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Abstract. Algorithmic skeletons abstract commonly used patterns of
parallel computation, communication, and interaction. By demonstrat-
ing a predictable communication and computation structure, they pro-
vide a foundation for performance modelling and estimation. Grids pose
a challenge to known distributed systems techniques as a result of their
dynamism. One of the most prominent research areas concerns the avail-
ability of proved programming paradigms with special emphasis on the
performance side. Thus, adaptable performance improvement techniques
have been the subject of intense scrutiny. Scant research has been con-
ducted on using the skeletal predicting information to enhance perfor-
mance in heterogeneous environments. We propose the use of these pre-
dicting properties to adaptively enhance the performance of skeletons,
in particular of a task farm, within a computational grid.

Hence, the problem addressed in this paper is: given a skeletal task farm,
find an effective way to improve its performance on a heterogeneous
distributed environment by incorporating information at compile time
that helps it to adapt at execution time. This work provides a grid-
enabled, adaptive task farm model, using the NWS statistical predictions
on bandwidth, latency and processor availability. The central case study
implements an ad-hoc task farm based on C/MPI and employs PACX-
MPI for inter-node communication. We present initial promising results
of parallel executions of an artificially-generated numerical code in a grid.

1 Introduction

With the advent of grid computing, the availability of proved programming
paradigms has become an issue in computational science. It is widely acknowl-
edged that one of the major challenges in programming support for these en-
vironments is the prediction and improvement of performance, due to the vast
aggregation of heterogeneous resources and policies. Indeed, holistic projects em-
phasise the need not only for reliable programming environments, but also for
improved performance capabilities [1, 2].

Performance enhancement is a multidimensional activity. One of the most
powerful of these dimensions relates to optimisation techniques which work adap-
tively on an application-specific basis. Grid adaptability is quite broad, and often

* Work partly supported by the EC-funded project HPC-Europa, contract number
506079. Special thanks are owed to Murray Cole for his suggestions and review. The
comments of anonymous referees have also helped to improve this paper considerably.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 401-410, 2005.
© Springer-Verlag Berlin Heidelberg 2005



402 Horacio Gonzélez-Vélez

relates to flexibility, ability to transform and evolve, re-usability, and extensibil-
ity. It encompasses several layers in the architecture, involves a multiplicity of
parameterised values, and is typically performed in a custom-built fashion either
at compile-time or during execution. There have been substantial examples of
the applicability of adaptable models in computational grids [3, 4]. Moreover,
AppLeS [5] builds on these efforts and provides a comprehensive approach in-
cluding resource discovery, selection, and scheduling . Nevertheless, one of the
most fascinating open-ended questions in computational science still concerns
the self-adaptation of programming structures to grids [0].

The separation of software and hardware has long been considered critical
to the success of any parallel programming endeavour, as it is vital to foster the
reuse of algorithms and software. Furthermore, we consider that the division of
the structure from the application itself to be crucial to the goal of delivering
adaptability.

Algorithmic skeletons (AS) abstract commonly used patterns of parallel com-
putation, communication, and interaction [7]. They present a top-down struc-
tured approach where parallel programs are formed from the parametrisation
of skeleton nest, also known as Structured Parallelism (SP). AS provide a clear
and consistent structure across platforms by distinctly decoupling the appli-
cation from the structure in a parallel program [3]. They do not rely on any
specific hardware and benefit entirely from any performance improvements in
the systems infrastructure.

SP is not universally applicable to the production of parallel and distributed
programs, but there is an important growing number of applications to consider
them an interesting research area [J]. Furthermore, skeletal methodologies in-
herently posses a predictable communication and computation structure, since
they capture the structure of the program. They provide, by construction, a
foundation for performance modelling and estimation of parallel applications.

This work is concerned with the feasibility of using this predicting capabilities
of SP. In particular we propose a model to enhance the performance of skeletal
task farms in grids. First, we consider related work and provide motivation,
moving on to some scalability results using the farm of the Cole’s eSkel [10)]
library. These figures are collected using a computational grid with nodes in
Edinburgh and Stuttgart. This part helps us to reinforce the feasibility of the
skeletal programming model for grids. Then, we have constructed our main case
study using an utilitarian skeletal task farm implemented using C, MPI and the
PACX-MPI [11] library for the inter-cluster communication. It also employs the
Network Weather Service (NWS) [12] to monitor the grid environment, forecast
processor and network availability, and adapt to the load conditions on the
nodes and interconnections. While the model is embedded in the code, the NWS
forecasts drive the behaviour adaptation of the task farm at execution time.
Finally, future directions for this work are supplied.

