
J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 519–529, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Value Compression for Efficient Computation

Ramon Canal1, Antonio González1,2, and James E. Smith3

1 Dept of Computer Architecture, Universitat Politècnica de Catalunya
Cr. Jordi Girona, 1-3, 08034 Barcelona, Spain
{rcanal,antonio}@ac.upc.edu

2 Intel Barcelona Research Center, Intel Labs-Universitat Politècnica de Catalunya
Cr. Jordi Girona, 27-29, 08034 Barcelona, Spain

antonio.gonzalez@intel.com
3 Dept. of Electrical & Computing. Engineering, University of Wisconsin-Madison

1415 Engineering Drive, 53706 Madison-WI, USA
jes@ece.wisc.edu

Abstract. A processor’s energy consumption can be reduced by compressing
values (data and addresses) that flow through a processor pipeline and gating
off portions of data path elements that would otherwise be used for computing
non-significant bits. An approach for compressing all values running through a
processor is proposed and evaluated. For the SpecInt2000 benchmarks the best
compression method achieves energy savings of more than 20 percent and a
peak power reduction of 18 percent.

1 Introduction

In recent years, energy consumption has become a critical design constraint in micro-
processor design and will likely remain so well into the future. Energy is important
not only because of battery-life related issues, but also because of heat dissipation and
thermal constraints. In current CMOS technology, most energy consumption occurs
during state transitions in the underlying circuits [3]. This dynamic energy consump-
tion is proportional to switching activity, as well as load capacitance and the square of
the supply voltage. Thus, an important energy conservation technique is to reduce
switching activity by “gating off” or inhibiting switching in portions of logic and
memory during clock cycles when they are not being used.

In addition, the importance of static energy consumption is rapidly increasing with
each microprocessor generation and will soon become as important as dynamic en-
ergy consumption. To reduce static energy consumption important techniques include
minimizing circuit complexity and powering-down components that are not in use.

Value compression is a mechanism that is in a sense orthogonal to the more com-
monly used schemes that gate off or power off entire subsystems. With value com-
pression the effective width of a subsystem is narrowed by turning off only certain bit
(or byte) positions –usually higher order bytes, while leaving logic corresponding to
the other bit (or byte) positions turned on. Value compression works because many
values do not require the full precision supported by the data path. For example, the
integer value one commonly occurs, but clearly does not require 32 (or 64) bits to
encode it. Consequently, some value can be stored or manipulated in compressed
form. For storage, value compression can be applied to individual data items, and for
arithmetic and logical operations it is typically applied to both input operands. In

520 Ramon Canal, Antonio González, and James E. Smith

either case, only a portion of storage or logic is required and energy is saved by turn-
ing off the unused portion(s).

In this paper we analyze several value compression mechanisms that are applied to
the entire datapath. The paper is organized as follows. Section 2 describes the general
principles and implications behind value compression. Section 3 lists related work. In
Section 4, a comparison of several value compression schemes is performed. Finally,
the main conclusions are presented in Section 5.

2 General Principles

As the name suggests, value compression reduces the number of bits used for repre-
senting a given value. When using value compression, data is typically represented
with a number of data bits, plus some extra format bits that indicate the specifics of
the compression method used. To date, most work has focused on compression of
non-floating point data; extensions to floating point awaits further research.

Value compression can be used in several structures that make up a processor’s
datapath. These include data and instruction caches, integer functional units, register
files, and branch predictors. Fig 1 contains data that indicates the compressibility of
data values read/written in registers as SpecInt 2000 benchmarks are run on a 64-bit
Alpha processor. This distribution shows a large potential for the value compression
mechanisms because a large percentage of the values are narrow. For example, 40%
can be represented in one byte (are between -128 and 127). The peak at 5 bytes is due
to the memory addresses which are typically 5 bytes long in the Alpha architecture.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

8b 16b 24b 32b 40b 48b 56b 64b

AVG spec int 2000

Fig. 1. Data size distribution for the SpecInt2000

A good value compression method must take advantage of this data distribution,
and, at the same time, incur a low overhead when compressing and decompressing.
Although value compression can help reduce the energy consumption for performing
certain functions, it is important that the overhead of compressing and decompressing
does not affect the overall performance and the energy consumption. Thus, a good
compression scheme should strike a good balance between the compressibility of the
values and the extra performance and energy costs of the mechanism.

