
Parallelization of Implicit-Explicit Runge-Kutta
Methods for Cluster of PCs

José Miguel Mantas1, Pedro González2, and José A. Carrillo3

1 Software Engineering Department. University of Granada
C/ P. Daniel de Saucedo s/n. E-18071 Granada, Spain

jmmantas@ugr.es
2 Department of Applied Mathematics. University of Granada

Avda. Fuentenueva s/n. E-18071 Granada, Spain
prodelas@ugr.es

3 Departament de Matemàtiques - ICREA. Universitat Autònoma de Barcelona
Bellaterra E-08193

carrillo@mat.uab.es

Abstract. Several physical phenomena of great importance in science
and engineering are described by large partly stiff differential systems
where the stiff terms can be easily separated from the remaining terms.
Implicit-Explicit Runge-Kutta (IMEXRK) methods have proven to be
useful solving these systems efficiently. However, the application of these
methods still requires a large computational effort and their parallel im-
plementation constitutes a suitable way to achieve acceptable response
times. In this paper, a technique to parallelize and implement efficiently
IMEXRK methods on PC clusters is proposed. This technique has been
used to parallelize a particular IMEXRK method and an efficient parallel
implementation of the resultant scheme has been derived in a structured
manner by following a component-based approach. Several numerical
experiments which have been performed on a cluster of dual PCs reveal
the good speedup and the satisfactory scalability of the parallel solver
obtained.

1 Introduction

The spatial discretization of a great variety of time-dependent partial differential
equations (PDEs) by the method of lines leads to large systems of ordinary
differential equations (ODEs) with this form:

dy

dt
= f(y) + g(y), y(0) = y0 ∈ IRd, t > 0 (1)

where y = y(t) ∈ IRd is the unknown function of a d-dimensional ODE system
which is defined by the component functions f ,g : IRd −→ IRd. The function
g(y) results from the discretization of the stiff terms and f(y) results from the
discretization of the remaining terms. The function g is usually written as (1/ε)g̃
(g̃ : IRd −→ IRd), where ε > 0 is the stiffness parameter [5].

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 815–825, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

816 José Miguel Mantas, Pedro González, and José A. Carrillo

There are many practical problems where it can be advantageous to integrate
f explicitly, to reduce computational costs, and g implicitly, to avoid excessively
small time steps. In fact, the Jacobian of g in problems of form (1) frequently
exhibits a particular structure (positive definite, symmetric, and sparse) whose
exploitation would make it possible a considerable saving of computational effort
if g is implicitly integrated. This special structure can be lost if global implicit
methods are used to integrate both terms (f(y)+g(y)). Therefore, it often makes
sense to integrate g(y) implicitly and f(y) explicitly in these problems when they
exhibit this structure.

A clear example of this type of system appears in reaction-diffusion and
convection-diffusion problems [1, 7, 12, 13] arising in multiple areas of science
and engineering. In these problems, an explicit scheme would be used for the
reaction (resp. convection) term and an implicit scheme for the diffusion term.

There exists Runge-Kutta methods which are specially suitable for systems
of form (1). These schemes, known as Implicit-Explicit Runge-Kutta Methods
(IMEXRK), apply an implicit discretization for g and an explicit one for f , si-
multaneously, in the same time step and using identical time step size. A Diago-
nally Implicit Runge-Kutta method (DIRK) [2] is usually considered to integrate
g, given the importance of the efficiency in the solution of the stiff part of the
equation [1].

However, the application of an IMEXRK method, together with the com-
plexity of these systems, demands a great deal of computing power which can be
easily achieved by using efficient parallel implementations running on cluster of
Personal Computers (PCs). In this paper, the development of parallel software
based on IMEXRK methods is tackled.