2 Motivation

We would like to formulate the problem covered in this paper as: given a skeletal
task farm, find an effective way to improve its performance on a heterogeneous
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distributed environment by incorporating information at compile time that helps
it to adapt at execution time.

Compile-time optimisers formulate static decisions about the expected be-
haviour of an application. On the other hand, run-time optimisers do not gen-
erally possess direct knowledge of the structure (meaning) of the application.
They lack specific information on its data and control flows and their opera-
tion is normally driven by load-balancing criteria. Indeed, the development of
effective compilers and optimisers remains an active area in computer science.

In addition to this, there is no equivalent to a compiler or to an universal
run-time optimiser for grids. Due to the complexity involved, grid optimisation
techniques have usually been custom-made. They require the modification of
the source code to enable its operation [5], the use of capacity characterisation
methods [13], or even the creation of special-purpose languages [11] .

From a grid perspective, although different parallel solutions have tradi-
tionally exhibited skeletal constructs, their associated optimisations have not
employed the structural information of the skeletons but rather modified the
scheduler [15], or have not decoupled entirely the structure from the behaviour
keeping the actual application interlaced [16]. On the AS side, the emerging
approaches to performance optimisation in computational grids have employed
process algebra methods [17] and future-based RMI mechanisms with Java [15].

AS possess a crucial property which favours performance optimisation: their
structured and predictable behaviour for a given meaning (program). Neverthe-
less, scant research has been conducted on improving the skeletal performance
by actively using this information from a systems infrastructure perspective.

Thus we would like to bring all these factors together and use the structural,
forecasting capabilities of skeletons to optimise pragmatically their performance
in grids. As opposed to standard optimisation at compile time, in this case
the behaviour of the application is known prior to the execution. In contrast
to standard run-time optimisation, the meaning is clearly defined as well. In
principle, therefore, this skeletal optimiser could forecast and enhance the actual
behaviour of the application by exploiting the knowledge of its structure.

The open question must be: how much can the structural forecasting infor-
mation of AS help to improve the performance of parallel applications whilst
executing in heterogeneous clusters and eventually in computational grids?

Hence, we argue that the AS need to evolve to include adaptive capabilities
to improve its performance in the Grid. In this work, we present a pragmatic
approach using an optimised ad hoc task farm skeleton, NWS, and a realistic
grid environment. It is important to note that we do not intend to develop a
scheduler nor to solve the general optimisation case for every structured paral-
lel program. We concentrate on empirically finding optimisation techniques for
solutions based on skeletal task farms.

This work is the first step in the development of a framework which incorpo-
rates different SP programs and its associated optimisation techniques, similar
to the way a compiler incorporates optimisation techniques, to be deployed in
computational grids as illustrated in Fig. 1. The ultimate objective of this ongo-
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Fig. 1. Methodology to Introduce Adaptiveness into Structured Parallelism Programs

ing endeavour is to build upon theoretical performance models and design a set
of adaptive techniques. The main difference to other performance approaches
is that it intends to be SP-oriented, adaptable by construct, and focused on
empirical, system-infrastructure methodologies.

3 The Task Farm

We have selected a task farm for this initial approach due to its applicability
to the solution of a great number of problems in parallel programming and its
simple structure.

A Task Farm (TF) can be roughly described as a “farmer” process which
spawns N independent “worker” processes to execute a parallel workload. The
TF is composed by a input I, an output O and a function F', or TF = (I, O, F).
A worker executes a task by mapping F into a subset of I (task size), computing
a subset of O, and then reporting back to the farmer for the next unit of work
or termination. This is shown schematically in Fig. 2.

The TF construct has traditionally dealt with fine-grained data parallelism.
In its canonical form, the communication times between the farmer and the
workers can be adjusted to be constant and much less than the computation
times [19]. All workers are allocated to dedicated processor in a parallel machine
and the computation of each element O is independent and characterised by
the fact that the F' does not generate the same amount of work for different
elements. The TF needs to keep distributing the elements in I to avoid worker
starvation while minimising communication. This TF feature aims at providing
the best load-balancing. Under this scenario, the number of elements of I sent
to a given worker at once (task size) can be statically calculated to minimise idle
times and require minimal scheduling from the farmer side [19].
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Fig. 2. A Task Farm

However, in more realistic scenarios, the farmer requires to assign different
tasks sizes to workers because:

— The underlying architecture can have multiple communication links between
the farmer and workers with different bandwidths and latencies

— The workers and the farmer run in non-dedicated nodes with distinct work-
loads in a distributed environment

Furthermore, in a computational grid, communication and computation times
vary greatly, an undersized farmer, a saturated communication channel, or the
sudden termination of a worker can produce unpredictable situations. Thus our
particular objective is to adaptively determine the optimal task size for each
worker in a task farm in order to minimise the total execution time for a given
application.

