
J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 497–507, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Target Encoding for Efficient Indirect Jump Prediction*

Juan Carlos Moure1, Domingo Benitez2, Dolores Isabel Rexachs1, and Emilio Luque1

1 Computer Architecture and Operating Systems Department,
Universidad Autónoma de Barcelona, 08193 Barcelona, Spain

{JuanCarlos.Moure,Dolores.Rexachs,Emilio.Luque}@uab.es
2 University of Las Palmas G.C., 35017 Las Palmas, Spain

dbenitez@dis.ulpgc.es

Abstract. Accurate indirect jump prediction is critical for some applications.
Proposed methods are not efficient in terms of chip area. Our proposal evalu-
ates a mechanism called target encoding that provides a better ratio between
prediction accuracy and the amount of bits devoted to the predictor. The idea is
to encode full target addresses into shorter target identifiers, so that more en-
tries can be stored with a fixed memory budget, and longer branch histories can
be used to increase prediction accuracy. With a fixed area budget, the increase
in accuracy for the proposed scheme ranges from 10% to up to 90%. On the
other hand, the new scheme provides the same accuracy while reducing predic-
tor size by between 35% and 70%.

1 Introduction

Dynamic control-flow prediction is a key task on current processors. This work pro-
poses an efficient mechanism for predicting indirect jumps. Although they are less
frequent than conditional branches, for some applications the lack of a specialized
indirect jump predictor may degrade performance significantly [7], [8].

Common sources of indirect jumps are case statements and virtual function calls
used in object-oriented languages. While some indirect branches jump to a unique
target address during the program’s execution (monomorphic jumps), and are easy to
predict, many of them (called polymorphic) jump to several target addresses, depend-
ing on input data, and their prediction is complex. Accurate prediction for those
jumps requires a multiple-choice predictor, rather than a mere binary (taken/not-
taken) predictor, and storing several target addresses per jump.

Indirect jump predictors proposed in the literature match the scheme depicted in
Fig. 1. One or more tables are indexed using the jump’s address and branch history,
which codifies the outcomes of recently executed branches (indirect or not) leading
up to the jump. Tables contain full target addresses and additional data that is used to
select the final predicted address. Tables are trained using the outcome of indirect
jumps once they are retired from the processor pipeline.

* This work was supported by the MCyT-Spain under contract TIN 2004-03388, the Generali-

tat de Catalunya - Grup Recerca Consolidat 2001 SGR-00218, and the HiPEAC European
Network of Excellence

498 Juan Carlos Moure et al.

The predictor’s accuracy is mostly limited by its memory size and by the length
and quality of the branch history. A separate entry is allocated into the predictor’s
tables for each combination of jump address and branch history. As the history gets
larger, the probability of containing a previous branch that correlates with the pre-
dicted branch also gets larger, increasing prediction accuracy [5]. However, more
entries are required in the predictor’s tables or otherwise many prediction cases will
map into the same entry and create aliasing. The indexing and selection methods try
to reduce the effect of aliasing, making efficient use of the available predictor’s
memory.

Although larger tables provide higher accuracy, they do not handle information ef-
ficiently, since the same long target addresses are replicated several times. We present
and evaluate a method to encode full target addresses into shorter target identifiers.
The proposed two-stage mechanism consists of (1) predicting a short target identifier
using the scheme shown in Fig. 1, and then (2) translating it into a full target address.
Since encoded targets are shorter, more entries can be stored with a fixed memory
budget, and then longer histories can be used to increase prediction accuracy. The
table used in the second stage holds full target addresses and still requires large en-
tries, but since each address is stored only once, it requires considerably fewer en-
tries.

