
Parallel Solution of Sparse Linear Systems
Arising in Advection–Diffusion Problems

Luca Bergamaschi1, Giorgio Pini1, and Flavio Sartoretto2

1 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Universita’ degli Studi, Via Belzoni 7, 35131 Padova, Italy

{berga,pini}@dmsa.unipd.it
2 Dipartimento di Informatica, Universitá di Venezia

Via Torino 155, 30173 Mestre VE
sartoret@dsi.unive.it

Abstract. Flow problems permeate hydraulic engineering. In order to
solve real–life problems, parallel solutions must be engaged, for attaining
large storage amounts and small wall–clock time. In this communication,
we discuss valuable key points which allow for the efficient, parallel so-
lution of our large, sparse linear systems, arising from the discretization
of advection–diffusion problems. We show that data pre-fetching is an
effective technique to improve the efficiency of the sparse matrix–vector
product, a time consuming kernel of iterative solvers, which are the best
choice for our problems. Preconditioning is another key topic for the ef-
ficient solution of large, sparse, ill–conditioned systems. Up to now, no
extensive theory for choosing the best preconditioner is available, thus
ad–hoc recipes and sound based experience is mandatory. We compare
many preconditioners in order to show their efficiency and allowing a
good choice when attacking problems like ours.

1 Introduction

The advection–diffusion equations are [1]

∂u

∂t
= ∇ · (K∇u − vu) + f , (1)

where u is the unknown function, K is the diffusion tensor, v is a given velocity,
and f is a source or sink term. Dirichlet and Neumann boundary conditions must
be given to identify a well posed mathematical formulation of the flow problem.
Finite Element (FE) integration in space over a 3D FE N–node grid is per-
formed. Further integration in time by finite difference methods is performed by
Crank-Nicolson scheme when v = 0 [1], implicit Euler otherwise. One obtains a
sequence of N ×N linear algebraic systems, Ax = b. Classical FE methods yield
large, sparse linear systems. When the flow velocity is to be accurately com-
puted, the Mixed Hybrid Finite Element (MHFE) method are exploited. MHFE
provides simultaneous solution of fluid pressure and velocity. In our framework,
piecewise-constant pressure is considered, while velocities are approximated us-
ing the lowest order Raviart-Thomas elements [2]. MHFE requires the solution

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 804–814, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parallel Solution of Sparse Linear Systems 805

of sparse linear systems, which for a given mesh are 7∼8 times larger than FE
ones.

Iterative methods are the best choice for solving our test problems, provided
efficient preconditioners are available. When v = 0, Symmetric Positive Defi-
nite (SPD) matrices are obtained; unsymmetric ones otherwise. For SPD matri-
ces, the best available iterative algorithm is Preconditioned Conjugate Gradient
(PCG), while for general, unsymmetric matrices no best iterative algorithm is
available. On the ground of our experience, we selected the BiCGSTAB algo-
rithm [3], which displays robustness and efficiency when attacking our problems.

A core, time consuming, sub–task inside all iterative methods is the matrix–
vector product. We tested Algorithm 2 after Geus and Rollin [4], which attempts
to enhance cache usage by data pre-fetching (DP) techniques. Table 1 shows our
implementation of the algorithm.

subroutine matvec(n, ia, ja, a, x, y)

c Matrix-vector product y = A x, with data pre-fetching.

c The matrix A is stored in CSR format.

c

implicit none

integer n, i, j, j1, k, k1, l

integer ia(*), ja(*)

real*8 a(*), x(*), y(*), s, v, v1

c

k = 1

do i = 1, n

s = 0.

k1 = ia(i+1)

if (k .lt. k1) then

j = ja(k) ! pre-fetch

v = a(k) ! pre-fetch

k = k+1

do while (k .lt. k1)

j1 = ja(k) ! pre-fetch

v1 = a(k) ! pre-fetch

s = s + v * x(j)

j = j1 ! pre-fetch

v = v1 ! pre-fetch

k = k + 1

end do

s = s + v * x(j)

endif

y(i) = s

end do

return

end

Fig. 1. Our implementation of Algorithm 2 after Geus and Röllin.

