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Abstract. A processor’s energy consumption can be reduced by compressing 
values (data and addresses) that flow through a processor pipeline and gating 
off portions of data path elements that would otherwise be used for computing 
non-significant bits. An approach for compressing all values running through a 
processor is proposed and evaluated. For the SpecInt2000 benchmarks the best 
compression method achieves energy savings of more than 20 percent and a 
peak power reduction of 18 percent. 

1   Introduction 

In recent years, energy consumption has become a critical design constraint in micro-
processor design and will likely remain so well into the future. Energy is important 
not only because of battery-life related issues, but also because of heat dissipation and 
thermal constraints. In current CMOS technology, most energy consumption occurs 
during state transitions in the underlying circuits [3]. This dynamic energy consump-
tion is proportional to switching activity, as well as load capacitance and the square of 
the supply voltage. Thus, an important energy conservation technique is to reduce 
switching activity by “gating off” or inhibiting switching in portions of logic and 
memory during clock cycles when they are not being used.  

In addition, the importance of static energy consumption is rapidly increasing with 
each microprocessor generation and will soon become as important as dynamic en-
ergy consumption. To reduce static energy consumption important techniques include 
minimizing circuit complexity and powering-down components that are not in use. 

Value compression is a mechanism that is in a sense orthogonal to the more com-
monly used schemes that gate off or power off entire subsystems. With value com-
pression the effective width of a subsystem is narrowed by turning off only certain bit 
(or byte) positions –usually higher order bytes, while leaving logic corresponding to 
the other bit (or byte) positions turned on. Value compression works because many 
values do not require the full precision supported by the data path. For example, the 
integer value one commonly occurs, but clearly does not require 32 (or 64) bits to 
encode it. Consequently, some value can be stored or manipulated in compressed 
form. For storage, value compression can be applied to individual data items, and for 
arithmetic and logical operations it is typically applied to both input operands. In 
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either case, only a portion of storage or logic is required and energy is saved by turn-
ing off the unused portion(s). 

In this paper we analyze several value compression mechanisms that are applied to 
the entire datapath. The paper is organized as follows. Section 2 describes the general 
principles and implications behind value compression. Section 3 lists related work. In 
Section 4, a comparison of several value compression schemes is performed. Finally, 
the main conclusions are presented in Section 5. 

2   General Principles 

As the name suggests, value compression reduces the number of bits used for repre-
senting a given value. When using value compression, data is typically represented 
with a number of data bits, plus some extra format bits that indicate the specifics of 
the compression method used. To date, most work has focused on compression of 
non-floating point data; extensions to floating point awaits further research.  

Value compression can be used in several structures that make up a processor’s 
datapath. These include data and instruction caches, integer functional units, register 
files, and branch predictors. Fig 1 contains data that indicates the compressibility of 
data values read/written in registers as SpecInt 2000 benchmarks are run on a 64-bit 
Alpha processor. This distribution shows a large potential for the value compression 
mechanisms because a large percentage of the values are narrow. For example, 40% 
can be represented in one byte (are between -128 and 127). The peak at 5 bytes is due 
to the memory addresses which are typically 5 bytes long in the Alpha architecture.  
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Fig. 1. Data size distribution for the SpecInt2000 

A good value compression method must take advantage of this data distribution, 
and, at the same time, incur a low overhead when compressing and decompressing. 
Although value compression can help reduce the energy consumption for performing 
certain functions, it is important that the overhead of compressing and decompressing 
does not affect the overall performance and the energy consumption. Thus, a good 
compression scheme should strike a good balance between the compressibility of the 
values and the extra performance and energy costs of the mechanism. 

Researchers have proposed three basic methods for value compression. The first, 
size compression, was suggested in the preceding paragraph and compresses values 
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according to their size (i.e., the minimum number of bytes in 2’s complement nota-
tion) [1][8][9][10][11]. With size compression, one or more format bit(s) indicate the 
number of significant bytes. The second mechanism uses one format bit per byte to 
indicate whether the byte is zero or not [12]. This method, zero compression, can take 
advantage of zero bytes in any position, not just in high order positions as with size 
compression. The last mechanism, significance compression, uses one format bit per 
byte to indicate whether a byte is a sign-extension of the previous one [4], and the 
least significant byte is always uncompressed. 

The following table includes several value configuration formats that we consider 
in this paper. Other configurations have been analyzed and give significant smaller 
performance. 

