
Using Aspects for Supporting Procedural
Modules in # Programming

Francisco Heron de Carvalho Junior1 and Rafael Dueire Lins2

1 Departamento de Computação, Universidade Federal do Ceará
Campus do Pici, Bloco 910, Fortaleza, Brazil

heron@lia.ufc.br
2 Depart. de Eletrônica e Sistemas, Universidade Federal de Pernambuco

Av. Acadêmico Hélio Ramos s/n, Recife, Brazil
rdl@ufpe.br

Abstract. Parallel programming still demands for higher-level lan-
guages, models, and tools that do not incur in performance penalties.
The # programming model aims to meet those claims in large-scale pro-
grams. This paper describes how the # programming model works with
procedural languages by using techniques from AOP (Aspect Oriented
Programming). Performance comparisons with MPI are presented.

1 Introduction

High performance computing (HPC) architectures of today may be split into
three classes: capability computing (MPP’s1), cluster computing [6] and grid com-
puting [14] architectures. Deep memory and source hierarchies can be supported
in all classes. Grids, for example, may have clusters and MPP’s as processing
nodes, which may be formed by multiprocessors. Individual processors may im-
plement vector and super-scalar processing. The consolidation of distributed ar-
chitectures for HPC have brought new challenges. Efficient parallel programming
on these architectures is not a trivial task using the tools available today. Despite
having to specify computations, like in sequential programming, programmers
must partition the application functionality and/or data, according to the fea-
tures of the target architecture, and implement process synchronization. There
are no consensual models for programming parallel architectures.

The evolution of parallel programming technology may be divided into three
phases. The first phase was marked by the use of low level architecture-specific
message passing interfaces. The start of the second phase is marked by the
creation of CRPC (Center for Research on Parallel Computation), in 1989.
From that milestone on, research efforts started to be coordinated, culminating
with the development of several efficient and portable tools, including libraries
for message passing (MPI [17] and PVM [15]), parallel extensions of Fortran
(HPF [12] and Fortran M [13]) and specific-purpose scientific computing libraries
(PETSc [3], ScaLAPACK [5], and many others [11]). The third phase searches
1 Massively parallel processors, the supercomputers.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 730–739, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using Aspects for Supporting Procedural Modules in # Programming 731

for models and languages for programming distributed high performance archi-
tectures, reconciling requirements of generality (G), high level of abstraction
(A), portability (P) and efficiency (E), allowing to apply advanced software en-
gineering concepts into the development of HPC software. Despite the efforts
promoted in the second phase, and also due to the expansion in scale of HPC
applications caused by cluster and grid computing, reaching the aims of the
latter phase is still one of the most important challenges in parallel computing
[11, 18].

The # parallel programming model provides a structured way to work with
explicit message passing programming. The # parallel programming environ-
ment supports the analysis of large scale parallel programs by using Petri nets
[9], including “debugging” and simulation facilities, proof of formal properties,
and performance evaluation. The idea behind the # environment is to offer a
“glue” for integrating existing high performance computing programming tech-
nologies in a common component-based framework, where advanced software
engineering techniques may be successfully applied. The current prototype im-
plementation of the # model is Haskell# [8]. Haskell# is a coordination language
for distributing functional computations in clusters. Computations are described
in Haskell, a pure lazy functional language. Haskell was initially adopted because
it provides a clean orthogonal interface between coordination and computation
media through lazy streams, besides allowing the analysis of formal properties
of programs at computation level.

This work presents an approach based on AOP (Aspect Oriented Program-
ming) [16] for incorporating computations written in procedural languages into
the # programming environment. Procedural languages may either be impera-
tive (such as C and Fortran), or object oriented (such as C++, Java, and C#).
They are widely used for high performance programming, as they provide good
time and space performance for scientific computations. Thus, it is possible to
think about multi-lingual implementations of the # programming environment.
This feature is highly desirable in large scale programming for grids.

This paper comprises three more sections. Section 2 presents an overview of
the # programming model. Section 3 shows how procedural modules were intro-
duced to the # programming environment. Section 4 benchmarks the proposed
approach. Conclusions and lines for further works are presented in Section 5.