In section 2, the structure of the most relevant IMEXRK methods is briefly
presented. A general technique to parallelize these numerical methods will be
described in section 3. This technique will be applied to a particular IMEXRK
method in section 4, to obtain a new parallel scheme. A component based
methodological approach for deriving group parallel ODE solvers [9, 10] is used in
section 5 to develop an efficient parallel implementation of this numerical scheme.
This approach enables the exploitation of the multilevel parallelism which ex-
hibits the numerical scheme and the ODE system in an structured manner. This
implementation is adapted to solve a 1D rarefied gas shock profile on a cluster of
dual PCs. Section 6 presents the experimental results obtained with the parallel
solver. Finally, section 7 gives the main conclusions of the work.

2 Implicit-Explicit Runge-Kutta Methods

We have considered IMEXRK methods where the implicit solver (which is used
to integrate g) is a DIRK method. With this requirement, we have identified two
relevant types of IMEXRK methods: pure IMEXRK methods [1, 8] and Additive
Semi-Implicit Runge-Kutta methods of type A (ASIRK-A) [13].

A pure s-stage IMEXRK scheme is characterized by two matrices Ã, A ∈
IRs×s (Ã = (ãij), A = (aij)) and two coefficient vectors b̃, b ∈ IRs (b̃ =

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 817

(b̃1, . . . , b̃s), b = (b1, . . . , bs)). The matrix Ã is strictly lower triangular (ãij = 0,
for j ≥ i) and A is lower triangular (ãij = 0, for j > i). When these parame-
ters are applied to a system of form (1), we obtain the numerical scheme which
appears below. This scheme describes how to obtain the vector yn ∈ IRd, which
approximates y(tn), from the approximation given by the previous integration
step yn−1 ≈ y(tn−1):

Yn,i = yn−1 + hn

(i−1∑
j=1

ãijf(Yn,j) +
i∑

j=1

aijg(Yn,j)
)

, i = 1, . . . , s (2)

yn = yn−1 + hn

(s∑
i=1

b̃if(Yn,i) +
s∑

i=1

big(Yn,i)
)

, n = 1, . . . , Nsteps

where Yn,i ∈ IRd, i = 1, . . . , s and hn is the size of the n-th time step (hn =
tn − tn−1). Nsteps is the total number of time steps.

An s-stage ASIRK-A scheme (ASIRK-sA) is represented with the same kind
of parameters as an s-stage IMEXRK method. The only difference is that in
ASIRK-A methods, only a coefficient vector b ∈ IRs is necessary, in addition
to the matrices Ã, A ∈ IRs×s which maintain the same previously mentioned
structure. When these parameters are applied to a system of form (1), we obtain:

Yn,i = hn


f

(
yn−1 +

i−1∑
j=1

ãijYn,j

)
+ g

(
yn−1 +

i∑
j=1

aijYn,j

)
 , i = 1, .., s (3)

yn = yn−1 +
s∑

i=1

biYn,i, n = 1, . . . , Nsteps

3 An Approach to Parallelize IMEXRK Methods

When an IMEXRK method is applied to a system of form (1), s connected
d-dimensional nonlinear systems must be solved sequentially (see (2) and (3)).

If the modified Newton method [2] is applied to solve each of these systems,
we obtain s Newton iterations where the i-th iteration (i = 1, . . . , s) computes an
approximation to the vector Yn,i. Each iteration must be solved before the next
one, because the i-th iteration depends on vectors Yn,j , j = 1, . . . , i− 1, which
must be computed in previous iterations. As a result, the following numerical
scheme is obtained:

for n = 1, . . . , Nsteps

for i = 1, . . . , s

Y
(0)
n,i is computed by using a predictor formula

for v = 1, . . . , mi

Ri = Qi − Y
(v−1)
n,i

Y
(v)
n,i = Y

(v−1)
n,i +

(
Id − aiihnJg(ki)

)−1

Ri

818 José Miguel Mantas, Pedro González, and José A. Carrillo

The values mi of this method are dynamically determined to ensure that
Y

(mi)
n,i is a good approximation of Yn,i. Jg(ki) denotes an approximation to the

Jacobian of g evaluated at ki and Id denotes the d-dimensional identity matrix.
The values of Qi and ki vary depending on the type of IMEXRK scheme

which is considered. So, for pure IMEXRK schemes, ki = yn−1 and

Qi = yn−1 + hn

(i−1∑
j=1

ãijf(Yn,j) +
i−1∑
j=1

aijg(Yn,j) + aiig(Y (v−1)
n,i)

)
,

and for ASIRK-A schemes, ki = yn−1 +
i−1∑
j=1

aijYn,j and

Qi = hn


f

(
yn−1 +

i−1∑
j=1

ãijYn,j

)
+ g

(
yn−1 +

i−1∑
j=1

aijYn,j + aiiY
(v−1)
n,i

)
 .