 Value compression method Classification of the values Extra bits 

Size 8-64 8 bits or 64 bits 1 

Size 16-64 16 bits or 64 bits 1 

Size 32-64 32 bits or 64 bits 1 

Size 40-64 40 bits or 64 bits 1 

Size 8-16-32-64 8 bits, 16 bits, 32 bits or 64 bits 2 
Size 8-16-40-64 8 bits, 16 bits, 40 bits or 64 bits 2 
Significance 8-16-24-32-40-64 Bytes 2,3,4,5 sign extended one byte, or 

byte 6 extended by two bytes. 
5 

Significance 8-16-24-32-40-48-56-64 Bytes 2,3,4,5,6,7,8 sign extended one byte 7 

Zero 8-16-24-32-40-64 Bytes 2,3,4,5 can be zero or bytes 6 
through 8. 

6 

Zero 8-16-24-32-40-48-56-64 Any byte can be a zero 8 
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Fig. 2. Average Data Size for the SpecInt2000 

An initial study of the average compressed value size using the schemes listed 
above is shown in Fig 2. The average size was computed as the average of the number 
of bytes for each access to the register file, data cache, functional units, and the re-
name buffers. The first column shows the average data size without the format bits, 
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and the second column shows the average size with the format bits. On average, ig-
noring the format bits, the zero compression mechanism achieves the best compres-
sion (23 bits for the configuration where every byte can be compressed). However, 
when the format bits are included, the best scheme is the size compression mechanism 
with an average of 30 bits per value (for the configuration in which the values are 
compressed to 8, 16, 40 or 64 bits). 

This initial data indicates that any of the three proposed schemes can perform well 
(they reduce the effective data-width from 64 bits to 30 bits). In the next section we 
describe several methods for using value compression for subsystems belonging to a 
processor’s datapath. Then we analyze the energy consumption for the three value 
compression mechanisms when used as processor-wide compression techniques. 

3   Related Work 
Most of the work on value compression has targeted just one structure of the pipeline. 
In earlier work, [4] we proposed ways of using significance compression across all 
pipeline stages of an in-order, single-issue processor. Significance compression is also 
performed in main memory, and as compressed values flow through the pipeline the 
format bits control the gating off of unused storage and functional unit bytes. Never-
theless, that work is for a 32-bit ultra low power machine (i.e. performance is not a 
concern). The work in [4] is extended to 64-bits and uses compile-time mechanisms 
in [5]. Other work in value compression tends to focus on specific processor blocks or 
pipeline stages, as described below.  

3.1   Processor Front-End 

The primary functions performed in a processor’s front end are instruction caching 
and branch prediction. Simple zero compression was proposed for the instruction 
cache [12], resulting in a 10% reduction in the energy consumption of the cache. 

To the best of our knowledge there have been no published results on value com-
pression to reduce energy requirements of branch prediction. However, in Section 4, 
we show performance figures of applying the zero compression mechanism of Villa et 
al. [13] and the significance compression method of Canal et al. [4] to branch predic-
tors. The power savings during branch prediction comes from compressing values 
held in the branch target buffer (BTB).  

There has also been a proposal for value compression while performing value pre-
diction. Sato and Arita [11] split the structure that keeps the predicted values into two 
similar structures, where one holds byte-wide data and the other holds 64-bit data. 
This structure is shown to be beneficial for energy saving because most of the instruc-
tions’ output-value widths do not change and a large portion of them (as shown in the 
data width distribution in Fig 1) are narrow. 

3.2   Processor Back-End 

In the processor back-end, we begin with the register file where Fig 3 depicts a simple 
value compression mechanism. For simplicity, the compression bits have been de-
picted in a separate structure. Before accessing the register file, the compression bits 
are read so that the access to the register file can be reduced to the specified bytes. 
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Canal et al. [4][5] propose dynamically compressing values so they are stored and 
retrieved along with their compression bits as shown in Fig 3. Brooks et al.[1], Loh 
[8] and Nakra et al. [9] propose similar techniques for exploiting narrow width oper-
ands to reduce functional unit energy requirements and, at the same time, to increase 
performance. Their techniques pack instructions that use narrow operands so that they 
can be executed in a single ALU (i.e. one 64-bit adder can compute four 16-bit addi-
tions). The differences between the various approaches lie in the ways the narrow 
widths are obtained. Brooks [1] introduces hardware that dynamically detects the 
widths of operand values. Loh [8] extracts the data-width from a data-width predictor 
and thus a recovery mechanism is needed in case the prediction is wrong. Finally, 
Nakra et al. [9] set the width at compile-time. In this research [1][8][9], the register 
file is modified in two possible ways: either by incrementing the number of read and 
write ports to the banks of the register file holding the low-order bytes; or by replicat-
ing the lower part of the register file.  