806 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Preconditioning is another key issue for the efficient solution of large linear
systems. We exploited classical Jacobi, which does not improve convergence very
much, but is both not storage consuming and easily efficiently parallelizable; we
also tested the more powerful FSAI preconditioners [5], which we computed
by our efficient, parallel implementation. For a typical range of Peclet number
values, the quality of ILU(0) and ILUT [6] preconditioners is analyzed in [7].
The results can be easily extended to FSAI and pARMS type preconditioners.

At present, no general rules to identify the best solver for either diffusion or
advection dominated problems are available. This is another motivation to our
study, which is aimed to suggest good solution strategies for several situations.

2 The FSAI Preconditioner

Given a SPD matrix A, let A = LALT
A be its Cholesky factorization. The FSAI

method computes an approximate inverse of A in the factorized form H =
GT

LGL, where GL is a sparse nonsingular lower triangular matrix approximating
L−1

A . To attain GL, one must first prescribe a sparsity pattern SL ⊆ {(i, j) : 1 ≤
i �= j ≤ N}, such that {(i, j) : i < j} ⊆ SL. A lower triangular matrix ĜL is
computed by solving the equations

(ĜLA)ij = δij , (i, j) �∈ SL. (2)

The diagonal entries of ĜL are all positive. Defining D = [diag(ĜL)]−1/2 and
setting GL = DĜL, the preconditioned matrix GLAGT

L is SPD and has diagonal
entries all equal to 1. A common choice for the sparsity pattern is to allow non
zeros in GL only in positions corresponding to non zeros in the lower triangular
part of Ak, where k is a small positive integer, e.g., k = 1, 2, 3; see [8]. The
extension of FSAI to the non symmetric case is straightforward; however the re-
solvability of the local linear systems and the non singularity of the approximate
inverse is only guaranteed if all the principal sub-matrix of A are non singular
(which holds true, for instance, when A + AT is SPD).

While the approximate inverses corresponding to Ak, k > 1, are often better
than the one corresponding to k = 1, they may be too expensive to compute and
apply. In [9] a simple approach, called post-filtration, was proposed to improve
the quality of FSAI preconditioners in the SPD case. The method is based on
a posteriori sparsification, by using a drop–tolerance parameter. We found that
the quality of the preconditioner does not heavily depend upon its value, which
ranges in the interval [0, 1]. The aim is to reduce the number of nonzero elements
of the preconditioning factors, in order to decrease the arithmetic complexity of
the iteration phase. In a parallel environment, a substantial reduction of the
communication complexity of the preconditioner-by-vector multiplication can
be achieved.

In the non symmetric case both preconditioner factors, GL and GU , must
be sparsified. Non symmetric matrices with a symmetric nonzero pattern are
considered, i.e. SL = ST

U is assumed, and a symmetric filtration of factors GL

and GU is performed.

Parallel Solution of Sparse Linear Systems 807

3 Parallel Implementation

Our parallel implementation of the algorithms rely upon a data splitting ap-
proach, designed for sparse FE/MHFE matrix–vector (MV) products. The code
is written in FORTRAN 90 and exploits MPI 1.0 calls for exchanging data among
the processors. All our matrices are statically stored into CSR formatted data
structures.

BiCGSTAB and PCG algorithms can be decomposed into a number of scalar
products, daxpy-like linear combinations of vectors, αv+βw, and MV products.

Scalar products, v ·w, were distributed among the P processors.
Concerning matrix splitting, note that uniform block mappings, like those

exploited in High Performance Fortran cyclic directive, are not suitable for our
sparse matrices. We splitted our matrices by a uniform, row–wise block map-
ping. Such distribution is ideal for our problems, since it allows for performing
a piece of MV product on each processor. Moreover, our sparse matrices have
quite the same number of non–zero entries per row, hence blocks consisting of
the same number of rows consist of quite the same amount of bytes. We exploited
blocks of contiguous rows. Non–contiguous row distributions yield more complex
algorithms, which moreover do not perform well on (old) machines where the
communication time changes with the relative position of processors in the com-
munication net. We improved MV evaluation by using a technique for minimizing
data communication between processors [10]. In the greedy matrix-vector algo-
rithm, each processor communicates with each other. Using our approach with
our sparse matrices, usually each processor sends/receives data to/from at most
2 other processors. Moreover, when running on P processors, the amount of
data exchanged, when dealing with a matrix featuring M non–zero entries, is
far smaller than [M/P].

