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Abstract. Scientists are increasingly using large distributed systems built from
commodity off-the-shelf components to perform scientific computation. Grid com-
puting has expanded the scale of such systems by spanning them across orga-
nizations. While such systems are cost-effective, the usage of large number of
commodity components causes high fault and failure rates. Some of these faults
result in silent data corruption leaving users with possibly incorrect results. In
this work, we analyzed the faults and failures that occurred in Condor pools at
UW-Madison having a few thousand CPUs and in two large distributed applica-
tions: US-CMS and BMRB BLAST, each of which used hundreds of thousands
of CPU hours. We propose ‘silent-fail-stutter’ fault-model to correctly model the
silent failures and detail how to handle them. Based on the model, we have de-
signed mechanisms that automatically detect and handle silent failures and ensure
that users get correct results. Our mechanisms perform automated fault location
and can transparently adapt applications to avoid faulty machines. We also de-
signed a data provenance mechanism that tracks the origin of the results, enabling
scientists to selectively purge results from faulty components.

1 Introduction

Scientists are increasingly using distributed systems built from commodity components
for their computing needs. Grid computing [1] has increased the scale by sharing these
computing resources across organizations. While this approach is cost-effective, hard-
ware errors may create havoc if the system software and applications do not handle them
appropriately. For instance, most of the several thousand UW-Madison Condor pool
compute nodes have non-parity memory. A stray alpha particle may corrupt the mem-
ory leaving the scientists with incorrect results. Further, just failure of certain memory
chips may corrupt parts of the computation and this failure may go unnoticed for a long
period.

Hard-drives, RAID-controllers [2] and processors may also exhibit such faulty be-
havior. While detecting such faulty components is itself difficult, detecting all the cor-
rupted results and recomputing them is even more difficult. This leaves the users with
results that may be incorrect. This is particularly troublesome for large-scale computa-
tion performed on these distributed systems. While system-administrators may detect
these faults at some point and replace the faulty components, purging the results that
touched these components is non-trivial.
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We analyzed the faults in large distributed systems by looking at the faults and fail-
ures that occurred in the Condor pools at UW-Madison campus, and in two large dis-
tributed applications: US-CMS and BMRB BLAST, each of which processed terabytes
of data and used hundreds of thousands of CPU hours.

In this work, we present a summary of our experience and propose ‘silent-fail-
stutter‘ fault model that correctly models components that exhibit silent failures. We
highlight the implications of this model and detail what a system incorporating such
components should do.

Using the insights from the model, we have designed mechanisms that can automat-
ically detect and handle silent failures taking into account user specified policies. Our
mechanisms also provide fault location and can dynamically adapt applications to avoid
faulty machines. They keep track of the origin of the result, including the components
that interacted with the source component to generate this result. This enables users at
any point to selectively purge results that interacted with faulty components. Finally,
we evaluate our new model and the mechanisms on a real-life distributed workload and
highlight its effectiveness.

2 Faults in Distributed Systems

In this section, we give a widely accepted definition of faults, and present different types
of faults experienced by real distributed applications.

2.1 Definition of Faults

The widely accepted definition, given by Avizienis and Laprie [3] is as follows. A fault
is a violation of a system’s underlying assumptions. An error is an internal data state
that reflects a fault. A failure is an externally visible deviation from specifications. A
fault need not result in an error, nor an error in a failure. An alpha particle corrupting a
memory location is a fault. If that memory location contains data, that corrupted data is
an error. If a program crashes because of using that data, it is a failure.

2.2 Experienced Faults in Distributed Systems

We analyzed the faults in large distributed systems by looking at the faults and failures
that occurred in two large distributed applications: US-CMS and BMRB BLAST, each
of which was processing terabytes of data and using hundreds of thousands of CPU
hours. We also analyzed several other small applications running in the Condor pool at
UW-Madison campus having a couple of thousand compute nodes. The most common
failures we have observed are:

Data Corruption. Faulty hardware in data storage, staging and compute nodes cor-
rupted several data bits occasionally. The faults causing this problem included a bug
in the raid controller firmware on the storage server, a defective PCI riser card, and
a memory corruption. The main problem here was that the problem developed over a
course of time, so initial hardware testing was not effecting in finding the problems.
The raid controller firmware bug corrupted data only after a certain amount of data was
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stored on the storage server and hence was not detected immediately after installation.
In almost all of these cases, the data corruption happened silently without any indication
from hardware/operating system that something was wrong. Tracking down the faulty
component took weeks of system administrator’s time on average.