Researchers have proposed three basic methods for value compression. The first,
size compression, was suggested in the preceding paragraph and compresses values

Value Compression for Efficient Computation 521

according to their size (i.e., the minimum number of bytes in 2’s complement nota-
tion) [1][8][9][10][11]. With size compression, one or more format bit(s) indicate the
number of significant bytes. The second mechanism uses one format bit per byte to
indicate whether the byte is zero or not [12]. This method, zero compression, can take
advantage of zero bytes in any position, not just in high order positions as with size
compression. The last mechanism, significance compression, uses one format bit per
byte to indicate whether a byte is a sign-extension of the previous one [4], and the
least significant byte is always uncompressed.

The following table includes several value configuration formats that we consider
in this paper. Other configurations have been analyzed and give significant smaller
performance.

 Value compression method Classification of the values Extra bits

Size 8-64 8 bits or 64 bits 1

Size 16-64 16 bits or 64 bits 1

Size 32-64 32 bits or 64 bits 1

Size 40-64 40 bits or 64 bits 1

Size 8-16-32-64 8 bits, 16 bits, 32 bits or 64 bits 2
Size 8-16-40-64 8 bits, 16 bits, 40 bits or 64 bits 2
Significance 8-16-24-32-40-64 Bytes 2,3,4,5 sign extended one byte, or

byte 6 extended by two bytes.
5

Significance 8-16-24-32-40-48-56-64 Bytes 2,3,4,5,6,7,8 sign extended one byte 7

Zero 8-16-24-32-40-64 Bytes 2,3,4,5 can be zero or bytes 6
through 8.

6

Zero 8-16-24-32-40-48-56-64 Any byte can be a zero 8

0

5

10

15

20

25

30

35

40

45

50

AV
G

 n
um

be
r o

f b
its

size 8 64

size 16 64

size 32 64

size 40 64

size 8 16 32 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64

Without comp. bits
With comp. bits

Fig. 2. Average Data Size for the SpecInt2000

An initial study of the average compressed value size using the schemes listed
above is shown in Fig 2. The average size was computed as the average of the number
of bytes for each access to the register file, data cache, functional units, and the re-
name buffers. The first column shows the average data size without the format bits,

522 Ramon Canal, Antonio González, and James E. Smith

and the second column shows the average size with the format bits. On average, ig-
noring the format bits, the zero compression mechanism achieves the best compres-
sion (23 bits for the configuration where every byte can be compressed). However,
when the format bits are included, the best scheme is the size compression mechanism
with an average of 30 bits per value (for the configuration in which the values are
compressed to 8, 16, 40 or 64 bits).

This initial data indicates that any of the three proposed schemes can perform well
(they reduce the effective data-width from 64 bits to 30 bits). In the next section we
describe several methods for using value compression for subsystems belonging to a
processor’s datapath. Then we analyze the energy consumption for the three value
compression mechanisms when used as processor-wide compression techniques.

3 Related Work
Most of the work on value compression has targeted just one structure of the pipeline.
In earlier work, [4] we proposed ways of using significance compression across all
pipeline stages of an in-order, single-issue processor. Significance compression is also
performed in main memory, and as compressed values flow through the pipeline the
format bits control the gating off of unused storage and functional unit bytes. Never-
theless, that work is for a 32-bit ultra low power machine (i.e. performance is not a
concern). The work in [4] is extended to 64-bits and uses compile-time mechanisms
in [5]. Other work in value compression tends to focus on specific processor blocks or
pipeline stages, as described below.

3.1 Processor Front-End

The primary functions performed in a processor’s front end are instruction caching
and branch prediction. Simple zero compression was proposed for the instruction
cache [12], resulting in a 10% reduction in the energy consumption of the cache.