Results obtained in simulation indicate that the design achieves a better ratio be-
tween prediction accuracy and predictor size. This increase of storage efficiency may
be used to increase performance or to lower area requirements and the predictor’s
power consumption. The proposed two-stage scheme increases the indirect predic-
tor’s average response latency, but this increase is shown to have very little effect on
performance. On a 4-way superscalar processor with a realistic memory hierarchy,
with a penalty of 2 cycles for using the two-level jump predictor, the performance
improvement due to target encoding ranges from 0.1% to 2.5%, depending on the
benchmark.

Section 2 reviews some related work. Sections 3 and 4 describe the baseline and
the proposed indirect jump predictors. Section 5 presents the experimental methodol-
ogy and some preliminary results. Full results are presented and discussed in section
6. The final section outlines the conclusions and introduces future lines of research.

jump address

branch history

�

target
address

Table #k

Table #1
indexing
method

selection
method

Fig. 1. General scheme of an indirect jump predictor

2 Related Work

A Branch Target Buffer (BTB) [13] provides a simple method for accurately predict-
ing monomorphic indirect jumps or jumps whose target changes infrequently, but
provides weak results for polymorphic jumps. Adding a hysteresis bit to limit the
update of the target address only after two consecutive mispredictions [3] provides

Target Encoding for Efficient Indirect Jump Prediction 499

small gains [5, 6]. A better method for dealing with polymorphic jumps is the Target
Cache (TC) [5]. It adapts the two-level prediction methods previously proposed for
conditional branches [14], to indirect jumps. [5] analyzes several methods to track
branch history, several indexing methods, and the use of tags on the TC.

A variation on the TC is the Cascaded Indirect Jump Predictor [6], which signifi-
cantly reduces the table size needed to achieve a given accuracy. It dynamically iden-
tifies easily predicted jumps and devotes them a simple and low cost predictor, pre-
venting insertion of these jumps into a more powerful second stage predictor. The
result is that easily predicted jumps avoid most cold start misses and do not waste
entries in the second stage predictor, which is better exploited by the remaining indi-
rect jumps. Using a BTB as the first-stage filter, as in the Intel Pentium M and Pen-
tium 4 processors [7, 8], provides good results with a simple and efficient design. We
evaluate our proposal using this scheme as the baseline design (described in the next
section).

Prediction by Partial Matching (PPM) [12] exploits variable-length path correla-
tion to improve prediction accuracy. Several tables are accessed in parallel, each one
addressed by an index containing a branch history of a different length. The table
using the longest history and having a valid prediction provides the final target. The
potential of varying the history length for each specific branch is not analyzed in this
paper.

Control-flow prediction performance is improved by either increasing accuracy,
width (instructions retired per prediction), or rate (predictions per cycle). We have
previously proposed a two-level hierarchy [14], but aimed to increase prediction rate
and not to improve the ratio between prediction accuracy and predictor size.

A method to increase prediction width is path-based next trace prediction [9]. It
uses a cascaded, two-level scheme to predict instruction traces, rather than jumps or
branches. Our baseline design uses the exclusive-or-fold method proposed there.

3 Baseline: A BTB-Based Cascaded Predictor

The baseline design used to evaluate our proposal is a cascaded indirect jump predic-
tor [6, 7] using two tables (see Fig. 2). The first table is a Branch Target Buffer
(BTB) [13], which identifies branches in the instruction fetch stream and provides a
target address for each branch. Since the BTB always correctly predicts monomor-
phic jumps, a specialized Indirect Jump Predictor (IJPred) exploiting branch correla-
tion is only required for polymorphic indirect jumps. We assume that an extra 32-
entry return address stack (RAS) [11] (not shown) is used to predict indirect return
jumps.

Indirect Jump
Predictor (IJPred)

polymorphic
indirect jump

jump
address BTB

branch
history f

Indirect Target

BTB Target predicted
Target

address

hit
Fig. 2. Cascaded, two-level indirect jump predictor. At prediction time, a Branch Target Buffer
(BTB) identifies branches and filters the use of a specialized Indirect Jump Predictor (IJPred)

500 Juan Carlos Moure et al.

Extensive simulation has been performed to obtain a realistic, highly tuned base-
line design. We have simulated IJPred sizes from 256 to 16K entries, IJPred tag sizes
from 0 to 16 bits, history lengths from 1 to 61, hysteresis counters from 0 to 3 bits,
different ways of building and codifying branch history, and several indexing and
selection algorithms. The most important results are explained in the following de-
scription.