3.1 Parallel Implementation of FSAI

We implemented the FSAI preconditioner computation, both for SPD, and non
symmetric matrices. Our code allows for the specification of either A or A2

sparsity patterns. We used a block row distribution of matrices A, GL (and
also GU in the non symmetric case). Complete rows are assigned to different
processors.

Let ni be the number of non zeros allowed in the i-th row of GL. In the SPD
case, any row i of the GL matrix can be computed independently of each other,
by solving a small SPD dense linear system of size ni. To attain parallelism, the
processor that computes row i must access ni rows of A. Since the number of non
local rows needed by each processor is relatively small, we temporarily replicate
the non local rows on auxiliary data structures. The dense factorizations needed
are carried out using BLAS3 routines from LAPACK. Once GL is obtained, a
parallel transposition routine provides to every processor the eligible part of GT

L .
In the non symmetric case, recall that we assume a symmetric non zero

pattern for matrix A, i.e. we ideally set SL = ST
U . The preconditioner factor GL

is computed as described before, while GU is computed by columns. Hence, no

808 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

additional row exchange is needed with respect to the SPD case. Every processor
performs a fully parallel computation both of a set of rows into GL, and of a set
of columns into GU .

4 pARMS

The parallel Algebraic Recursive Multilevel Solvers (pARMS) package [11, 12] is
an interesting effort in devising distributed preconditioners for iterative solvers.
It works in the framework of distributed linear systems, which provides an alge-
braic representation for the parallel solution of linear systems, Ax = b, arising
in Domain Decomposition Methods. The coefficient matrix A is split among the
available processors. A local Ni × Ni matrix, Ai, and an interface matrix, Xi

are assigned to the i-th processor. Each local vector of unknowns, xi, is split
into a sub–vector ui of interior variable contributions, and a sub-vector yi of
inter–domain interface variables. Analogously, each local right–hand side vector,
bi, is chopped into fi and gi contributions. The equations assigned to processor
i can be written

(
Bi Fi

Ei Ci

) (
ui

yi

)
+

(
0∑

j∈Ni
Eijyj

)
=

(
fi

gi

)
. (3)

where the matrices Bi, Fi, Ei, Ci compose a block–splitting of Ai. Additive
Schwarz techniques (with or without overlapping), can be exploited, as well as
Schur complement–type ones. It is well known that scalability and robustness
of Additive Schwarz can be very poor [12]. We found that Schur techniques are
better suited to our problems. These latter techniques rely upon Schur comple-
ment systems. They are derived by eliminating the variables ui in equation (3),
using ui = B−1

i (fi − Fiyi). By substitution in the second equation, one gets

Siyi =
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi = g′i, (4)

where Si is the local Schur complement

Si = Ci − EiB
−1
i Fi.

Assembling equations (4) over all processors, the global Schur complement system

Sy =

S1 E1,2 . . . E1,p

E2,1 S2 . . . E2,p

...
... . . .

...
Ep,1 Ep−1,2 . . . Sp

y1

y2

...
yp

 =

g′1
g′2
...
g′p

is obtained. The matrix S is the global Schur complement. Once the system is
approximately solved, each processor works out the system Biui = fi − Eiyi,
hence attaining an approximated solution x of the original problem. By extensive

Parallel Solution of Sparse Linear Systems 809

testing, we found that for our problems the lsch ilut (left–Schur complement)
algorithm performs better w.r.t. the Additive Schwarz preconditioners, right
Schur complement preconditioners, and Gauss–Seidel preconditioners, which are
described in [12]. The lsch ilut approach solves the global Schur complement
system via Block–Jacobi preconditioning. Note that pARMS package suffers from
the need of assessing a large number of parameters (about 15), corresponding to
the high number of possibilities that can be exploited.

pARMS algorithms are intrinsically parallel. Note that the number of itera-
tions performed heavily depend upon the number of engaged processors, hence
pARMS parallel performance analysis cannot naively rely upon classical param-
eters, like speedup.

5 Numerical Results

Table 1 shows the main characteristics of our test problems.