2 The # Component Model

The # programming model moves parallel programming from a process-based
perspective to an orthogonal concern-oriented perspective. From the process-
based perspective, a parallel program is a collection of processes synchronizing
by means of communication primitives. For improving practice of parallel pro-
gramming, it had been tried to lift level of abstraction for dealing with these
primitives, resulting in efficiency losses. Concerns are scattered along implemen-
tation of processes, since they are orthogonal to processes. In fact, a process
may be viewed as a set of slices, each one describing the role of the process with

732 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

programmer
only by

!

compiler
(front−end)

compiler
(back−end)

Process Slice
Process

intervention

Process ViewComponent View

Program

(Structured, High Level of Abstraction)

computable

computable

computable

computable

Programming

Channel
Port
Unit
Component

Message Passing Programming
(Efficient, Portable, Expressive)

Process

P1

P2P0 P4

P3

C1

C2
C0

C3

?
? !

!

?
? !

!

!
!
!

P0 P2

P1

!
?

? P3
!

P4
?

!?

?
?

?

Process View

Fig. 1. Component Perspective versus Process Perspective

respect to a given concern. In this context, concerns are decomposition criteria
for slicing processes [19]. Thus, they may be viewed as sets of related slices,
probably from distinct processes. From the concern-oriented perspective of par-
allel programming, proposed by the # model, components are programming
abstractions that address functional and non-functional concerns. We believe
that a concern-oriented perspective of parallel programming fits contemporary
advanced software engineering artifacts better than a process-based perspective.

In # programming, the slices that comprise a component are called units.
They are connected in a communication topology, formed by one-direction,
point-to-point, and typed channels. For that, a unit has a set of input and
output ports, whose activation order is dictated by a protocol, specified using
a formalism with expressiveness of labelled Petri nets. In # programming, con-
cerns about parallelism and computations are separated in composed and simple
components, respectively. Composed components comprise the coordination
medium of # programs. They are specified in terms of units and channels,
possibly by composition of existing components, by using some language that
supports the coordination level abstractions of the # model. Today, there are a
textual notation, called HCL (# configuration language), and a visual notation,
called HVL (# visual language). Simple components are specified using Turing-
computable languages, comprising the computation medium of # programs.
They are the atoms of functionality in # programs. Simple components may be
assigned to units of composed components in order to configure computations

Interface or Interface Class Virtual Unit Unit (non−virtual)

Instantiation Assignmennt

interface declaration unit declaration assign declaration

z

w

x

y

protocol

}grouping: x*3 all

until (x | y) & z & w
repeat {seq{par {x?;y?}; z!; w!}

grouping
ports

Fig. 2. Configuring a Unit

Using Aspects for Supporting Procedural Modules in # Programming 733

———————————————————————————
component CPipeLine <N> with

iterator i range [1,N]

interface ICPipe where
ports: i* → o*
protocol: repeat seq{o!; i?} until <o & i>

[/ unit pipe[i] where ports: ICPipe /]

connect pipe[i]→o to pipe[i+1]←i, buffered
———————————————————————————
component Torus <N> with

use Skeletons.Common.CPipeLine

iterator i, j range [1,N]

interface ITorus where
ports: ICPipe @ n → s # ICPipe @ e → w
protocol: repeat seq {par {s!; w!}; par {n?; e?}}

until <n & e & s & w>

[/ unit vpipe[i]; assign CPipeLine<N> to vpipe[i] /]
[/ unit hpipe[j]; assign CPipeLine<N> to hpipe[j] /]

[/ unify vpipe[i].pipe[j], hpile[j].pipe[i]
to node[i][j] where ports: ITorus /]

———————————————————————————
component Farm<N> with

unit distributor where ports: () → job
unit worker where ports: job → result

protocol: seq {job?; result!}
unit collector where ports: result → ()

connect distributor.job to worker.job, synchronous
connect worker.result to collector.result, synchronous

replicate N: worker
———————————————————————————

———————————————————————
component SqMatMult<N> where

iterator i, j range [1,N]

use Skeletons.Common.{Torus, Farm}
use MMShift, SPMD

interface ISqMatMult where
ports: j → r # ITorus
protocol: seq { j?; repeat seq {par {s!;e!};

par {n?;w?}}
counter N ;

r! }

unit mm torus; assign Torus<N> to mm torus
unit mm farm; assign Farm<N> to mm farm