Updating the BTB and IJPred at Retire Time (Not Speculatively)
We assumed a BTB with 4K entries and 16-bit tags, which suffers a low miss rate. At
retire time, a BTB entry is allocated for each branch that misses in the BTB, and ini-
tialized with the branch type and target address. If the branch is an indirect jump (not
a return), the type field is set as monomorphic. If the same indirect jump is later re-
tired and its target address does not match the address stored in the BTB, then the
type field is set as polymorphic but the target address prediction is not modified.

The IJPred is direct-mapped and 4-bit tagged. It is updated at retire time only for
indirect jumps identified as polymorphic by the BTB, and only when their target
address differs from the BTB prediction. This filtering scheme prevents prediction
cases that are well-handled by the BTB from wasting IJPred memory space.

A hysteresis bit is used to avoid replacing IJPred entries that frequently provide
correct predictions. The bit is cleared when the entry is first allocated, and is set on
correct target predictions, and cleared on wrong predictions. On an IJPred miss, the
previous entry contents are replaced by the new ones only when the hysteresis bit is
found to be cleared. If the bit is found set, then it is cleared.

Using Two Types of Global Path History
Two separate 61-bit history registers are used: cghr is updated for each conditional
branch taken, and ighr is updated for each indirect jump (including returns). As was
noted in [12], maintaining two history registers of different types and dynamically
choosing one of these for each static jump provides improved accuracy compared to
using a unique history register. Our approach merges the contents of cghr and ighr
using an exclusive-or operation before using history to generate the IJPred index (Fig.
4 on next page). It provides a similar improvement in accuracy (from 2% to 30%,
depending on the benchmark) with a simpler implementation.

Both history registers, cghr and ighr, are speculatively updated using the outcome
of the current prediction, and are corrected on branch mispredictions using a very
small amount of recovery data. The update consists of shifting the contents s bits to
the left and adding the exclusive-or of the s lower bits of the branch address and the
branch target address, as shown in Fig. 3. The history length, l, is the number of
branches whose histories are held in the history register, (l = 61 / s).

 predicted jump address old history

new history

�

�

s bits s bits s bits s bits

predicted target address

exclusive-or of low-order bits

history length (l)

Fig. 3. Speculative update of branch history registers (corrected on branch mispredictions)

Target Encoding for Efficient Indirect Jump Prediction 501

As other authors [10],[12], we have found that l highly influences accuracy. Also,
for each IJPred table size, using the optimal l for each single benchmark (BestHist)
instead of using the optimal l for all the benchmarks (BestHistALL) increases accu-
racy between 15% and 45%. In our experiments, we have used BestHistALL most of
the time but has also validated that results do not significantly vary if using BestHist.

Indexing and Selection Algorithms at Prediction Time
The goal of an indexing scheme is to map the whole input data into n output bits so
that the resulting index is evenly distributed, and aliasing is reduced. Fig. 4.a shows
an scheme to fold a value, v, into an n-bit value using an exclusive-or-fold method
[9].

The index for the BTB (Fig. 4.b) is the result of xor-folding the address of the
branch to be predicted into chunks of different size (sizes are prime numbers) and the
combination of these chunks into a large value that is again xor-folded into a final n-
bit index. The best results are obtained with a skewed-associative scheme [1], which
generates a different BTB set index for each possible BTB way.

The index for the IJPred uses the address of the jump to be predicted and the his-
tory registers (Fig. 4.c). These complex indexing methods increase accuracy slightly
with respect to simpler ones but, most importantly, provide highly homogeneous
results for all the configurations evaluated. The scheme is not intended to be an im-
plementation proposal, but a reference for exploring cheaper and faster methods that
merge fewer bits in this latency-critical step.