Table 1. Main characteristics of our test matrices. N=size, nz=number of non–zero
elements, dd= “is it a diagonal dominant matrix?”; HB=half–bandwidth; type = Ma-
trix type: spd= symmetric positive definite, problem = problem type, algorithm = dis-
cretization algorithm, uns= unsymmetrical matrix. Solvers: P=PCG, B=BiCGSTAB.

N nz dd HB type problem algorithm solver

1 268,515 3,926,823 Y 5265 spd diffusion FE P
2 390,160 2,694,160 N 18062 spd diffusion MHFE P
3 531,765 7,817,373 Y 5265 spd diffusion FE P
4 1,059,219 15,605,175 N 20769 spd diffusion FE P
5 1,317,141 19,458,621 N 13041 uns adv-diff FE B
6 2,097,669 31,066,125 N 20769 spd diffusion FE P
7 2,635,731 38,927,991 N 51681 uns adv-diff FE B
8 3,096,640 21,528,640 N 71966 spd diffusion MHFE P

We stopped the iterations when the euclidean norm of the residual, rk =
b − Axk, satisfies ‖rk‖ � 10−12.

We performed our runs on the IBM SP4 system and the IBM Linux Cluster
1350 machine, both located at CINECA supercomputing center, Italy.

The SP4 machine features 16 nodes, each one including 32 POWER 4, 1300
MHz processors. Each node is equipped with a 64 GB memory, one only node
featuring a 128 GB core memory. The nodes are connected with 2 interfaces to
a dual plane set of Colony switches.

The IBM Linux Cluster 1350, CLX for short, is a 256 node machine. Each
node encloses a 2GB DRAM (32 nodes have a 4GB DRAM), and two Intel Xeon
Pentium IV 3.055 GHz processors (10 I/O nodes feature 2.8 GHz processors).
Each processor is equipped with a 512Kb L2 Cache. Disk space is 5.5 TB. The
internal network is a Myrinet IPC one.

810 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Table 2. Wall–clock seconds spent on the SP4, to solve our test problems up to
‖rk‖ � 10−12 accuracy. D = PCG + diagonal preconditioning; F = PCG + FSAI(A)
preconditioning; F1 = PCG + FSAI(A2) preconditioning; D*, F*, F1* are D, F, F1,
respectively, where no data prefetching inside matrix–vector products was exploited.

N alg T1 T2 T4 T8 T16 T32 S2 S4 S8 S16 S32

2,097,669 D* 2611.0 1391.2 834.0 534.9 287.4 151.8 1.88 3.13 4.88 9.08 17.20
F* 1976.0 1111.3 622.4 408.2 205.2 110.2 1.78 3.17 4.84 9.63 17.93

F1* 1548.4 858.6 470.6 347.2 176.3 106.8 1.80 3.29 4.46 8.78 14.50

averages 2045.1 1120.4 642.3 430.1 223.0 122.9 1.82 3.20 4.73 9.17 16.54

2,097,669 D 1822.7 985.5 555.1 375.1 201.6 102.4 1.85 3.28 4.86 9.04 17.80
F 1236.6 655.6 369.6 243.3 144.2 91.2 1.89 3.35 5.08 8.58 13.56

F1 1067.7 570.5 315.0 211.2 118.6 79.6 1.87 3.39 5.06 9.00 13.41

averages 1375.7 737.2 413.2 276.5 154.8 91.1 1.87 3.34 5.00 8.87 14.92

Table 2 compares, on an appropriate test matrix, the performance on the
SP4 of our PCG code either with or without, data pre-fetching (DP) by Geus
& Rollin. The value Tp is the wall–clock seconds spent to solve a problem; Sp =
T1/Tp is the classical speedup value. One can see that appreciably less wall–clock
seconds are spent to solve our test problems when the DP technique is exploited.
The average time over all tests goes down from 764.0 seconds when no DP is used,
to as less as 508.1, which is only 67% of the former time, when DP is exploited.
On the other hand, the speedup values are quite similar; their average values
over all tests are 7.09 for no DP, vs 6.80 with DP. Concerning the assessment of
the parameters in pARMS, we extensively engaged the package on our problems.
We tested s = 30, 50, 80, 100 Krylov subspace sizes. We found that a good choice
is using flexible GMRES (FGMRES) [13], together with s = 100. The lsch ilut
preconditioner with overlapping was enrolled. The fill-in parameter was set to
lfill=60 for all the recursion levels, and the dropping tolerance was tol=10−4.
The group independent set size was set to 5000, while the maximum number of
internal iterations was 5. These values are also suggested in [11].