0  1  2   3  4   5  6   7

Compression Bits 
Table

register id 

Register File

selected bytes 
compression bits 

 

Fig. 3. A register file with value compression capabilities 
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v.2c v.1c v.3c v.4c  

Fig. 4. (a) ALU with packing capabilities, (b) ALU with value compression capabilities 

The implications for the functional units (FUs) result in two alternatives: Brooks 
[1], Loh [8] and Nakra [9] extend the FUs with the capability of executing multiple 
narrow-width instructions (see Fig 4a). On the other hand, Canal et al. [4][5] extend 
the functional units so that the FUs can operate with compressed values and generate 
the compression bits (see Fig 4b). In terms of implementation of these alternatives, 
Choi et al. [6] present several FU implementations that turn off the portions of the FU 
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that compute the high-order bits when these are just a sign-extension of the least sig-
nificant ones (the boundary between the high-order and low-order bits is analyzed and 
set in their work). 

3.3   Data Cache 

Several value compression methods have been proposed for reducing energy con-
sumption in the memory subsystem. Most of methods are focused on on-chip caches. 
The data-cache has been shown to be one of the more power-hungry structures in a 
microarchitecture [7][12]. Fig 5 shows a data cache enhanced with value compression 
capabilities.  

Typical implementations compress and decompress data when it is moved between 
the first and the second level caches. The same compression mechanisms can be used 
in all the memory hierarchy [13], and more sophisticated schemes [12] can be used in 
lower levels of the memory hierarchy for achieving higher compression ratios at the 
expense of some increase in latency -- not critical in lower memory levels. Several 
compression mechanisms have been proposed: zero compression [13] eliminates the 
bytes that are set to zero; active data-width [10] compresses the values to certain 
ranges (6,14,24 or 32 bit); a  frequent value cache [15] has a list of most frequent 
values for the high-order bits (32 bits); and the last scheme analyzed is the signifi-
cance compression [4] which eliminates the bytes that are a sign-extension of the 
previous one. 

compression bits 1

value 1 

compression bits 2

value 2 
Data Cache

output compression bits         output value 

memory address 

 

Fig. 5. Data Cache with value compression capabilities 

Villa et al. [13] propose an encoding where one bit per byte indicates whether the 
byte is null (zero). When the data is accessed, the compression bits are read first in 
order to just perform the activation of the parts that have a value different from zero. 
Okuma et al. [10] propose dividing the cache into several sub-banks where each sub-
bank keeps a portion of the value (32-bit wide in their case). For each memory access, 
just the sub-banks with significant data are accessed. In their case, one sub-bank holds 
the lowest significant six bits, the next sub-bank holds the following 8 bits, the third 
sub-bank keeps the next 10 and the last bank holds the last (most-significant) 12 bits. 
This compression scheme needs two bits per word and is very similar to the more 
general one analyzed in this paper under the name of size compression. 
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4   Value Compression Comparison 

In this section, we analyze the three value compression mechanisms (size compres-
sion, zero compression and significance compression) in terms of power. Starting 
from the overall processor energy reduction, we analyze some of the more interesting 
structures: data caches, instruction caches, register file, functional units and branch 
predictor. At the end, we consider the behavior in terms of peak power of the value 
compression mechanisms. Note that there are no performance (IPC) results because 
the compression mechanisms have no effect on performance. Thus, the results pre-
sented on energy reduction can be directly translated to Energy-Delay and Energy-
Delay square metrics.  

4.1   Experimental Framework 

The Wattch [2] toolset is used to conduct our evaluation. The main architectural pa-
rameters of the assumed out-of-order processor are given in Table 1. We use the pro-
grams from the SpecInt2000 suite with their reference inputs. All benchmarks are 
compiled with the Compaq-Alpha C compiler with the maximum optimization level. 
Each benchmark was run to completion.  

Table 1. Machine parameters 

 Parameter Configuration
Fetch Width 4 instructions
I-cache 64KB, 2-way set-associative. 32-byte lines, 1-cycle 

hit time, 6-cycle miss penalty. 

Branch Predictor 
Combined predictor of 1K entries with a Gshare 
with 64K 2-bit counters, 16 bit global history, and a 
bimodal predictor of 2K entries with 2-bit counters. 

Decode/Rename width 4 instructions
Max. in-flight instructions 64
Retire width 4 instructions
Functional units 3 intALU + 1 int mul/div3 fpALU + 1 fp mul/div
Issue mechanism 4 instructions Out-of-order
D-cache L1 64KB, 2-way set-associative. 32-byte lines, 1-cycle 

hit time, 6-cycle miss penalty 

I/D-cache L2 
256 KB, 4-way set associative, 64-byte lines, 10-
cycle hit time.16 bytes bus bandwidth to main 
memory, 100 cycles first chunk, 2 cycles interchunk 

Physical registers 96  

4.2   Energy Savings 

In addition to the average data size (shown in Fig 2), several other factors such as 
switching activity are important when computing dynamic energy reduction. Al-
though storing more compression bits results in wider structures, the activity of these 
wider structures is what determines energy consumption, not the size. Thus, it can be 
the case that a wider structure has less activity than a narrower one. In this section, we 
give results for the best performing schemes. 