Hanging Processes. Some of the processes hang indefinitely and never return. From the
submitters point of view there was no easy way of determining whether the process was
making any progress or was hung for good. The most common cause of hanging data
transfers was the loss of acknowledgment during third party file transfers. In BMRB
BLAST, a small fraction of the processing hung and after spending a large amount of
time, the operator tracked it down to an unknown problem involving the NFS server
where an NFS operation would hang.

Misleading Return Values. An application returning erroneous return values is a very
troublesome bug that we encountered. We found that even though an operation failed,
the application returned success. This happened during some wide area transfers using
a widely used data transfer protocol. We found that if the destination disk ran out of
space during a transfer, a bug in the data transfer protocol caused the file transfer server
to return success even though the transfer failed. This in turn resulted in failure of
computational tasks dependent on these files.

Misbehaving Machines. Due to misconfigured hardware or buggy software, some ma-
chines occasionally behaved unexpectedly and acted as ‘black holes’. We observed
some computational nodes accepting jobs but never completing them and some com-
pleting the job but not returning the completion status. Some nodes successfully pro-
cessed certain job classes but experienced failures with other classes. As a particu-
lar case, in WCER video processing pipeline [4], we found that a machine that had a
corrupted FPU was failing MPEG-4 encoding whereas it was successfully completed
MPEG-1 and MPEG-2 encodings.

Hardware/Software/Network Outages. Intermittent wide area network outages, out-
ages caused by server/client machine crashes and downtime for hardware/software up-
grades and bug fixes caused failure of the jobs that happened to use that feature during
that time.

Over Commitment of Resources. We encountered cases where the storage server
crashed because of too many concurrent write transfers. We also encountered data trans-
fer time-outs that that were caused by storage server trashing due to too many concur-
rent read data transfers.

Insufficient Disk Space. Running out of disk space during data stage-in and writing
output data to disk caused temporary failures of all involved computational jobs.

3 Why Do Current Fault Models Not Work Well?

Byzantine [5] and fail-stop [6] are two widely used fault models. In Byzantine model,
a component can exhibit arbitrary and malicious behavior, perhaps involving collusion
with other faulty components. In fail-stop model, in response to a failure, the component
changes to a state that permits other components to detect a failure has occurred and
then stops.
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Byzantine model is too general in nature and reasoning out the different scenarios
is difficult. Normal systems may not encounter such malicious behavior. However, it
is useful in security where such adversarial behavior may occur. Fail-stop model is at
other end of the spectrum and it is extremely simple and tractable. For this reason, most
systems are built using the fail-stop model.

Unfortunately, the fail-stop model is too simple to model the behavior of many
components. Arpaci-Dusseau [7] found that similar components differ widely in per-
formance, enough to be called a performance failure. To model the behavior of such
components, they introduced the fail-stutter model where a component may operate at
reduced performance level in addition to failing and stopping. Fail stutter behavior is
commonly seen in disks where the controller may transparently remap bad sectors and
such a disk may have lower performance compared to a bad-sector free disks because of
extra seeks. Fail-stutter separates failures into correctness and performance failures and
correctly models components that have performance failures but are correct. Fail-stutter
expects the components to behave like fail-stop when a correctness failure occurs.

Even fail-stutter does not correctly model behavior of many components. Many
components on encountering a correctness failure do not immediately change to a state
that allows other components to detect the failure. For instance, if a memory chip is cor-
rupted, it does not give that information to other components. A memory tester program
can detect the corruption by writing data to it and reading the written data and verifying
it. Parity and error correcting does not fully address this issue. For instance, a chip with
a fault that prevents data from being written to it cannot be detected by parity because
the parity bits are correct for the incorrect old data.

In a distributed system, significant fractions of the applications involve a pipeline
of processing [8]. If a particular component in the pipeline generates incorrect data
because of a fault, other components cannot detect immediately that this component
has failed.

4 Silent-Fail-Stutter: A More Accurate Fault Model

Fail-stop expects components that encounter a failure to immediately change state and
let other components detect that failure. As shown in the previous section, many com-
ponents do not indicate a failure immediately. To address this, we propose a new fault-
model called ’silent-fail-stutter’. In this model, on failure a component may not imme-
diately change state and convey its failure to other components. However, other com-
ponents can at anytime detect if a component has failed by testing it, incurring a certain
cost. Further, the stutter behavior may be an indicator of impending failure and other
components can use that as a heuristic to test that component for failure. Figure 1 shows
the different fault models and how they relate to each other.