On a BTB miss, the fall-through address is predicted as the jump’s target. On a hit,
the BTB provides the target prediction, unless the indirect jump is identified as poly-
morphic or as a return. For polymorphic jumps, the IJPred is accessed and provides
the prediction only if the IJPred access hits. Return jumps are handled by the RAS.

a) xor-fold-n (value)

···
�

r bits n bits n bits n bits

n bits

ighr cghr

b) BTB index

branch addres

xor-fold-3
xor-fold-7

c) IJPred index

xor-fold-7
xor-fold-13

xor-fold-19

xor-fold-n xor-fold-n

xor-fold-13

Fig. 4. Index generation scheme for BTB and IJPred using an xor-fold scheme

4 Indirect Target Encoding

The IJPred contains two types of data: (1) which of the possible paths a jump will
take, and (2) at which address this path begins. Separating these two types of data on
two different tables provides more efficient memory usage. If a jump can take k dif-
ferent paths, then log2 k bits are required to codify a path identifier (pathID). Then, if
the IJPred holds pathID’s instead of full addresses, it may contain more entries, use
longer histories, and then increase prediction accuracy.

A second table, the Indirect Target Table (ITT), is required to provide the full tar-
get address (see Fig. 5). Using both the pathID and the jump’s address to index the

502 Juan Carlos Moure et al.

ITT provides the best results. The ITT should ideally be able to hold all the target
addresses taken by all jumps, but in practice only useful targets need to be stored,
since storing those targets that rarely involve a correct prediction only marginally
improves performance.

path identifier (pathID)

Indirect Target
Table (ITT)

polymorphic
indirect jump

jump
address BTB

IJPred
(pathID�s)

branch
history

Indirect Target
address

BTB Target

predicted
Target

address hit

f2
way

set

filter f1

Fig. 5. Indirect Target Encoding. A short path identifier (pathID) replaces target addresses in
the IJPred. A second-level Indirect Target Table (ITT), indexed by the jump address and the
pathID, provides the full indirect target address

ITT Access at Prediction Time
Exploiting freedom in the target-encoding algorithm allows implementing a k-way
set-associative ITT with the small access delay and power consumption of a direct-
mapped tag-less table. The scheme is similar to the next cache line and set predictor
[4]. The low order bits of the pathID codify the ITT way in which the target address
is located. The target address is hashed (like in Fig. 4) to provide the pathID’s high-
order bits. With this mechanism, the complexity of the associative indexing scheme is
avoided at prediction time (where may affect performance), and is suffered at retire
time, but only on IJPred mispredictions.

The ITT way is obtained from the pathID read from the IJPred. The ITT set is ob-
tained by hashing the pathID’s high-order bits and the jump’s address (like in Fig. 4).
A filter tests the IJPred prediction validity by comparing the pathID read from the
IJPred with the pathID computed from the target address read from the ITT.

Target Search and ITT Update at Retire Time
When a mispredicted indirect jump is retired, its final target address is searched for in
the ITT. Since these cases are unfrequent and we will show that the ITT update la-
tency does not affect performance, the search operation on ITT ways may be done
serially to reduce H/W complexity. The pathID’s high-order bits are generated from
the correct target address and combined with the jump’s address to index each one of
the ITT ways. As for the BTB, a skewed-associative scheme provided the lowest miss
rate [1].

Each ITT entry contains a 4-bit saturating counter that is increased with each cor-
rect target use. When a new target address must be allocated, the counter of all the
entries that are a potential placement are decremented, and only a zero counter en-
ables the replacement. This policy prioritizes useful target addresses and reduces the
number of ITT replacements, which also reduces the occurrence of ITT misses.