[/ unify farm.worker[i + j × N], torus.node[i][j]
to sqmm[i][j] where ports: ISqMatMult /]

unify farm.distributor, farm.collector, sqmm[0][0]
to sqmm root where

ports: () → ab # c → () #
ISqMatMult @ mm

protocol: seq {ab!; do mm; c? }

unit spmd; assign SPMD<N ×N> to spmd
supersede sqmm to spmd.peer

[/ assign MMShift to sqmm[i][j] /]
———————————————————————
module MMShift(main) where

main :: Num t ⇒ t → t → [t] → [t] → ([t],[t],t)
main a b as i bs i = (as o,bs o,c)

where
c = matmult as o bs o
(as o, bs o) = (a:as i, b:bs i)

matmult :: Num t ⇒ t → [t] → [t] → t
matmult [] [] = 0
matmult (a:as) (b:bs) = a*b + matmult as bs
———————————————————————

Fig. 3. Configuration Code of Matrix Multiplication on a Torus

performed by slices. Skeletons [10] are supported by allowing units with no com-
ponent assigned, called virtual units, giving support for high level of abstraction
without loss in efficiency and portability. Nested composition of components is
possible by allowing to assign composed components to units of other composed
components. Besides to give support for non-functional concerns and skeletons,
another important distinguishing feature of the # component model in relation
to other component models [1, 4] is its ability to combine components by over-
lapping them. For that, it is possible to unify units from different composed
components. Component models of today allow only nesting composition. Com-
ponents are black-boxes addressing functional concerns. Whenever supported,
non-functional concerns are introduced by means of orthogonal language ex-
tensions or by using tangling code cross-cutting component modules, like in
sequential programming. However, cross-cutting concerns are not exceptions in
parallel programming. The ability to overlap components makes possible to treat
cross-cutting concerns as first-class citizens when parallelizing of applications.

Figure 3 presents a simple, yet illustrative, process topology of a composed
component, named SqMatMult, that implements a parallel matrix multiplica-
tion strategy based on a systolic interaction pattern amongst processes organized
in a torus. The code is written in HCL, the textual realization of the # coordina-
tion level abstraction. The component SqMatMult is composed by overlapping

734 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

skeletons Torus and Farm. A N × N Torus is defined by overlapping N + N
instances of CPipeLine. The configuration code of components Torus, Farm,
CPipeLine and SqMatMult, in HCL, are also presented in Figure 3.

3 Procedural Modules as Simple Components

In Haskell# [8], simple components are functional modules written in the pure
lazy functional language Haskell. Haskell provides the simplest technique for
linking computation to coordination media without neither intermediate con-
structors nor extensions to the language Haskell. Functional modules neither
make any reference to HCL constructors nor need to import libraries. They are
standard Haskell modules, exporting the function main, whose arguments and
elements of the returned tuple correspond to arguments and return points of the
simple component. This is possible due to the Haskell support for lazy lists, which
are associated to streams at coordination level [7]. However, using a language
without lazy semantics, other approaches may be applied for keeping orthogonal
the separation between coordination and computation media.

Procedural modules are simple components written in procedural languages,
encompassing imperative and object oriented (OO) paradigms. They are imple-
mented as abstract data types (imperative languages), or objects (OO languages).
The routines, or methods, declared in procedural modules change the data struc-
ture state in the progress of computation. It is needed to define how procedural
module routines (or methods) are invoked in response to events at coordination
level and to define their arguments and return points. Techniques from Aspect
Oriented Programming (AOP) [16] are used for the first purpose. For instance,
a procedural module may be associated to aspect configurations, written in the
Aspect Language (HAL). In AOP, programmers may define pointcut designa-
tors that “identify particular join points by filtering out a subset of all the join
points within the program flow”. In the # terminology, the term program corre-
sponds to the protocol of the unit for which the procedural module is assigned.
Join points correspond to the actions in the protocol. Thus, pointcut designa-
tors stand for sub-sets of these actions. For defining them, labels and pattern
matching operators may identify and filtering actions (joint points) in protocols.
Labels extend HCL syntax for allowing to associate identifiers to actions. Pattern
matching operators may be used for filtering sets of actions according to a given
pattern. For example, the operator “ ? | !” stands for every communication ac-
tion in a protocol, while the operator “seq {p!; ; ;. . .}” stands for any sequential
action, encompassing at least three actions, that begins with the activation of
output port p. A pointcut is enabled whenever one of its join points (actions)
is reached when executing the protocol. Routines in the procedural module are
associated to pointcut designators. They may execute before or after to enable
the pointcut.