We believe that silent-fail-stutter models real life behavior of components better
than fail-stutter while maintaining tractability. Below, we give a few examples of real-
life cases where silent-fail-stutter is more appropriate than fail-stutter.

System Memory. Most of today’s system memory chips are non-parity. In non-parity
memory, memory corruption cannot be detected immediately and hence fail-stop and
fail-stutter are not suitable models. Silent-fail-stutter is a suitable model because a mem-
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Fig. 1. Different fault models and their relation

ory tester program can detect a corrupt memory chip and doing this test incurs a cost.
With parity and error-correcting memory, a chip that is faulty with respect to mem-
ory writes exhibits silent-fail-stutter. Even though most but not all read errors may be
detected by parity, a corrupt chip is detected only when some earlier written data is
accessed, making fail-stop inappropriate. A fail-stop component would have detected
failure earlier, say during DRAM refresh cycle, and informed other components. Thus
for all types of system memory, silent-fail-stutter is a suitable model.

Processor Cache. Processor caches are SRAMs and typically starting from Level 2
have error correcting code. Register [9] reports cases where Solaris operating system
crashed and rebooted because the UltraSparc II had E-cache(level2 cache) parity errors.
Sun’s best practices guide [10] advised system administrators to log such failures and
replace the processor on second such failure.

The behavior is not fail-stop, because a processor with the faulty cache does not
retain information about a cache block failure across reboots even if the failure is per-
manent. In addition, a cache block failure is detected only when some data is written to
it and fails parity test when read back.

Silent-fail-stutter is a more accurate model because even though a cache block may
fail at any time, it may not be detected immediately. A program can test if any cache
block is faulty by writing data to all cache blocks and reading it to verify that there is
no corruption. Doing this involves a cost that silent-fail-stutter models making it a good
fit.

Faults in Distributed Systems. If a system is built from silent-fail-stutter components,
then silent-fail-stutter is the correct model for that system. The faults we mentioned in
the section 2, were all silent-fail-stutter. The problem was that applications expected
fail-stop behavior whereas the components exhibited silent-fail-stutter.

5 Implications of Silent-Fail-Stutter

Since components may fail and not convey the failure to other components, some com-
ponent should periodically or on certain events determine the state of each component
and if a failure is detected, report it to other components. If a single component makes
the checks, designers should ensure that this component is more reliable than the ones
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it checks. All the components can co-operate to perform this check in a distributed
manner.

These ways of handling silent-fail-stutter have been known informally for a while.
For instance, processors during startup have the ability to test the memory for errors and
in case of error report that to the user and stop. Here the processor is assumed to be more
reliable than the memory and the whole system behaves like fail-stop even though the
underlying component, memory, is silent-fail-stutter. However, with always-on systems,
memory test during startup may not be sufficient.

Figure 2a shows how the performance changes with respect to time for two types
of components. For one type, the performance drops gradually and for the other, the
performance drop is minimal at first and then a sudden drastic drop. The figure also
shows an acceptable performance limit. Below the acceptable performance, correctness
failures may occur. Many components exhibit such gradual performance drop making
it easy to predict their failure ahead of time.

Fault masking at times results in the drastic fall in performance. For example, con-
sider a failing disk where the sectors are failing because the magnetic media is loosing
its ability to retain stored data. If the hard disk employs sector remapping, it may be
able to hide the bad sectors for a while by which time the media may have degraded to
a point where suddenly most sectors fail causing a drastic drop in performance. A good
solution to this is to expose this information about faults, so that a smarter higher-level
system can use this information to take some action.

Since, components may fail silently, how often to test them is of importance. Doing
the test occasionally runs the risk of not detecting the failure for a longer duration.
Running the test often may result in considerable overhead.

Figure 2b shows the cost curve for component testing and using possibly incorrect
results for a hypothetical system. The cost curves would depend on failure probability
of the component, cost of testing and the cost of incorrect results. Here, we use the term
cost loosely. In practice, we can normalize the cost to a meaningful common form like
time, computation that can be performed in that time, etc. For mission critical systems,
the cost of possibly incorrect result would be infinity. Similarly, for some computation
that generates hints for heuristics, the cost of possibly incorrect result would be low.
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If the silent-fail-stutter component belongs to gradual performance decline category,
then the tester can predict when it is going to fail by testing the current performance and
co-relating it with an existing model of the component behavior. Conversely, if the drop
in performance is less than a threshold, an interacting component can trigger the tester
to test that component.