Since the iterations must be solved sequentially, this scheme does not exhibit
a lot of task parallelism exploitable across the method [2]. In order to decouple
the calculations associated to each stage, we propose to approximate the solution
of this scheme by using a similar scheme in which the calculations of each stage
can be performed in parallel. The new scheme introduces some of redundant
computation, but this additional cost is relatively small. This scheme is based
on the following reasonable assumptions:

– For ASIRK-A schemes, the Jacobian of g in yn−1 +
∑i−1

j=1 aijYn,j is approx-
imated by the Jacobian evaluated in yn−1 (ki = yn−1). This approximation
does not involve a considerable loss of accuracy and makes it possible to use
the same Jacobian matrix in the calculations of all the stages.

– The calculations of each stage can be performed in a synchronous and concur-
rent manner if, in the v-th iteration of the original scheme, we approximate
Yn,j by Y

(v−1)
n,j and we consider the same number of Newton iterations for

all the stages (v = 1, . . . , m).

Now, the parallel numerical schemes which result from these assumptions
are described. In these descriptions, the term Y

(v−1)
n,j appears highlighted to

emphasize the modification of the original schemes.

for n = 1, . . . , Nsteps

Y
(0)
n = Pred(Yn−1) (Pred(·) denotes a predictor formula)

for v = 1, . . . , m
parfor i = 1, . . . , s

Ri = Qi − Y
(v−1)
n,i

Y
(v)
n,i = Y

(v−1)
n,i +

(
Id − aiihnJg(yn−1)

)−1

Ri

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 819

where Yn ∈ IRsd is the so-called stage vector, which contains s d-dimensional
components Yn,i, i = 1, . . . , s (Yn = (Yn,1, . . . , Yn,s)T). The value of m must
be dynamically determined to ensure that (Y (m)

n,1 , . . . , Y
(m)
n,s)T is a good approx-

imation of Yn. Here the term Qi is different. For IMEXRK schemes:

Qi = yn−1 + hn

(i−1∑
j=1

ãijf(Y
(v−1)
n,j) +

i−1∑
j=1

aijg(Y
(v−1)

n,j) + aiig(Y
(v−1)

n,i)

)

and for ASIRK-A schemes:

Qi = hn

[
f

(
yn−1 +

i−1∑
j=1

ãij Y
(v−1)
n,j

)
+ g

(
yn−1 +

i−1∑
j=1

aij Y
(v−1)

n,j + aiiY
(v−1)
n,i

)]

With this scheme, the total number of Newton iterations would be no less
than in the original scheme (m ≥ max1≤i≤s(mi)). However, this additional num-
ber of iterations does not involve an excessive loss of efficiency.

4 Application to a Particular IMEXRK Method

Now the derivation of a particular parallel IMEXRK method of second order is
performed. The selected method is termed LRR(3,2,2) [8] (3 stages are used in
the implicit scheme, 2 stages in the explicit scheme and the convergence order
is 2). This method is very suitable in applications where the stiff terms can
be easily separated from the rest of the equations and a high accuracy is not
required in the time discretization [1]. The parameters which characterize this
method [8] lead to the following numerical scheme:

Yn,1 = yn−1 +
1

2
hn[f(yn−1) + g(Yn,1)], Yn,2 = yn−1 +

1

3
hn[f(yn−1) + g(Yn,2)]

yn = Yn,3 = yn−1 + hn[f(Yn,1) +
3

4
g(Yn,2) +

1

4
g(Yn,3)] (4)