Figure 4(a) presents a C version for MMShift. The HAL code presented
in (b) defines three pointcut designators: Initial, Computation, and Trac-

ing. For instance, the pointcut Computation is enabled whenever the actions

Using Aspects for Supporting Procedural Modules in # Programming 735

/* MMShift.c */ {- MMShift.hal -} Wire functions (in MMShift.c)

int a,b sum;

void initial (void) {
sum = 0;

}
void accumulate (void) {

sum = sum + a*b;
}
void show progress (void) {

printf(“sum = %d\n”, sum);
}

point cut Initial for A
point cut Computation for B || C
point cut Tracing for ! || ?

before Initial , call “initial()”
after Computation, call “accumulate()”
after Tracing , call “show progress()”
before Tracing , call “show progress()”

void j(int x, int y) { a = x; b = y; }
void s(int x) { a = x; }
void e(int x) { b = x; }
int n(void) { return a; }
int w(void) { return b; }
int r(void) { return sum; }

/* NOTE: Wire functions are exposed
to the # compiler using a header
file, named MMShift.wf.h, where
their function prototypes are
provided. */

(a) (b) (c)

Fig. 4. C Version of the Functional Module MMShift

(join points) labelled by B and C are reached in the protocol of the unit sqmm of
SqMatMult. A call to the subroutine accumulate is performed after Computa-

tion is enabled. The pointcut designator Initial has an analogous description.
The pointcut designator Tracing is enabled in response to port activation. Be-
fore and after these events, the routine show progress is invoked. No dynamic
binding of routines to coordination events are needed, minimizing overheads.
The # compiler is a static weaver, using the aspect configuration for generating
code that calls specified routines at appropriate join points.

Arguments and return points of procedural modules are defined by means of
wire functions. Essentially, wire functions compute the values to be transmitted
through ports from the encapsulated state of the procedural module. Wire func-
tions are declared in the procedural module and exposed by a header file listing
their prototypes. Figure 4(a) exemplifies wire functions for unit sqmm.

4 Performance Evaluation Using NPB Kernels

A sub-set of the NPB kernels (NAS Parallel Bechmarks) [2] was implemented
in # programming2 by using AOP for linking imperative computations to #
coordination medium: EP (Embarrassingly parallel), IS (Integer Sorting) and
CG (Conjugate Gradient). They are used to compare the performance of # pro-
grams to their C/MPI (IS) and Fortran/MPI (EP and CG) counterparts. This
experiment exemplifies how to design SPMD programs, a class where most of
HPC programs fit, using the # approach. It also demonstrates how to translate
MPI programs to the # model with minor performance penalties, despite gains
in modularity and abstraction. The NPB kernels allow evaluating the use of col-
lective communication skeletons for composing topologies and for automatically
generating efficient code using lower level collective MPI primitives.

The composed components EP, IS, and CG address the functionality of the
respective kernels, implementing the same strategies of parallelism adopted in
the original versions. The differences lay on the separation of concerns between
parallelism and computation in composed and simple components. The coor-

2 Implementation codes of NPB kernels are available at
http://www.lia.ufc.br/ heron/npb hash code.html.

736 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

i = 0 ... m

...p[1] p[n]p[0]

AllReduce
rho_comm[i]

...p[1] p[n]p[0]

AllReduce

rnorm_comm[i]

...p[1] p[n]p[0]

AllReduce
aux_comm[i]

...p[1] p[n]p[0]

AllReduce

norm_temp_comm[i]

...p[1] p[n]p[0]

AllReduce
q_comm[i]

...p[1] p[n]p[0]

AllReduce
r_com[i]

p[0][0] p[0][1] p[0][n]

p[1][0] p[1][1] p[1][n]

p[m][0] p[m][1] p[m][n]

...

...

...
...

Transpose
qT_comm

p[0][0] p[0][1] p[0][n]

p[1][0] p[1][1] p[1][n]

p[m][0] p[m][1] p[m][n]

...

...

...
...

Transpose
qR_comm

...

...
cg_unit[0][0] cg_unit[0][1] cg_unit[0][n]

...

cg_unit[1][0] cg_unit[1][1] cg_unit[1][n]...

cg_unit[m][0] cg_unit[m][1] cg_unit[m][n]

CG

........................
...