In distributed systems, the cost can be amortized over all the interacting compo-
nents. For instance, if there are ‘n’ components that use the result from a single compo-
nent, the single component can be tested at 1/n of the frequency that would be needed
if there were only one interacting component. This is because, the tester can inform
other components of the result of the tests and in most cases getting the result of pre-
vious test is much cheaper than performing a new test. Therefore, as a good system
design principle, distributed system designers should implement mechanisms to test
silent-fail-stutter components and report them to interested components.

6 Failure Detection in Distributed System

Complexity of distributed systems makes failure detection difficult. There are multiple
layers from the hardware to the application. Since we did not want to impose an undue
burden on application developers to handle failure detection and handling, we imple-
mented the error/failure detection on top of the application, by verifying that results
generated are correct. To do this, the applications should allow multiple executions and
they should produce reproducible results.

Grid applications are expected to have the ability to be run multiple times because
they could be pre-empted from a resource. Further, to enable checking of outputs, they
need to generate reproducible results. Most applications already do that. We need to
clarify that applications produce both an output and a log of the processing. The log
of the processing may include start time, information about execute machine, etc and
would not be reproducible across multiple executions. However, the output, say a pro-
cessed image would be the same across executions.

In addition to detecting erroneous results, we also need to detect the cause of the
fault and possibly replace that faulty component. Identifying the source of the erroneous
result has so far been a ’black art’ in the realm of select few system administrators and
operators. This process takes considerable amount of time, usually weeks, expending
considerable amount of human resources.

We classify silent failures into two types as shown in figure 3. Type I silent failures
are silent failures that give incorrect results without any error status indication. Type II
silent failures are silent failures in which the process or transfer just hangs. Type I gives
a successful return code and shows that the process is completed but the results are
incorrect. This normally happens because of interface mismatch where a component
expects underlying components to be fail-stop, but they are in fact silent-fail-stutter.
Type II never returns, so user cannot find out if the process will complete. This could
be caused by bugs. In addition to silent failure, jobs may fail with an error status and
they are easier to detect. We will first discuss about handling Type I.

We want to detect if a failure has occurred and if we need to track down the cause
of that failure. A silent failure of lower level component may result in a failure higher
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Fig. 3. Type I and Type II silent failures

up the chain and to track down the fault, we may need to go down the hierarchy. For
instance, the cause of a computation failure may be because of data corruption in the
intermediate storage server and this in turn may be caused by a faulty RAID controller
in the storage server. We feel that automatically isolating the fault to whole system
boundary is easier and this would aid the system administrator in locating the exact
problem.

Consider a simple case where the user has to be 100% certain that the result is
correct. A simple way of doing that is to compute the result twice and verify that they
match. While doing this we need to be careful to ensure that the two computations
do not overwrite the same data. Name space mapping can address this. Suppose if we
find that a result is incorrect, we can pick up all the incorrect results in a given time
period and all systems interacted with most of the results is the likely culprit. A simple
mechanism that detects this can notify it to the system administrator who can then
test that system. At the same time, the component can give feedback to higher-level
planners like Pegasus [11] and/or distributed schedulers to ensure that they do not use
this resource until the fault has been resolved. Verification of data transfers involves
checksum generation and verifying that source and destination checksums match.

Components belonging to silent-fail-stutter allow testing to determine a failure. The
methodology for testing can be inferred from “THE“ multiprogramming system [12],
where they had a layered structure to test that reduced the number of test cases. We
believed that a conscientious distributed system designer should design such a test in-
frastructure. If such a test infrastructure exists, the mechanism on detecting a failure can
trigger a test of the whole system to isolate the faulty component. As an alternative, to
isolate machine faults at a coarse grain, a tester can periodically execute a test program
that generates a known result and takes a certain deterministic amount of time on each
machine. If any machine gives a wrong result or the run time deviates considerably, the
system administrator can be informed of the problem.
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If the user does not want to pay a 100% overhead by performing each computation
twice and if testing system exists, he can specify the fraction of extra computation that
he is willing to perform. The failure detector will inject that fraction of extra computa-
tion into the distributed system in a statistically unbiased manner. The results of these
extra computations are compared with results of the previous execution and verified
to be same. In case of difference, the failure detector can tag those machines and per-
form the computation again on a different machine to identify the faulty one. When the
failure detector identifies a faulty machine, it can report the time from the successful
machine test to current time as time when the machine was in a possibly faulty state.
Results generated using that machine during that time may have to be recomputed.