Target Encoding for Efficient Indirect Jump Prediction 503

5 Experimental Methodology, Results, and Discussion

We use a trace-based simulation to measure prediction accuracy and tune the main
design parameters. Accurate cycle-by-cycle simulation is used to measure the effect
on prediction accuracy of the delayed update of prediction tables (BTB, IJPred, ITT),
and the effect of prediction latency and accuracy on the processor’s performance.

First, we analyze the design space of the Indirect Target Table (ITT) and select an
optimal configuration. Then, we explore the best size for the IJPred tags and pathID
field. We compare the baseline design and the proposed target encoding design with
respect to prediction accuracy and predictor size. Then we verify that the effect on
prediction accuracy of the delayed update of prediction tables is insignificant, and
that increasing the indirect predictor’s latency reduces performance slightly.

Metrics, Simulator, and Benchmarks
Prediction accuracy is measured as the average number of instructions between jump
mispredictions (Kilo-instructions per misprediction). Predictor size is measured in
KBytes (KB). Processor performance is measured in instructions per cycle (IPC).

We have used the Simplescalar-Alpha tool set [2] to generate the dynamic instruc-
tion trace of the first 20 billion instructions for some programs of the SPEC bench-
mark suites. Table 1 shows the selected benchmarks and their inputs (Alpha ISA, cc
DEC 5.9, –O4). They have been selected because they have the lowest accuracy when
a simple BTB is used for indirect jump prediction (6th column of Table 1), and then
may benefit more from using a specialized predictor (col. 7-8 for an IJPred of 512
and 4K entries). Table 1, columns 4-5, shows the number of static polymorphic indi-
rect jumps and targets.

Table 1. Simulation data and simulation results for selected SPEC benchmarks

polymorphic instructions / misprediction Benchmark input SPEC
jumps targets BTB IJPred 512 IJPred 4K

crafty reference int00 15 89 877 1457 1908
eon cook int00 10 20 681 45123 > 105
gap reference int00 49 146 1609 46724 > 105
gcc expr.i int00 183 975 439 1765 3137
perl difference int00 65 659 118 763 2190
vpr route int00 4 19 4951 21291 > 105

m88ksim reference int95 7 26 1407 18355 56805
li reference int95 7 71 989 5381 14799

facerec reference fp00 9 47 2766 > 107 > 107
fma3d reference fp00 12 23 2977 > 107 > 107

sixtrack reference fp00 8 49 601 4248 9795

ITT Configuration
Results have shown that only a small subset of all the target addresses of polymorphic
jumps needs to be held in the ITT for near-optimal performance. Although some
benchmarks have more than 500 targets (see Table 1), a 64-entry ITT is enough to
achieve a miss rate lower than 0.1%, except for benchmark perl, which requires 128
entries. For such sizes, an 8-way set-associative ITT provides the best performance.

504 Juan Carlos Moure et al.

A 4-bit pathID is enough to maintain the ITT miss rate below 0.1% for all bench-
marks except for gcc and perl, which require a 5-bit and a 6-bit pathID, respectively.

IJPred Configuration
The baseline IJPred configuration, with entries containing full addresses, may afford
a large tag and a large hysteresis counter to try to reduce IJPred misses. Results have
shown that a tag larger than 4 bits, or a hysteresis counter larger than 1 bit improves
performance very slightly on a direct-mapped IJPred organization.

When target encoding is used to improve chip area utilization, it is more effective
to reduce the tag size to 3 bits and devote 5 bits to codify the pathID. The filter
method described in section 4 detects a significant part (20-70%) of the misses not
detected by the shortened tag. It also also detects (but does not correct) cases where
ITT replacements have made the pathID in the IJPred indicate a wrong ITT way.

Accuracy Versus Storage Size
Figure 6 displays accuracy versus storage size for some representative benchmarks
and for different predictor designs with an IJPred of 512-4K entries. The storage size
of the baseline design accounts for the target address’ size (32 bits), the tag’s size (3
bits), and the hysteresis counter’s size (1 bit). Target encoding replaces the target
address by the pathID (5 bits instead of 32 bits) and must account for the ITT size (64
entries, each containing a full target address and a 4-bit replacement counter).