.....................
......

...........................

...

IS_FM_Root

IS_FM_Main

assign

assign

assign

assign

unify

Fig. 5. The Topology of Component CG

dination medium specified is composed by overlapping composed components
that implement collective communication skeletons (Figure 5). The resulting
unit supersedes peer unit of a cluster for which component SPMD is assigned,
informing the compiler about the “Single Program, Multiple Data” nature of
the kernels. The procedural modules FM EP, FM IS, and FM CG implement
computations. Their routines are invoked according to events at coordination
level, associated by means of aspect configurations (Section 3).

In the original versions of the NPB kernels, timing concern is implemented
as calls to low-level timing routines intertwined with the code of computations.
Using the # approach, a reusable component, called Timer, was designed for
addressing the concern of execution timing. It was designed for synchronizing
processes before timing begins, measuring duration of computation and com-
munication/synchronization phases in a SPMD parallel program, and finally,
providing timing summaries at the end of the execution. The component Timer

is overlapped to the application components EP, IS and CG, yielding timed
versions of them, called Timed EP, Timed IS and Timed CG, by using unifi-
cation. Using the same approach, it might be possible to design other reusable
components to address cross-cutting concerns, such as debugging, placement and
load balancing strategies, security policies, etc.

4.1 Performance Measures and Discussion

Figure 6 presents the performance figures for the NPB kernels EP, IS and CG.
Standard problem sizes A, B, and C, defined in kernel documentation, is con-

Using Aspects for Supporting Procedural Modules in # Programming 737

0 1 2 3 4 5 6

5

4

3

2222

5

44

2222

CG- A

#

MPI

0 1 2 3 4 5 6

838

184155
84734553

862

195163
84755154

CG- B

#

MPI

1 2 3 4 5 6
64

1169

703

225174116123 66

1239

725

239191141157

CG- C

#

MPI

0 1 2 3 4 5 6

4

77

6

4

3

6

4

77

6

4

3

6

IS- A

#

MPI

0 1 2 3 4 5 6

17

2627

21
19

14

10

17

2728

22
20

15

10

IS- B

#

MPI

1 2 3 4 5 6

16

109111

78
66

39

68

16

111112

81
71

40

67

IS- C

#

MPI

0 1 2 3 4 5 6

136

69

34
17
963

135

68

34
17
963

EP- A

#

MPI

0 1 2 3 4 5 6

546

274

137
69
342211

549

271

135
68
342211

EP- B

#

MPI

0 1 2 3 4 5 6

2201

1099

549
275
1378945

2217

1083

541
273
1368945

EP- C

#

MPI

Fig. 6. Performance Figures for NPB (# vs. MPI)

sidered. For one process, IS and CG exhaust physical memory of cluster nodes
(> 1GB). The architecture used was an Itautec cluster comprising 28 Intel Xeon
nodes, each one with four processors, connected through a Gigabit Ethernet. It
is installed at Computation Department of Federal University at Ceará, Brazil.
MPICH 1.2.4 was used on top of TCP/IP. The data presented show no significa-
tive overheads for # versions in comparison to original ones, despite the gains
in modularity advocated in the previous section. The minor differences are due
to the partitioning of the monolithic original code in several routines scattered
over distinct source files, affecting cache performance, causing larger number of
function calls, and reducing some opportunities for compiler optimizations.

The presented empirical study may not be extended to all # programs and
problem sizes. Indeed, it is not possible to define an exhaustive set of bench-
marks that prove it, for any programming technology or architecture. However,
it is possible to enumerate some reasons that may strengthen the reliability of
the presented results to predict # performance in other situations: (1) virtu-
ally, any parallel programming technology on top of message-passing may be
encapsulated as components in the # programming; (2) # programmers may
implement the same parallelization strategies that they would implement by us-
ing the underlying parallel programming technology. In NPB kernels, # versions
were produced by refactoring the original MPI versions, reusing all computation
code without either modifications or reimplementation; (3) The # compiler does
not add any kind of run-time support to the one provided by the underlying par-
allel programming technology; (4) The # compiler may allow the use of several
parallel programming technologies in the same application, on top of the same
component abstraction. In fact, this is a realistic assumption in current parallel
programming practice, where non-modular combinations of MPI, openMP, and

738 Francisco Heron de Carvalho Junior and Rafael Dueire Lins

possibly, grid enabling tools, such as Globus Toolkit are used together in the
development of applications.