Handling Type II silent failures requires some more effort. The issue is whether it is
possible to detect such a failure. In practice, most of the hung processes have a way of
detecting that they have failed to make forward progress. A simple case is that of data
transfer, we can find out how the file size varies over time and if the file size does not
change for a long period, we can know that the file transfer has hung. Another way is
to come up with reasonable time-outs for operations. We can find out that a transfer or
computation has hung if it does not complete in a certain period.

Most of the present day distributed workloads consist of a large number of in-
stances of the same application. Typically, the standard deviation of execution time
is of the same order of magnitude as mean if not lesser. This lends a very effective
way to detecting Type II failure. Using this, mechanisms can set the threshold to be
mean + 3× StandardDeviation or some similar threshold. Users can specify policy
on what fraction of the processing they are willing to re-do. If users want responsive-
ness, they may trade some extra processing and set a lower threshold. If they want to
minimize the overhead, they would use a higher threshold.

7 Evaluation

To evaluate the effectiveness of silent-fail-stutter model and our discussion on failure
detection, we implemented a prototype of the mechanism mentioned in the previous
section.

We looked at how components should convey the results of test and we decided
to use a database to log the results of tests and timestamp of tests. We also log the
results of application execution into the database. To get this information, we parse
the distributed batch scheduling system (Condor) user-job log-files and store them in a
relational database. We developed the schema for doing it from our previous work [13].
Since we wanted to track down the origin of the results, we store the job description
also in the database. Figure 4 shows the process.

We found that users typically submit job bundles specified as a directed acyclic
graph(DAG). We categorize a job bundle as an application-class. Users normally tag
application class and we can use that as well if the same application class spans across
multiple job bundles.

For verification of results, we store the md5 checksum of the results in the database.
To validate, we can run a simple query that checks if the checksums of results of iden-
tical jobs are the same. In case of error, we have a query that can extract out all the
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Fig. 4. Stages in performing some processing on a distributed system

Table 1. Coefficient of Variation of Execution Time

Application Coefficient of Variation

BLAST BMRB (1MB Database) 0.19
BLAST PDB (69MB Database) 0.34
BLAST NR (2GB Database) 0.49
NCSA Sextractor Processing 2.00
NCSA Data Transfer 1.00

machines that generated suspect results and tag the machine appearing multiple times
as faulty.

To evaluate our ability to identify silent Type II failures, we looked at the co-efficient
of variation of executing time of some applications. Table 1 shows the co-efficient of
variation of a few well-known applications. We found that the coefficient of variation
of all classes we encountered were less than four.

The UW Madison condor pool consists of multiple clusters with different processor
speeds, and user desktops. We did not separate the performance according to machine
class as the job may be assigned to any machine depending on availability unless the
jobs explicitly request certain configuration. Taking into account machine class, brought
down the coefficient of variation considerably but we do not report that, as we may not
be able to do so well in a general environment.

Figure 5 shows the cumulative distribution function of BLAST processing using 2
GB NR database and wide-area data transfers between NCSA and UW. Each wide-area
data transfer transferred a 1.1 GB astronomy image file from NCSA to UW-Madison
and that file was subsequently processed in UW condor pool.

For the blast run, a few jobs hung and took a very long time to complete, around
4 hours. The user had a hard limit of 4 hours and the jobs that exceeded 4 hours were
killed and restarted. Using our mechanism, we find that we can come up with tighter
bounds. In this case, Mean + 3 × StandardDeviation =80 minutes and does not
require operators to magically come up with thresholds and are better than the rough
guess of the user. The data transfers had a 20-minute time-out for the data transfers.
There were hung transfers that succeeded second time around.
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Fig. 5. Shows the cumulative distribution function of BLAST execution against the 2 GB NR
database and NCSA UW wide-area data transfers

8 Future Work

We intend to develop a more rigorous theoretical analysis of our silent-fail-stutter model.
We also want to deploy our mechanisms in real systems over a long period and evaluate
them. The mechanism assumes that the failed fraction is significantly less than the suc-
cessful fraction, which we believe would be true in practice. We would like to determine
if there are limits on failure fraction that will cause the mechanisms to not work.

9 Conclusions

We have successfully analyzed the faults in large distributed systems and proposed
silent-fail-stutter fault model to accurately model component behavior while maintain-
ing tractability. Using insights from the model, we have developed mechanisms to au-
tomatically detect silent failures in distributed systems. We have evaluated the mecha-
nisms and shown their effectiveness.
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