4 Implementation

We have initially employed the first version of the Cole’s eSkel library and an arti-
ficial integer application. The overall system is configured by evenly distributing
the processes between two 16-node Beowulf clusters located at the High Perfor-
mance Computing Centre (HLRS) in the University of Stuttgart and the School
of Informatics in the University of Edinburgh respectively.

The farmer node has been positioned at HLRS. We have used the PACX-MPI
library for interconnection with the allocation of two pairs of communication
nodes to interconnect both installations. This is the standard requirement for
soundly executing PACX-MPI. The MPI versions are MPICH and LAM/MPI
and the nodes and communication channels are in non-dedicated mode.

Figure 3 shows the channel utilisation from the worker standpoint on the
eSkel Task Farm version 1.0 and PACX-MPI 5 for a simplistic application. It
presents different values of I ranging from 160B or I = 200 to 1.6MB or I =
200,000. It is important to mention that half of the workers are located in
Edinburgh while the other are in Stuttgart.

Although the communication channel at 270KB/s is not saturated while
working with 8 processes and 1.6 MB and 160KB vectors, equivalent to an [



406 Horacio Gonzélez-Vélez

300000
270000%/ a 1 (8 bytes/element) ;
——’z,@ 160B ® 1.6kB N 16KB *, 160KB?%, 1.6MB
N 1 %,
g 240000 1 “"’g
b %,
£ 210000+ %,
4
S i @,
2,
= 180000 s,
(=] 1 %
e y
§ 1500001% ", ﬂ
&= "N A
= T Y I//,,'”..
5 120000+ " 3 i o
o T 4 i, &
& 90000+ \. ° ””’II/,.,II’//I.I[/I o
= 1 L " . I ......
< « " e, - ..".l
= 60000+ "y Ml
Q 1 LI R s
30000 + ----------l
0 ; ‘ ‘
8 16 24 32

No. of Workers

Fig. 3. Worker Channel Utilisation for different values of I, ranging from 160B or
I =200 to 1.6MB or I = 200,000, using the eSkel Task Farm version 1.0 and PACX-
MPI 5. Half of the workers are located in Edinburgh and the other half in Stuttgart

of 200,000 and 20,000 8-byte data elements respectively (« in Fig. 3), the in-
crease to 16 processes with the same amount of data implies a 50% decrement
in the ability to transmit (5 in Fig. 3). This is unexpected since there are more
processes transmitting than the decrease in channel utilisation.

After the analysis of the communication patterns when increasing the number
of processes, the performance degradation in the communications was attributed
to the use of MPI collective communication operations under PACX-MPI, since
the synchronisation mechanisms in PACX-MPI are not optimised for collectives
across sites.

In order to address this issue, we have implemented a new skeletal TF using
MPI send-receive operations only. Furthermore, this new TF incorporates the
ability to adapt the task size using the NWS forecasting capabilities of the task
farm.

NWS provides utilitarian forecasting figures based on the statistical time-
series analysis of the processing and networking load and configuration. It
presents fault-resilient capabilities to support adaptive applications, and its ac-
curacy has been successfully tested in major grids [20].

This case study features two distinct approaches to define the task size: static
and adaptive. In the former, the task size assigned to a worker is defined by the
full input data size and the number of workers. Although each worker operates
on the same task size, except possibly for the last one, even processing is not
guaranteed due to the different node workload and network conditions.

In the adaptive strategy, the central part of this work, the task size is defined
by taking into account four factors:



An Adaptive Skeletal Task Farm for Grids 407

Available CPU: CPU fraction allocatable to a new process

— Bandwidth: Speed to transmit data to/from the farmer and a worker
Current CPU: CPU fraction usable by a running process

— Latency: Time (in msec) to send a TCP message from the farmer to a worker

The forecasts of the above system indicators, supplied by NWS, are com-
posed into a fitness index F'I as shown in (1). F'I defines the adaptive task size
assuming a certain system behaviour based on historic measurements. It is also
important to mention that the heuristic to calculate the index coefficients is ap-
plication dependant, and in this initial approach, based on an artificially-created
application, we have employed A = 0.4, B = 0.1, C = 0.4, and L = 0.1. The
intention is to have an even task processing by allocating larger tasks to the
fitter nodes in terms of its processing and communications.