5 Conclusions and Lines for Further Work

This paper demonstrates how imperative and object oriented languages may
be bound to the # programming environment by applying Aspect Oriented
Programming concepts. Performance figures are presented comparing the per-
formance of # versions of some kernels of NPB (NAS Parallel Benchmarks),
where computations are implemented as procedural modules, to their MPI coun-
terparts. The results show no significative performance overheads due to the use
of # programming approach, despite gains in modularity and abstraction.

The work with # programming model is on progress. The main goal is to
develop a parallel programming environment based on # model for integrating
existing parallel programming technology, where the proof and analysis of for-
mal properties, the simulation and the performance evaluation of programs may
become a reality on top of Petri net-based tools and of NS (Network Simulator).

References

1. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S.
Parker, and B. Smolinski. Towards a Common Component Architecture for High-
Performance Scientific Computing. In The Eighth IEEE International Symposium
on High Performance Distributed Computing. IEEE Computer Society, 1999.

2. D. H. Bailey, T. Harris, W. Shapir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, December 1995. http://www.nas.nasa.org/NAS/NPB.

3. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B.
Smith, and H. Zhang. PETSc Users Manual. Technical Report ANL-95/11 Revision
2.1.3, Argonne National Laboratory, Argonne, Illinois, 1996.
http://www.mcs.anl.gov/petsc.

4. F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical
Grid Components. In International Symposium on Distributed Objects and Appli-
cations. Springer-Verlag, 2003.

5. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK User’s Guide. Society for Industrial and Applied Mathe-
matics (SIAM), 1997.

6. R. Buyya (ed.). High Performance Cluster Computing: Architectures and Systems.
Prentice Hall, 1999.

7. F. H. Carvalho Junior, R. M. F. Lima, and R. D. Lins. Coordinating Functional
Processes with Haskell#. In ACM Press, editor, ACM Symposium on Applied Com-
puting, Track on Coordination Languages, Models and Applications, pages 393–400,
March 2002.

8. F. H. Carvalho Junior and R. D. Lins. Haskell#: Parallel Programming Made
Simple and Efficient. Journal of Universal Computer Science, 9(8):776–794, August
2003.

Using Aspects for Supporting Procedural Modules in # Programming 739

9. F. H. Carvalho Junior, R. D. Lins, and R. M. F. Lima. Translating Haskell#
Programs into Petri Nets. Lecture Notes in Computer Science (VECPAR’2002),
2565:635–649, 2002.

10. M. Cole. Algorithm Skeletons: Structured Management of Paralell Computation.
Pitman, 1989.

11. J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White.
Sourcebook of Parallel Computing. Morgan Kauffman Publishers, 2003.

12. High Performance Fortran Forum. High Performance Fortran, Language Specifica-
tion, Version 2.0, January 1997.

13. I. Foster and K. M. Chandy. Fortran M: A Language for Modular Parallel Pro-
gramming. Technical Report MCS-P327-0992, Argonne National Laboratory, June
1992.

14. I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infras-
tructure. M. Kauffman, 2004.

15. G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.
PVM: Parallel Virtual Machine - A User’s Guide and Tutorial for Networked Par-
allel Computing. MIT Press, Cambridge, 1994.

16. G. Kiczales, J. Lamping, Menhdhekar A., Maeda C., C. Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Lecture Notes in Computer Science
(Object-Oriented Programming 11th European Conference – ECOOP ’97), pages
220–242. Springer-Verlag, November 1997.

17. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
International Journal of Supercomputer Applications and High Performance Com-
puting, 8(3-4):169–416, 1994.

18. A. Skjellum, P. Bangalore, J. Gray, and Bryant B. Reinventing Explicit Parallel
Programming for Improved Engineering of High Performance Computing Software.
In International Workshop on Software Engineering for High Performance Com-
puting System Applications, pages 59–63. ACM, May 2004. Edinburgh.

19. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3:121–189, 1995.

	Using Aspects for Supporting Procedural Modules in # Programming
	1 Introduction
	2 The # Component Model
	3 Procedural Modules as Simple Components
	4 Performance Evaluation Using NPB Kernels
	4.1 Performance Measures and Discussion

	5 Conclusions and Lines for Further Work
	References