Results in Fig. 6 show that the ratio of accuracy versus predictor size is always bet-
ter for the encoded design. Benchmarks li and sixtrack are depicted together because
they have very similar results. For these benchmarks, correlation is highly effective in
increasing accuracy. Given a fixed predictor size, the encoded scheme exploits corre-
lation better than the baseline (the line depicting accuracy versus size separates for
larger predictors). For example, with a 5-KB predictor, accuracy improves by 90%.

2

4

6

1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(K

I /
 m

is
pr

ed
)

crafty

19

1

2

1 2 3 4 5 6 7 8 9

perl

19 10 � 10 �

Baseline
Encoded

li / sixtrack

4

6

8

10

12

1 2 3 4 5 6 7 8 9

Predictor Size (KiloBytes)
19

2

3

4

Predictor Size (KiloBytes)

gcc

1 2 3 4 5 6 7 8 9 19 10 � 10 �

Fig. 6. Accuracy versus storage size on selected benchmarks for the baseline and encoded
predictors, with IJPred sizes from 512 to 4K. 64 ITT entries, pathID length is 5 bits, IJPred tag
length is 3 bits, history length (l) is BestHistALL, which depends on IJPred size: 512 (l=4), 1K
(l=8), 2K (l=14), 4K (l=20))

Target Encoding for Efficient Indirect Jump Prediction 505

The encoded scheme achieves accuracy improvements of around 50% for a fixed
predictor size for benchmarks gcc and perl. With a large working set of indirect target
addresses, the small ITT and short pathID provokes a moderate amount of ITT misses
(<2%) that reduces the potential accuracy improvement by only around 10%.

For a relatively large area budget for the indirect predictor, two kind of bench-
marks cannot benefit from the encoded scheme to improve processor performance.
The first example is crafty, which benefits little from history correlation, and in-
creases accuracy very slowly with higher storage. The other example are the bench-
marks not shown in Fig. 4, which provide near-perfect prediction with a relatively
small IJPred of around 1K entries. The encoded scheme, however, is still very useful
in reducing storage (and power) requirements. For example, averaging for all bench-
marks, a 3-KB encoded predictor provides the same accuracy as a 10-KB baseline
predictor.

Table 2. Microarchitecture parameters for the cycle-accurate simulations

Front-End Back-End (Execution Core) Memory System
Decoupled: Fetch Target Queue
(FTQ) holds up to 24 fetch blocks

Up to 4 instructions renamed and
dispatched per cycle

Perfect Memory Disambiguation,
Store to Load forwarding of any size

I-Cache Prefetches: two I-cache
checks per cycle using FTQ contents.
If not found, prefetch from L2 cache.

Up to 6 instructions issued
and retired per cycle

I-Cache: 256 sets x 2 ways x 32B blocks
D-Cache: 256 sets x 4 ways x 16B blocks
L2-Cache: 1K sets x 8 ways x 64B blocks
L3-Cache: 8K sets x 8ways x 128B blocks

Fetch Predictor: predicts one
conditional branch per cycle,

one return every two cycles, one
indirect jump every k cycles.

Fetch Queue: 12 instructions
Issue Queue: 24 instructions

Reorder Buffer: 124 instructions
Load/Store Queue: 48/24 instr.

I-Cache / D-Cache: 2 ports, 2-cycle latency
L2-Cache: 7-cycle load-use latency
L3-Cache: 40-cycle load-use latency
Memory: 200-cycle load-use latency

Gshare: 64K entries, 2-bit counters Operation latencies like Pentium IV Bandwidth (L2/L3/Mem): 25,6 / 12,8 / 6,4 GB/s

Performance Measures
Cycle-level simulations have been performed by modeling a 4-way processor back-
end and a realistic memory system (see Table 2). The simulated front-end is decoup-
led and predicts one full basic-block per cycle. Our first result was that prediction
accuracy is not degraded by the delayed update of prediction tables. Accuracy varies
very slightly when increasing the pipeline depth (and then the predictor update delay)
from 12 to 30 cycles. As argued in other papers, a higher update delay increases the
predictor’s hysteresis, which does not necessarily causes a worse behavior.