Table 3 shows the wall-clock times and relative speedup values, S
(r)
p =

Tp/2/Tp, p = 2, 4, 8, 16, 32, recorded on the SP4 when solving our test problems
(all obtained by exploiting DP technique). Note that the I/O time needed for
data input is not considered. The time for printing output results is negligible.

The smallest matrices (problems 1 and 2) were solved on up to 16 processors.
A larger number of processors would assign a too small data set to each one. To
solve the larger problems, up to 32 processors were engaged. Inspecting Table 3
one can see that FSAI(A) allows for a slight decrease of the computing time,
over Jacobi, while FSAI(A2) with drop–tolerance value 0.1 provides appreciable
enhancements over FSAI(A) and Jacobi.

One can see that pARMS in the smaller problems (1–6) is usually more
time consuming than the other methods, while it is comparably expensive in
the larger problem 7. In spite of the fact that we made extensive parameter
space analysis, we could not attain pARMS convergence on problem 8. It is well
known that pARMS suffer from high changes in the iteration number, depend-

Parallel Solution of Sparse Linear Systems 811

Table 3. Analogous to the previous Table. Du = BiCGSTAB + Jacobi; Fu =
BiCGSTAB + FSAI(A); F1u = BiCGSTAB + FSAI(A2); pA = pARMS. Legend for
the symbols: “*” = no convergence attained; “-” = value not computed, “/” = value
not computable.

N alg T1 T2 T4 T8 T16 T32 S
(r)
2 S

(r)
4 S

(r)
8 S

(r)
16 S

(r)
32

1 268,515 D 448.0 230.6 136.5 84.5 52.2 - 1.94 1.69 1.62 1.62 /
F 382.9 198.4 116.7 79.8 49.1 - 1.93 1.70 1.46 1.63 /

F1 86.2 45.3 25.6 16.1 9.3 - 1.90 1.77 1.59 1.73 /
pA 131.3 91.9 86.8 62.2 50.7 - 1.43 1.06 1.40 1.23 /

2 390,160 D 201.2 105.8 62.5 42.9 24.3 - 1.90 1.69 1.46 1.77 /
F 183.2 98.1 54.8 37.6 21.3 - 1.87 1.79 1.46 1.77 /

F1 140.1 73.4 42.3 28.4 15.0 - 1.91 1.74 1.49 1.89 /
pA * 235.8 189.8 217.9 * - / 1.24 0.87 / /

3 531,765 D 1519.3 824.9 459.1 299.7 138.8 88.3 1.84 1.80 1.53 2.16 1.57
F 1542.6 867.9 467.5 323.1 150.4 98.7 1.78 1.86 1.45 2.15 1.52

F1 236.0 126.7 69.9 45.3 21.6 13.5 1.86 1.81 1.54 2.10 1.60
pA 554.3 169.2 140.3 183.9 136.2 131.7 3.28 1.21 0.76 1.35 1.03

4 1,059,219 D 2522.7 1344.6 778.2 549.2 270.4 140.3 1.88 1.73 1.42 2.03 1.93
F 2044.1 1050.5 598.9 479.4 253.7 136.1 1.95 1.75 1.25 1.89 1.86

F1 770.9 412.3 229.1 174.4 93.6 52.3 1.87 1.80 1.31 1.86 1.79
pA * 351.8 245.0 216.8 176.3 92.3 / 1.44 1.13 1.23 1.91

5 1,317,141 Du 666.6 369.1 192.0 132.7 70.8 46.5 1.81 1.92 1.45 1.87 1.52
Fu 527.6 280.3 163.4 113.2 64.9 45.3 1.88 1.72 1.44 1.74 1.43

F1u * * 170.1 102.6 62.0 41.3 / / 1.66 1.65 1.50
pA * * * 202.8 133.6 79.7 / / / 1.52 1.68

6 2,097,669 D 1822.7 985.5 555.1 375.1 201.6 102.4 1.85 1.78 1.48 1.86 1.97
F 1236.6 655.6 369.6 243.3 144.2 91.2 1.89 1.77 1.52 1.69 1.58

