∪ R.
Else do not interrupt any interval.

On-Line Bicriteria Interval Scheduling 319

Scheduling stage:
• If |Fri | < k then schedule σi on any free machine.
• If |Fri | = k, then:

∗ If σi ∈ L ∪ R then schedule σi on the machine where σj was inter-
rupted.

∗ If σi /∈ L ∪ R then reject σi.

Theorem 2 For proportional weights (wi = pi) and for k ≥ 3, LRk is 2
1− 2

k

-
competitive.

Recall that GOLr is an optimal on-line algorithm (i.e. 1-competitive) for the size
and LRk−r is an on-line 2

1− 2
k−r

-competitive algorithm for the proportional

weights problem. So, applying Theorem 1, we have:

Corollary 2 For k ≥ 4 and for all 1 ≤ r ≤ k−3, ABk applied with Ar = GOLr

and Bk−r = LRk−r is (k
r , 2k

k−r−2)-competitive for the size and proportional
weights criteria.

Note that the parameter r can be tuned in order to make ABk more precise
for one of the objectives. For example, if we set r = k−2

3 , we obtain a pair of
competitive ratios of (3

1− 2
k

, 3
1− 2

k

) ≤ (6, 6) and which tends to (3, 3) for large k.
In figure 1, we show all the couples of approximation ratios that our algorithm
applied with GOL and LR with k = 20 can reach by variations of r.

1284 16

40

35

30

25

20

15

10

5

20

Fig. 1. Competitive ratios for the Weight (Y-axis) and the Size (X-axis) when k = 20.

320 Fabien Baille et al.

References

1. E. Arkin and B. Silverberg, Scheduling jobs with fixed start and end times,
Discrete Applied Mathematics, 18 (1987), pp. 1–8.

2. F. Baille, E. Bampis, and C. Laforest, A note on bicriteria schedules with
optimal approximation ratios, Parallel Processing Letters, 14 (2004), pp. 315–323.

3. A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Band-
width allocation with preemption, SIAM J. Comput., 28 (1999), pp. 1806–1828.

4. A. Borodin and R. El-Yaniv, Online computation and competitive analysis,
Cambridge University press, 1998.

5. M. C. Carlisle and E. L. Lloyd, On the k-coloring of intervals, Discrete Applied
Mathemetics, 59 (1995), pp. 225–235.

6. U. Faigle and M. Nawijn, Note on scheduling intervals on-line, Discrete Applied
Mathematics, 58 (1995), pp. 13–17.

7. A. Fiat and G. J. Woeginger, Online algorithms: The state of the art, LNCS
no. 1442, Springer, 1998.

8. G. J. Woeginger, On-line scheduling of jobs with fixed start and end times, Theor.
Comput. Sci., 130 (1994), pp. 5–16.

Appendix: Proof of Theorem 2

Let O = LRk(σ1, · · · , σi) be the schedule on k machines returned by LRk on
σ1, · · · , σi. Let T t

i be the number of intervals of O containing the date t. Let F t
i

be the number of intervals of {σ1, · · · , σi} containing the date t. For the proof
of the Theorem, we need the following result:

Lemma 3 Using the above notations, the schedule returned by LRk satisfies:
∀i, ∀t, T t

i ≥ min{F t
i , k

2 − 1}

Proof. We proceed by induction on i. For i = 1, ∀t ∈ [r1, d1), we have: T t
1 =

F t
1 = 1 and ∀t /∈ [r1, d1), T t

1 = F t
1 = 0.

Suppose i > 1. According to the algorithm, two cases may occur:
First case: |Fri | < k. In this case, σi is scheduled by LRk and no interval is
interrupted. If t /∈ [ri, di), then the number of scheduled intervals which contain
the date t at step i is the same as at step i − 1. Thus, we have T t

i = T t
i−1.

Moreover, since t /∈ [ri, di), we have also F t
i = F t

i−1. So, by replacing T t
i−1 by

T t
i and F t

i−1 by F t
i in the induction hypothesis, this particular case is checked.

If t ∈ [ri, di), then since σi has been scheduled, we have: T t
i = T t

i−1 + 1. By the
induction hypothesis, we can rewrite this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (3)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (3) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i , k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (3) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i , k
2 − 1}.