To the best of our knowledge there have been no published results on value com-
pression to reduce energy requirements of branch prediction. However, in Section 4,
we show performance figures of applying the zero compression mechanism of Villa et
al. [13] and the significance compression method of Canal et al. [4] to branch predic-
tors. The power savings during branch prediction comes from compressing values
held in the branch target buffer (BTB).

There has also been a proposal for value compression while performing value pre-
diction. Sato and Arita [11] split the structure that keeps the predicted values into two
similar structures, where one holds byte-wide data and the other holds 64-bit data.
This structure is shown to be beneficial for energy saving because most of the instruc-
tions’ output-value widths do not change and a large portion of them (as shown in the
data width distribution in Fig 1) are narrow.

3.2 Processor Back-End

In the processor back-end, we begin with the register file where Fig 3 depicts a simple
value compression mechanism. For simplicity, the compression bits have been de-
picted in a separate structure. Before accessing the register file, the compression bits
are read so that the access to the register file can be reduced to the specified bytes.

Value Compression for Efficient Computation 523

Canal et al. [4][5] propose dynamically compressing values so they are stored and
retrieved along with their compression bits as shown in Fig 3. Brooks et al.[1], Loh
[8] and Nakra et al. [9] propose similar techniques for exploiting narrow width oper-
ands to reduce functional unit energy requirements and, at the same time, to increase
performance. Their techniques pack instructions that use narrow operands so that they
can be executed in a single ALU (i.e. one 64-bit adder can compute four 16-bit addi-
tions). The differences between the various approaches lie in the ways the narrow
widths are obtained. Brooks [1] introduces hardware that dynamically detects the
widths of operand values. Loh [8] extracts the data-width from a data-width predictor
and thus a recovery mechanism is needed in case the prediction is wrong. Finally,
Nakra et al. [9] set the width at compile-time. In this research [1][8][9], the register
file is modified in two possible ways: either by incrementing the number of read and
write ports to the banks of the register file holding the low-order bytes; or by replicat-
ing the lower part of the register file.

0 1 2 3 4 5 6 7

Compression Bits
Table

register id

Register File

selected bytes
compression bits

Fig. 3. A register file with value compression capabilities

ALU

value aCbits value b Cbits

value cCbits

ALU

v.2a v.1a v.3a v.4a v.2bv.1b v.3b v.4b

v.2c v.1c v.3c v.4c

Fig. 4. (a) ALU with packing capabilities, (b) ALU with value compression capabilities

The implications for the functional units (FUs) result in two alternatives: Brooks
[1], Loh [8] and Nakra [9] extend the FUs with the capability of executing multiple
narrow-width instructions (see Fig 4a). On the other hand, Canal et al. [4][5] extend
the functional units so that the FUs can operate with compressed values and generate
the compression bits (see Fig 4b). In terms of implementation of these alternatives,
Choi et al. [6] present several FU implementations that turn off the portions of the FU

524 Ramon Canal, Antonio González, and James E. Smith

that compute the high-order bits when these are just a sign-extension of the least sig-
nificant ones (the boundary between the high-order and low-order bits is analyzed and
set in their work).

3.3 Data Cache

Several value compression methods have been proposed for reducing energy con-
sumption in the memory subsystem. Most of methods are focused on on-chip caches.
The data-cache has been shown to be one of the more power-hungry structures in a
microarchitecture [7][12]. Fig 5 shows a data cache enhanced with value compression
capabilities.

Typical implementations compress and decompress data when it is moved between
the first and the second level caches. The same compression mechanisms can be used
in all the memory hierarchy [13], and more sophisticated schemes [12] can be used in
lower levels of the memory hierarchy for achieving higher compression ratios at the
expense of some increase in latency -- not critical in lower memory levels. Several
compression mechanisms have been proposed: zero compression [13] eliminates the
bytes that are set to zero; active data-width [10] compresses the values to certain
ranges (6,14,24 or 32 bit); a frequent value cache [15] has a list of most frequent
values for the high-order bits (32 bits); and the last scheme analyzed is the signifi-
cance compression [4] which eliminates the bytes that are a sign-extension of the
previous one.