F1 1067.7 570.5 315.0 211.2 118.6 79.6 1.87 1.81 1.49 1.78 1.49
pA * * * 652.7 376.2 226.5 / / / 1.73 1.66

7 2,635,731 Du * * 768.9 546.6 380.2 295.2 / / 1.41 1.44 1.29
Fu * * * 536.0 321.6 271.4 / / / 1.67 1.18

F1u * * * 419.3 254.1 212.4 / / / 1.65 1.20
pA * * * 419.7 295.3 191.2 / / / 1.42 1.54

8 3,096,640 D 6202.0 3423.4 1949.1 1612.2 714.7 350.7 1.81 1.76 1.21 2.26 2.04
F 4950.2 2656.0 1506.4 1132.2 574.6 307.2 1.86 1.76 1.33 1.97 1.87

F1 3801.6 2008.9 1176.0 924.3 428.7 242.8 1.89 1.71 1.27 2.16 1.77
pA * * * * * * / / / / /

averages 1410.8 715.7 418.0 337.6 186.8 145.1 1.92 1.68 1.38 1.76 1.61

ing upon the number of processors. Note that in many problems pARMS could
not be run on 1 or 2 processors, due to lack of core memory. When the rela-
tive speedup can be measured, it displays large oscillations, and questionable
values (e.g. S

(r)
2 = 3.28 for N=531,765). From this point of view, PCG and

BiCGSTAB are more robust on this kind of problems. The average standard de-
viation in the number of iterations, counting all our PCG and BiCGSTAB tests,
is 12.9, while for pARMS is 90.3. We feel that solving even larger problems on

812 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

Table 4. Analogous to Table 3. Problem 3, N=531,765, results obtained on the CLX
system.

N alg T1 T2 T4 T8 T16 T32 S
(r)
2 S

(r)
4 S

(r)
8 S

(r)
16 S

(r)
32

531,765 D 1726.7 908.7 473.3 250.7 133.2 74.2 1.90 1.92 1.89 1.88 1.80
F 1560.3 821.2 437.4 237.7 139.6 83.3 1.90 1.88 1.84 1.70 1.68

F1 287.9 163.3 90.9 51.1 28.7 16.4 1.76 1.80 1.78 1.78 1.75
pA 521.3 141.6 114.6 166.4 92.3 80.7 3.68 1.24 0.69 1.80 1.14

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 2 4 8 16 32

ef
fi

ci
en

cy

processors

SP4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 2 4 8 16 32

ef
fi

ci
en

cy

processors

CLX

Fig. 2. Problem 3, N=531,765. Average relative efficiency on D, F, and F1 methods,
obtained when running on the SP4 (left frame), and CLX (right frame).

a larger number of processors, pARMS could perform better. Figure 2 shows
the average relative efficiency, E

(r)
p = S

(r)
p /2, on problem 3, recorded either on

the SP4 (left frame) or on the CLX (right frame). The average was performed
on D, F, and F1 algorithms; the pA technique was not considered: recall that
the cost of the algorithm heavily depends upon the number of running proces-
sors, hence plain efficiency is meaningless. Usually, the relative efficiency on the
SP4 is quasi optimal for p = 2 processors, good for 4, worsens when doubling
to 8 processors, acceptable on more than 8. Such a behavior is typical for our
problems, when running on CINECA’s machine. The interconnecting network
is not so fast as to allow high speedup values on a large number of processors
(see also [4, 14]). The performance degradation when going from 4 to 8 proces-
sors occurred in all our parallel experiences on this machine, due to hard/soft
processor aggregation into virtual/physical nodes. Since 8 processors share the
same node core memory, when all 8 are engaged on unstructured matrix com-
putations, many memory conflicts are raised. For comparison, Table 4 shows
the time and speedup recorded on the CLX system, for problem 3 (N=531,765).
Comparing with the results on the SP4 after Table 3, one can see that the perfor-
mance is usually better on the CLX. A slight performance decrease is recorded
when going from 1 to 2 processors. Recall that a CLX node encompasses two
processors, sharing the node core memory. One can see that on the CLX the
efficiency behavior matches the parallel expert feeling. This result confirms that
the disturbing low performance on the SP4, when running on 8 processors, is
due to the machine architecture, rather than to our algorithm, which performs
well on other architectures, like CLX.