Figure 7 shows the effect on performance of varying IJPred size and varying the
indirect predictor’s latency. On the one hand, doubling IJPred size, and therefore
increasing indirect jump prediction accuracy, provides an average IPC increase of
around 0.5% for the benchmarks considered in this paper (Fig. 7.a). Benchmark perl
(Fig. 7.b) is the one that benefits most from a larger IJPred (average IPC increase of
1.2% when doubling IJPred size). The average penalty of indirect jumps has been
experimentally found to be around 21 cycles, which explains why avoiding mispre-
dictions results in a significant gain in performance.

On the other hand, a two-cycle delay penalty for using the IJPred table reduces
IPC by less than 0.05% of the average. There are two main reasons for this result.
First, jump mispredictions are not too frequent (less than 1 every 100 instructions),
since many of the indirect jumps (30-70%) are predicted by the BTB. Second, a sub-

506 Juan Carlos Moure et al.

stantial part (more than 95%) of the delay due to using the IJPred and ITT tables
instead of the BTB, is overlapped by other stalls occurring later in the pipeline. More
than 60% of the overlap is due to the decoupled front-end scheme, which compen-
sates IJPred-use stall cycles with cycles where a branch prediction provides several
instructions (full basic blocks) to the front-end. However, as predicted by Amdhal’s
law, the indirect prediction latency becomes more critical for values larger than 3
cycles or if the execution width of the processor is scaled to 8 instructions per cycle.

Given that prediction latency is not critical, power consumption is afforded by de-
laying the IJPred access until the BTB access has been completed and a polymorphic
jump has been identified. Similarly, power is saved by delaying the ITT access until a
valid pathID from the IJPred table is read.

2,340
2,345
2,350
2,355
2,360
2,365
2,370
2,375
2,380
2,385

latency=1 latency=2 latency=3

IP
C

IJPred
entries

2,540

2,560

2,580

2,600

2,620

2,640

2,660

latency=1 latency=2 latency=3

256
512
1K
2K
4K

a) Geometric Mean for all benchmarks b) perl benchmark

Fig. 7. IPC for varying IJPred sizes and IJPred latencies

6 Conclusions and Future Lines
We have presented and evaluated target encoding as a method for improving the
indirect jump prediction accuracy to cost ratio. This improvement can be used to
increase processor performance for benchmarks that execute a moderate amount of
polymorphic indirect jumps. On a realistic 4-way superscalar processor with a realis-
tic memory hierarchy, the additional latency of the proposed two-level predictor has
very slight effects on performance. Assuming a two-cycle increase in latency, the
performance increase ranges from 0.1% to 2.5%. For benchmarks that benefit little
from larger IJPred tables, the scheme may be used to reduce chip area and power
consumption. For example, a 3-KB encoded predictor (with direct-mapped access)
provides the same accuracy as a 10-KB baseline predictor (with set-associative ac-
cess).

The target-encoding scheme works well because indirect jumps have a small work-
ing set of target addresses, which can be effectively cached in a table with 64 entries.
The careful design of the table achieves several conflictive issues: high logical asso-
ciativity to reduce conflict misses, and a small latency and low power consumption
due to its direct mapped access. Basically, the freedom of the target-encoding algo-
rithm allows for the implementation of a way prediction mechanism for free. Also,
the replacement policy is designed to prioritize useful targets instead of frequent tar-
gets.