On-Line Bicriteria Interval Scheduling 321

Second case: |Fri | = k. In this case, three sub-cases may occur: If σi /∈ L and
σi /∈ R. This means that σi is rejected by LRk. If t /∈ [ri, di) then T t

i = T t
i−1 and

F t
i = F t

i−1. By replacing T t
i−1 by T t

i and F t
i−1 by F t

i in the induction hypothesis,
this particular case is checked. If t ∈ [ri, di), since σi /∈ L ∪ R, there are always
at least

⌊
k
2

⌋
intervals containing t in O. Thus, T t

i ≥ ⌊
k
2

⌋ ≥ min{F t
i , k

2 − 1}.
If σi ∈ R (including the case where σi is also in L). This means that σi is

accepted by LRk and σj is rejected. Then, since σj is revealed before σi, we
have rj ≤ ri. Furthermore, we have dj ≤ di otherwise, we would have σj ∈ R,
contradicting the fact that σj is interrupted. We have then these cases: For all
t /∈ [rj , di), we have F t

i = F t
i−1 and T t

i = T t
i−1. Thus, by replacing T t

i−1 by
T t

i and F t
i−1 by F t

i in the induction hypothesis, this particular case is checked.
For all t ∈ [rj , ri), since σj /∈ L, there are at least

⌈
k
2

⌉
intervals containing the

date t. Thus, we have: T t
i ≥ ⌈

k
2

⌉
> min{F t

i , k
2 − 1}. For all t ∈ [ri, dj), we have

T t
i = T t

i−1 because σj is deleted but σi is added. Since σj /∈ R, there are at least⌊
k
2

⌋
intervals containing date t. Thus, we have T t

i ≥ ⌊
k
2

⌋ ≥ min{F t
i , k

2 − 1}. For
all t ∈ [dj , di), since σi occupies a machine that was free at step i − 1 of the
algorithm, we have: T t

i = T t
i−1 + 1. By the induction hypothesis, we can rewrite

this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (4)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (4) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i , k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (4) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i , k
2 − 1}.

If σi ∈ L and σi /∈ R. This means that σi is accepted by LRk and σj is
rejected. By the on-line context, since the last revealed interval is σi, all the
intervals which do not belong to L have a release date equal to ri (otherwise
they would belong to L). In particular, σj /∈ L because it is interrupted and
thus it satisfies rj = ri. Moreover, by the manner the algorithm builds L, σi

has also a greater deadline than σj (otherwise, σj ∈ L and thus it would not
be interrupted): dj ≤ di. We have 3 cases to consider: For all t /∈ [ri, di), we
have F t

i = F t
i−1 and T t

i = T t
i−1. Thus, by replacing T t

i−1 by T t
i and F t

i−1 by F t
i

in the induction hypothesis, this particular case is checked. For all t ∈ [ri, dj),
we have T t

i = T t
i−1 because σj is deleted but σi is added. Since σi /∈ R, there

are at least
⌊

k
2

⌋
intervals containing date t having a deadline at least di. Thus,

we have: T t
i ≥ ⌊

k
2

⌋ ≥ min{F t
i , k

2 − 1}. For all t ∈ [dj , di), since σi occupies a
machine that was free at step i− 1 of the algorithm, we have: T t

i = T t
i−1 + 1. By

the induction hypothesis, we can rewrite this equation:

T t
i ≥ 1 + min{F t

i−1,
k

2
− 1} (5)

If min{F t
i−1,

k
2 − 1} = k

2 − 1, then (5) becomes: T t
i ≥ 1 + k

2 − 1 = k
2 >

k
2 − 1 ≥ min{F t

i , k
2 − 1}. If min{F t

i−1,
k
2 − 1} = F t

i−1, then (5) becomes:
T t

i ≥ 1 + F t
i−1. But since t ∈ [ri, di), we have F t

i = F t
i−1 + 1. Thus, we have:

T t
i ≥ F t

i − 1 + 1 = F t
i ≥ min{F t

i , k
2 − 1}. We have checked the induction step

and thus the lemma. ��

322 Fabien Baille et al.

proof of Theorem 2: Let O∗
i be the optimal (off-line) weight schedule of σ1, . . . , σi.

Let T ∗t
i be the number of intervals of the schedule O∗

i containing date t. Let t be
a date of the schedule O returned by LRk on the input sequence σ1, · · · , σi and
i be a step of the algorithm. If min{F t

i , k
2 − 1} = F t

i then by Lemma 3, we have
T t

i ≥ F t
i ≥ T ∗t

i . Now, let us consider the case in which min{F t
i , k

2 − 1} = k
2 − 1.

Since O∗
i is valid, we have T ∗t

i ≤ k. Multiplying both sides by 1− 2
k

2 , by remarking
that k

2

(
1 − 2

k

)
= k

2 − 1 and by Lemma 3, we obtain:
T∗t

i

2

(
1 − 2

k

) ≤ k
2

(
1 − 2

k

)
= k

2 − 1 ≤ T t
i .

Thus, we have for all dates t and for all steps i: 2
1− 2

k

T t
i ≥ T ∗t

i . If we sum this

inequality for all dates t, we obtain that LRk is 2
1− 2

k

-competitive. ��

	On-Line Bicriteria Interval Scheduling
	1 Our Generic Bicriteria Algorithm
	1.1 The Algorithm ABk
	1.2 Competitiveness of ABk

	2 Application to the SIZE and the PROPORTIONAL WEIGHT
	References
	Appendix: Proof of Theorem 2