Parallel Solution of Sparse Linear Systems 813

Summarizing, the parallel performance on the SP4 is more erratic than on
the CLX, but note that the largest problems cannot run on a 2GB CLX node,
unless a suitably large number of processors is engaged.

The parallel degrees obtained on the SP4 are compatible with the exploited
machine, in accordance with the degrees shown e.g. in [4].

6 Conclusions

Summarizing, the PCG algorithm for SPD problems and BiCGSTAB for un-
symmetric ones, equipped with FSAI(A2) preconditioning, prove to be the best
parallel solvers for our problems, on our tests.

Data pre-fetching allows for appreciably improving the efficiency of our sparse
matrix–vector products.

The parallel efficiency of our code on the SP4 can be rated satisfactory. Our
results provide a guideline for the parallel performance that one can expect
when running FE codes. Parallel performance losses can be recorded running on
8 processors, due to the complex, highly non uniform, SP4 architecture. This
problem does not occur on the CLX, where typical parallel performance results
are achieved.

Acknowledgments

This work has been supported by the italian MIUR project Numerical models
for multi-phase flow and deformation in porous media.

References

1. Gambolati, G., Pini, G., Tucciarelli, T.: A 3-D finite element conjugate gradient
model of subsurface flow with automatic mesh generation. Adv. Water Resources
3 (1986) 34–41

2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag,
Berlin (1991)

3. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13 (1992) 631–644

4. Geus, R., Röllin, S.: Towards a fast parallel sparse symmetric matrix-vector mul-
tiplication. Parallel Computing 27 (2001) 883–896

5. Yu. Kolotilina, L., Yu. Yeremin, A.: Factorized sparse approximate inverse precon-
ditionings I. Theory. SIAM J. Matrix Anal. Appl. 14 (1993) 45–58

6. Saad, Y.: ILUT: A dual threshold incomplete lu factorization. Numer. Linear Alg.
Appl. 1 (1994) 387–402

7. Pini, G., Putti, M.: Krylov methods in the finite element solution of groundwater
transport problems. In Peters, A., Wittum, G., Herrling, B., Meissner, U., Brebbia,
C.A., Gray, W.G., Pinder, G.F., eds.: Computational Methods in Water Resources
X, Volume 1, Dordrecht, Holland, Kluwer Academic (1994) 1431–1438

814 Luca Bergamaschi, Giorgio Pini, and Flavio Sartoretto

8. Kaporin, I.E.: New convergence results and preconditioning strategies for the con-
jugate gradient method. Numer. Linear Alg. Appl. 1 (1994) 179–210

9. Yu. Kolotilina, L., Nikishin, A.A., Yu. Yeremin, A.: Factorized sparse approximate
inverse preconditionings IV. Simple approaches to rising efficiency. Numer. Linear
Alg. Appl. 6 (1999) 515–531

10. Bergamaschi, L., Putti, M.: Efficient parallelization of preconditioned conjugate
gradient schemes for matrices arising from discretizations of diffusion equations.
In: Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing. (March, 1999) (CD–ROM).

11. Li, Z., Saad, Y., Sosonkina, M.: pARMS: a parallel version of the algebraic recursive
multilevel solver. Numer. Linear Alg. Appl. 10 (2003) 485–509

12. Saad, Y., Sosonkina, M.: pARMS: a package for solving general sparse linear sys-
tems of equations. In Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski,
J., eds.: Parallel Processing and Applied Mathematics. Volume 2328 of Lecture
Notes in Computer Science., Berlin, Springer-Verlag (2002) 446–457

13. Saad, Y.: Iterative Methods for Sparse Linear Systems. Second edition. SIAM,
Philadelphia, PA (2003)

14. Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience with sequen-
tial and parallel preconditioned Jacobi Davidson for large sparse symmetric ma-
trices. J. Comput. Phys. 188 (2003) 318–331

	Parallel Solution of Sparse Linear Systems Arising in Advection-Diffusion Problems
	1 Introduction
	2 The FSAI Preconditioner
	3 Parallel Implementation
	3.1 Parallel Implementation of FSAI

	4 pARMS
	5 Numerical Results
	6 Conclusions
	References