compression bits 1

value 1

compression bits 2

value 2
Data Cache

output compression bits output value

memory address

Fig. 5. Data Cache with value compression capabilities

Villa et al. [13] propose an encoding where one bit per byte indicates whether the
byte is null (zero). When the data is accessed, the compression bits are read first in
order to just perform the activation of the parts that have a value different from zero.
Okuma et al. [10] propose dividing the cache into several sub-banks where each sub-
bank keeps a portion of the value (32-bit wide in their case). For each memory access,
just the sub-banks with significant data are accessed. In their case, one sub-bank holds
the lowest significant six bits, the next sub-bank holds the following 8 bits, the third
sub-bank keeps the next 10 and the last bank holds the last (most-significant) 12 bits.
This compression scheme needs two bits per word and is very similar to the more
general one analyzed in this paper under the name of size compression.

Value Compression for Efficient Computation 525

4 Value Compression Comparison

In this section, we analyze the three value compression mechanisms (size compres-
sion, zero compression and significance compression) in terms of power. Starting
from the overall processor energy reduction, we analyze some of the more interesting
structures: data caches, instruction caches, register file, functional units and branch
predictor. At the end, we consider the behavior in terms of peak power of the value
compression mechanisms. Note that there are no performance (IPC) results because
the compression mechanisms have no effect on performance. Thus, the results pre-
sented on energy reduction can be directly translated to Energy-Delay and Energy-
Delay square metrics.

4.1 Experimental Framework

The Wattch [2] toolset is used to conduct our evaluation. The main architectural pa-
rameters of the assumed out-of-order processor are given in Table 1. We use the pro-
grams from the SpecInt2000 suite with their reference inputs. All benchmarks are
compiled with the Compaq-Alpha C compiler with the maximum optimization level.
Each benchmark was run to completion.

Table 1. Machine parameters

 Parameter Configuration
Fetch Width 4 instructions
I-cache 64KB, 2-way set-associative. 32-byte lines, 1-cycle

hit time, 6-cycle miss penalty.

Branch Predictor
Combined predictor of 1K entries with a Gshare
with 64K 2-bit counters, 16 bit global history, and a
bimodal predictor of 2K entries with 2-bit counters.

Decode/Rename width 4 instructions
Max. in-flight instructions 64
Retire width 4 instructions
Functional units 3 intALU + 1 int mul/div3 fpALU + 1 fp mul/div
Issue mechanism 4 instructions Out-of-order
D-cache L1 64KB, 2-way set-associative. 32-byte lines, 1-cycle

hit time, 6-cycle miss penalty

I/D-cache L2
256 KB, 4-way set associative, 64-byte lines, 10-
cycle hit time.16 bytes bus bandwidth to main
memory, 100 cycles first chunk, 2 cycles interchunk

Physical registers 96

4.2 Energy Savings

In addition to the average data size (shown in Fig 2), several other factors such as
switching activity are important when computing dynamic energy reduction. Al-
though storing more compression bits results in wider structures, the activity of these
wider structures is what determines energy consumption, not the size. Thus, it can be
the case that a wider structure has less activity than a narrower one. In this section, we
give results for the best performing schemes.

The energy savings of the mechanisms analyzed in this work are given in Fig 6.
Significance compression achieves higher energy savings (more than 20%) despite the
use of 7 extra bits per word. The best size compression scheme (around 10% energy
savings) is the one that compresses values to 8, 16, 40 and 64 bits. The fact that the

526 Ramon Canal, Antonio González, and James E. Smith

scheme includes the memory addresses (typically 5 bytes long) allows it to perform
better than the other size compression mechanisms. The zero compression mechanism
achieves a maximum of 11% overall energy reduction.

0%

5%

10%

15%

20%

25%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

Sa
vi

ng
s

Average (SpecInt 2000)

Fig. 6. Processor Energy Savings

In the following figures, we analyze behavior of value compression schemes for
several structures (instruction-cache, data-cache, register file and ALU). Fig 7a)
shows the energy benefits in the data cache (both addresses sent to the cache and the
data stored/loaded). The distribution of the energy savings in the data cache is similar
to that of the whole processor. In this case, the significance compression energy sav-
ings are close to 14% and the version of significance compression that compresses all
the bytes (not just up to the 5th byte) performs better than the other configurations of
significance compression.