Target Encoding for Efficient Indirect Jump Prediction 507

The relatively small effect on performance of the enhanced indirect predictor is
very related to the low frequency of indirect branches in the SPECint2000 workload.
A future extension to this work is analyzing more object-oriented workloads such as
SPECjvm98.

Static and profile analysis may improve indirect jump prediction in several ways.
First, if the most frequent target for each indirect jump is identified, it may be used to
initialize the BTB and then reduce the storage requirements of the IJPred and its us-
age rate. This option requires an ISA extension to allow access to the BTB. Second,
embedded systems tuned at design time can use the static analysis to select the best
configuration for the indirect predictor (IJPred and ITT size, pathID/tag length, his-
tory length, …). In particular, we have found that tuning history length for an specific
benchmark may yield an accuracy improvement between 15% and 45%. Adapting
history length dynamically, either for a full application, like in [10], or for each spe-
cific branch, like in [12], is another future line for improving accuracy.

References

1. Bodin, F., Seznec, A.: Skewed associativity improves program performance and enhances
predictability. IEEE Trans. on Computers, vol. 46(5) (1997) 530–544

2. Burger, D., Austin, T.M.: The SimpleScalar tool set. Univ. Wisconsin-Madison Computer
Science Department, Tech. Report TR-1342 (1997)

3. Calder, B., Grunwald, D.: Reducing Indirect Function Call Overhead in C+ Programs. Proc.
21th Int. Symp. on Principles of Programming Languages (1994) 397–408

4. Calder, B., Grunwald, D.: Next Cache Line and Set Prediction. Proc. 22nd Int. Symp. on
Computer Architecture (1995) 287–296

5. Chang, P.-Y., Hao E., Patt, Y. N.: Target Prediction for Indirect Jumps. Proc. 24th Int.
Symp. on Computer Architecture (1997) 274–283

6. Driesen, K., Hölzle, U.: The cascaded predictor: economical and adaptive branch target
prediction. Proc. 31st Intl. Symp. on Microarchitecture (1998) 249–258

7. Gochman, S., et. al.: The Intel Pentium M processor: Microarchitecture and Performance.
Intel Technology Journal, vol. 7(2), (2003) 21–36

8. Hinton, G., et. al.: The microarchitecture of the Pentium 4 processor. Intel Technology
Journal, Q1 (2001)

9. Jacobson, Q., Rotenberg, E., Smith, J. E.: Path-based next trace prediction. Proc. 30th Int.
Symp. on Microarchitecture (1997) 14–23

10. Juan, T., Sanjeevan, S., Navarro, J.J.: A third level of adaptivity for branch prediction.
Proc. 25th Int. Symp. on Computer Architecture (1998) 155–166

11. Kaeli, D.R., Emma, P.G.,: Branch History Table Prediction of Moving Target Branches due
Subroutine Returns. Proc. 18th Int. Symp. on Computer Architecture (1991) 34–41

12. Kalamatianos, J., Kaeli, D.R.: Predicting indirect branches via data compression. Proc. 31st
Int. Symp. on Microarchitecture (1998) 272–281

13. Lee, J. K. F., Smith, A. J.: Branch Prediction Strategies and Branch Target Buffer Design.
IEEE Computer Vol. 17(2) (1984) 6–22

14. Moure, J. C., Rexachs, D. I., Luque, E.: Optimizing a decoupled front-end architecture: the
Indexed Fetch Target Buffer (iFTB). Lecture Notes in Computer Science, Vol. 2790. Euro-
Par’03. Springer-Verlag, (2003) 566–575

15. Yeh, T.-Y., Patt, Y.: Two-Level Adaptive Branch Prediction. Proc. 24th Int. Symp. on Mi-
croarchitecture (1991) 51–61

	Target Encoding for Efficient Indirect Jump Prediction
	1 Introduction
	2 Related Work
	3 Baseline: A BTB-Based Cascaded Predictor
	4 Indirect Target Encoding
	5 Experimental Methodology, Results, and Discussion
	6 Conclusions and Future Lines
	References