The energy savings of the mechanisms analyzed in this work are given in Fig 6. 
Significance compression achieves higher energy savings (more than 20%) despite the 
use of 7 extra bits per word. The best size compression scheme (around 10% energy 
savings) is the one that compresses values to 8, 16, 40 and 64 bits. The fact that the 
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scheme includes the memory addresses (typically 5 bytes long) allows it to perform 
better than the other size compression mechanisms. The zero compression mechanism 
achieves a maximum of 11% overall energy reduction.  
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Fig. 6. Processor Energy Savings 

In the following figures, we analyze behavior of value compression schemes for 
several structures (instruction-cache, data-cache, register file and ALU). Fig 7a) 
shows the energy benefits in the data cache (both addresses sent to the cache and the 
data stored/loaded). The distribution of the energy savings in the data cache is similar 
to that of the whole processor. In this case, the significance compression energy sav-
ings are close to 14% and the version of significance compression that compresses all 
the bytes (not just up to the 5th byte) performs better than the other configurations of 
significance compression.  

Fig 7b shows the reduction in activity in the instruction cache. Since the instruction 
word is 32-bit wide (in the Alpha ISA used in this study) just three mechanisms are 
evaluated. The first (labeled size) compresses the data to 8, 16, 24 or 32-bits in the 
same way as size compression presented earlier. The second method (labeled signifi-
cance) compresses the instructions using significance compression to 8, 16, 24, and 
32-bits. Finally, the third column (labeled zero) compresses the instructions using 
zero compression where each byte of the 32-bit word can be tagged as being zero. All 
the schemes perform very well and they achieve a 30% energy reduction minimum in 
the instruction cache indicating that Alpha instructions are compressible in a way that 
the schemes are able to find and exploit.  

Fig 7c shows the percentage of reduction of the energy consumed by the ALU. The 
difference between significance compression and the other schemes is larger in this 
case (almost 50% vs 25%). Fig 7d shows the energy savings for the register file. The 
savings scale up to 50% for significance compression while size compression reaches 
a 33% reduction in energy and zero compression is a little bit behind.  

Finally, Fig 7e shows the energy reduction of the branch predictor (just the BTB). 
In this case the savings are smaller since the compressibility of addresses shows to be 
minimal. 
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Fig. 7. Energy Savings for: (a) Data Cache (b) Instruction Cache (c) ALU (d) Register File (e) 
Branch Predictor 

4.3   Peak Power Reduction 

Peak power is an important metric because it determines the maximum possible burst 
of power that a processor might consume. This translates directly to hot spots and to 
the temperature-thermal limits of the processor. Although one may think that com-
pressing the data may not have a direct impact on peak power because there may be 
cycles where every computation will need 64 bits, our experiments show that peak 
power is significantly reduced with the proposed compression mechanisms. The peak 
power shown in Fig 8 corresponds to the execution of the SpecInt2000 suite.  

As in the case of the energy consumption, the significance compression mechanism 
achieves an 18% peak power reduction. It is interesting to see that the configuration 
of significance compression that achieves the highest energy reduction (see Fig 6) is 
not the best in terms of peak power reduction (see Fig 8) where the scheme that com-
presses all the bytes (significance 8,16,24,32,40,56,64) performs a little bit better. The 
fact that it can compress bytes within large words makes it perform better in terms of 
peak power. The size compression mechanism achieves, in its best configuration, an 
8% peak power reduction while the zero compression mechanism stays above the 8% 
line. 
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Fig. 8. Peak power reduction. 

Benchmarks aside, one can conceive of (or contrive) a program with uncompress-
ible data. In this case, the peak power would not be reduced. In fact, the extra bits 
needed by the data compression could even increase the worst case peak power. Nev-
ertheless, we argue that the small complexity of the required hardware mechanisms 
does not add a significant overhead in this worst case peak power because there are 
more power hungry units such as the clock network and the caches.  

5   Conclusions 

We have focused on the value compression paradigm and the proposals around this 
topic. The compression of data values for different microarchitecture components has 
been shown to be an effective way of reducing the overall power consumption of 
processors. By reducing the activity levels, value compression achieves a significant 
reduction in dynamic energy consumption. At the same time, value compression can 
be used to make the different components of the pipeline simpler (or smaller) and thus 
further reducing the energy –in this case, the static energy consumption. Furthermore, 
we have shown that value compression can reduce the run-time peak power consump-
tion and thus it can be a good approach for temperature-aware computing. Several 
studies have used different kinds of value compression mechanisms to achieve these 
goals. In this work, we have extended, analyzed and compared them. 
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