Fig 7b shows the reduction in activity in the instruction cache. Since the instruction
word is 32-bit wide (in the Alpha ISA used in this study) just three mechanisms are
evaluated. The first (labeled size) compresses the data to 8, 16, 24 or 32-bits in the
same way as size compression presented earlier. The second method (labeled signifi-
cance) compresses the instructions using significance compression to 8, 16, 24, and
32-bits. Finally, the third column (labeled zero) compresses the instructions using
zero compression where each byte of the 32-bit word can be tagged as being zero. All
the schemes perform very well and they achieve a 30% energy reduction minimum in
the instruction cache indicating that Alpha instructions are compressible in a way that
the schemes are able to find and exploit.

Fig 7c shows the percentage of reduction of the energy consumed by the ALU. The
difference between significance compression and the other schemes is larger in this
case (almost 50% vs 25%). Fig 7d shows the energy savings for the register file. The
savings scale up to 50% for significance compression while size compression reaches
a 33% reduction in energy and zero compression is a little bit behind.

Finally, Fig 7e shows the energy reduction of the branch predictor (just the BTB).
In this case the savings are smaller since the compressibility of addresses shows to be
minimal.

Value Compression for Efficient Computation 527

a)

0%
2%
4%
6%
8%

10%
12%
14%
16%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 ..

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

R
ed

uc
tio

n

 b)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

size

significance
zero

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

R
ed

uc
tio

n

c)

0%
10%
20%
30%
40%
50%
60%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

R
ed

uc
tio

n

 d)

0%
10%
20%
30%
40%
50%
60%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64

Pe
rc

en
ta

ge
 o

f E
ne

rg
y

R
ed

uc
tio

n

e)

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64

P
er

ce
nt

ag
e

of
 E

ne
rg

y
Re

du
ct

io
n

Fig. 7. Energy Savings for: (a) Data Cache (b) Instruction Cache (c) ALU (d) Register File (e)
Branch Predictor

4.3 Peak Power Reduction

Peak power is an important metric because it determines the maximum possible burst
of power that a processor might consume. This translates directly to hot spots and to
the temperature-thermal limits of the processor. Although one may think that com-
pressing the data may not have a direct impact on peak power because there may be
cycles where every computation will need 64 bits, our experiments show that peak
power is significantly reduced with the proposed compression mechanisms. The peak
power shown in Fig 8 corresponds to the execution of the SpecInt2000 suite.

As in the case of the energy consumption, the significance compression mechanism
achieves an 18% peak power reduction. It is interesting to see that the configuration
of significance compression that achieves the highest energy reduction (see Fig 6) is
not the best in terms of peak power reduction (see Fig 8) where the scheme that com-
presses all the bytes (significance 8,16,24,32,40,56,64) performs a little bit better. The
fact that it can compress bytes within large words makes it perform better in terms of
peak power. The size compression mechanism achieves, in its best configuration, an
8% peak power reduction while the zero compression mechanism stays above the 8%
line.

528 Ramon Canal, Antonio González, and James E. Smith

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

size 8 64

size 40 64

size 8 16 40 64

significance 8 16 24 32 40 64

significance 8 16 24 32 40 48 56 64

zero 8 16 24 32 40 64

zero 8 16 24 32 40 48 56 64
Pe

rc
en

ta
ge

 o
f R

ed
uc

tio
n

Fig. 8. Peak power reduction.

Benchmarks aside, one can conceive of (or contrive) a program with uncompress-
ible data. In this case, the peak power would not be reduced. In fact, the extra bits
needed by the data compression could even increase the worst case peak power. Nev-
ertheless, we argue that the small complexity of the required hardware mechanisms
does not add a significant overhead in this worst case peak power because there are
more power hungry units such as the clock network and the caches.