B x bandwidth; 4O x current, + L« min(latency)
max(bandwidth) ’ latency;

FI; = Axavail; + (1)

The algorithm provides default values which assume an unfit node, since
unexpected surges in workload and latencies may affect the operation of the
NWS sensor and memory processes returning no readings at execution.

5 Empirical Results

We have deployed the initial implementation employing a configuration including
32 processors distributed into two 16-node Beowulf clusters (bw240 and bw530)
located at the School of Informatics in the University of Edinburgh. A summary
of the hardware and software configuration of a typical node in each cluster is
presented in Table 1.

Table 1. Hardware/Software Configuration of the bw240 & bw530 Beowulf Clusters
located at the School of Informatics in the University of Edinburgh

CONFIGURATION bw240 bw530

CPU Intel Pentium 4 1.80GHz Intel Xeon 1.70GHz
Memory 1 GB 2 GB

Linux kernel 2.4.20-24.7_1.public.1 2.4.20-31.9_v1_dice_1
gee gce-2.96-112.7.1 gee-3.2.2-5
LAM/MPI lam-6.5.6-tcp.1 lam-6.5.8-4
PACX PACX-5.0-beta 9/8/04 PACX-5.0-beta 9/8/04
NWS 2.10.1 2.10.1

All nodes were on non-dedicated mode during all the experiments, and their
interconnection channels did not have any bandwidth reservation. We observed
that the workloads, latency and bandwidth varied greatly during the experimen-
tation periods.

There were NWS sensors running in all nodes, and there was a clique encom-
passing all nodes. The NWS name and memory server daemons were running in
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the farmer node. We allocated four nodes (two per cluster) to run the PACX-
MPI communication processes. All execution time measurements were obtained
using the MPI_Wtime function for the TF skeleton only.

The farmer, the workers and the two-pair communications hosted concur-
rently the series of jobs for the static and adaptive runs for each I (and therefore
under similar external load and competing for the same resources). All farmer
and worker had a system priority of 10.

Figure 4 graphs the execution times for I = 512,1024, 2048, 4096, 16384. All
entries in the graph perform O(10'2) daxpy operations, and present 8 different
lines corresponding to 4, 8, 16, and 32 workers for the static and dynamic models.
The thicker lines average the series of executions for both models.
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Fig. 4. Task Farm execution times (in seconds) for a series of concurrent executions.
The application performs O(10'?) daxpy operations. Key: [numb][model], e.g., 4S
means 4 workers and Static model. The thick lines are the average of all executions

In an homogeneous dedicated system, one would expect a smooth line. That
is to say, the peaks in the execution times in both models are chiefly defined by
the non-deterministic nature of this grid, e.g. the noticeable peak in the static
case with 8 workers and I = 8192. Hence, it is clear that the adaptive model
surpasses the static one, as reflected by the fact that its averaged graph is flatter
and with lower time measurements for every entry of I.

6 Future Directions

Although the nodes involved in this experiment demonstrated a certain degree of
homogeneity within the same Beowulf cluster, their extremely different workload
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and interconnections made them distinct enough to become a representative
environment for this initial case study. Even more, the uncontrolled workloads
present at the execution time comprised a non-deterministic scenario. On the
other hand, the model still has room for improvement on its interaction with the
NWS APL

The skeletal approach has helped us to discretise and bound the parameters
involved, reducing the number of combinations. The use of AS allowed us to
make assumptions on the input and output sets that permit a more effective
allocation of computation and communication resources.

These results may seem to be intuitive. However, we consider them significant
since they provide a common ground to further tweak our model under the
dynamic environment of a computational grid. We intend to keep improving it
by:

— Devising a more accurate adaptiveness strategy through more comprehensive
experimentation. A biomedical code is being tinkered with [21].

— Deploying a faster distribution and execution of tasks by analysing the scal-
ability, buffering, and resource monitoring issues.

— Improving the model by incorporating new indicators such as task termina-
tion time and CPU capacity. This in turn will provide foundations to develop
a methodology for the creation of the index heuristics.
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