5 Conclusions

We have focused on the value compression paradigm and the proposals around this
topic. The compression of data values for different microarchitecture components has
been shown to be an effective way of reducing the overall power consumption of
processors. By reducing the activity levels, value compression achieves a significant
reduction in dynamic energy consumption. At the same time, value compression can
be used to make the different components of the pipeline simpler (or smaller) and thus
further reducing the energy –in this case, the static energy consumption. Furthermore,
we have shown that value compression can reduce the run-time peak power consump-
tion and thus it can be a good approach for temperature-aware computing. Several
studies have used different kinds of value compression mechanisms to achieve these
goals. In this work, we have extended, analyzed and compared them.

References

1. D. Brooks and M. Martonosi, “Dynamically Exploiting Narrow Width Operands to Im-
prove Processor Power and Performance”, in Proc. of 5th. International Symposium on
High-Performance Computer Architecture (HPCA-5), 1999.

2. D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural-Level
Power Analysis and Optimization”, in Proc. of the 27th Annual International Symposium
on Computer Architecture, June 2000.

3. G. Cai and C.H. Lim, “Architectural Level Power/Performance Optimization and Dynamic
Power Estimation”, Cool Chips tutorial of the 32nd Int. Symp. On Microarchitecture 1999.

4. R. Canal, A. González and J.E. Smith, “Very Low Power Pipelines using Significance
Compression”, in Proc. of the 33rd Int. Symposium on Microarchitecture, Dec. 2000.

5. R. Canal, A. González and J.E. Smith, “Software-Controlled Operand Gating”, in Proc. of
2nd International Symposium on Code Generation and Optimization, March 2004

Value Compression for Efficient Computation 529

6. J. Choi, J. Jeon and K. Choi, “Power Minimization of Functional Units by Partially
Guarded Computation”, in Proc. of the 2000 International Symposium On Low Power
Electronics and Design (ISLPED’00), pp. 131-136, Rapallo (Italy), August 2002.

7. R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose processors”, IEEE
Journal of Solid State Circuits, v. 31, n. 9, pp. 1277-1284, September 1996.

8. G. Loh, “Exploiting Data-Width Locality to Increase Superscalar Execution Bandwidth”, in
Proc. of the 35th International Symposium on Microarchitecture (MICRO-35), pp. 395-
405, Istanbul (Turkey) November 2002.

9. T. Nakra, B. Childers, and M.L.Soffa, “Width Sensitive Scheduling for Resource Con-
tained VLIW processors”, FDDO Workshop (MICRO33), Dec. 2001.

10. T. Okuma, Y. Cao, M. Muroyama and H. Yasuura, “Reducing Access Energy of On-Chip
Data Memory Considering Active Data Width”, in Proc. of the 2002 Int. Symp. On Low
Power Electronics and Design, pp. 88-91, Monterey (CA-USA), August 2002.

11. T.Sato and I. Arita, “Table Size Reduction for Data Value Predictors by Exploiting Narrow
Width Values”, in Proc. of the 2000 Int. Conf. on Supercomputing, May 2000, pp.196-205.

12. J. Turley, “PowerPC Adopts Code Compression”, Microprocessor Report, October 1998.
13. R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith, M. E.

Wazlowski, and P. M. Bland, “IBM Memory Expansion Technology (MXT)”, IBM Journal
of Research and Development, Volume 45, Number 2, 2001, pp. 271-286.

14. L. Villa, M. Zhang, and K. Asanovic, “Dynamic Zero Compression for Cache Energy Re-
duction”, in Proc. of the 33rd International Symposium on Microarchitecture, Dec.2000.

15. J. Yang and R. Gupta, “Energy Efficient Frequent Value Data Cache Design”, in Proc. of
the 35th International Symposium on Microarchitecture (MICRO-35), pp. 197-207, Istan-
bul (Turkey), November 2002.

	Value Compression for Efficient Computation
	1 Introduction
	2 General Principles
	3 Related Work
	3.1 Processor Front-End
	3.2 Processor Back-End
	3.3 Data Cache

	4 Value Compression Comparison
	4.1 Experimental Framework
	4.2 Energy Savings
	4.3 Peak Power Reduction

	5 Conclusions
	References