This scheme exhibits exploitable task parallelism itself, because the computation
of vectors Yn,1 and Yn,2 can be performed simultaneously. However, the compu-
tation of yn = Yn,3 requires the previous computation of those two vectors. We
have applied the previously described general technique to enable a higher degree
of concurrency, obtaining the following parallel scheme, which has been termed
PIMEXRK3 (Parallel IMEXRK method with 3 stages).

for n = 1, . . . , Nsteps { Y
(0)
n = Pred(Yn−1) // a11 = 1

2
, a22 = 1

3
, a33 = 1

4

for v = 1, . . . , m {
par { parfor i = 1, 2 {Ri = yn−1 + aiihn

[
f(yn−1) + g(Y

(v−1)
n,i)

]
− Y

(v−1)
n,i }

R3 = yn−1 + hn

[
f(Y

(v−1)
n,1) + 3

4
g(Y

(v−1)
n,2) + a33g(Y

(v−1)
n,3)

]
− Y

(v−1)
n,3 }

parfor i = 1, 2, 3 { Y
(v)

n,i = Y
(v−1)
n,i + (Id − aiihnJg(yn−1))

−1Ri } }
}

820 José Miguel Mantas, Pedro González, and José A. Carrillo

5 Derivation of Parallel Implementations
of the PIMEXRK3 Scheme

Following a component-based approach to derive parallel ODE solvers [9, 10],
termed COMPODES, a distributed implementation of the PIMEXRK3 scheme
has been obtained to solve a particular problem on a cluster of dual PCs, by
appplying 3 phases in sequence.

1. Component-Based Generic Description of the Numerical Scheme
From the mathematical description of the numerical scheme, the first phase
of COMPODES is applied. For that purpose, several abstract operations are
selected and combined suitably to describe the algorithm and to express the
maximum degree of task parallelism. A summarized generic description of the
PIMEXRK3 method, based on abstract operations, is shown in Figure 1a), where
the edges denote data dependencies and the main sources of task parallelism
are represented with concurrent loops (PAR i = 1, 3). We have selected a di-
rect method based on LU decomposition to solve the linear systems, because
this choice enables the reuse of the same LU decomposition for the solution
of all the linear systems which arise in one time step. In fact, The operation
LUdecomp(.., A, ..) denotes the LU factorization of A, SolveSystem(.., A, ..., X)
denotes the computation of X ←− A−1X (assuming LUdecomp(.., A, ..)) and
Feval(.., t, f, y, dy) denotes the evaluation of a function f .

Mjacobian(..., y , , J)0 gg

ConvergenceCtrl (..., R, ...,convergence)

ErrorCtrl(..., y ,Y, t, ...)0

LUdecomp(...,)LUi

Jg

While (t< t)f

LU , i=1,..,3i

R, Y

Compute Jacobian Jg

Factorize LU =I - a h Ji d ii g

Solve LU DY =Ri i i

PAR i = 1 , 3

OUT: yf

IN: f gy , ,0

While(not convergence)

Feval(...,Y , ,Vf)1 3f

Compute f(Y)1

SolveSystem (..., LU ,..., R)i i

R , i=1,..,3i

Feval (...,Y , , Vg)i ig

Compute g(Y)i

Vg , i=1,..,3i

PAR i = 1 , 3

PAR i = 1 , 3

...

...

PDGBTRS (...,)LU , Ri i...,

PAR i = 1 , 3 ON G3(i)

PDGBTRF (...,)LUi

PAR i = 1 , 3 ON G3(i)

IN: REP(G1) f gy ,0 ,

ON G1 Block_SplitBandedMJacobian(...,y)0 g...,, J

OUT: REP(G1) yf

ON G1 ConvergenceCtrl (..., ,...,convergence)R

ON G1 ErrorCtrl (..., , t,...)Y

ON G1 Block_BFeval(.., , f ,)Y Vf1 3

While (t< t)f

While(not convergence)

PAR i = 1 , 3 ON G3(i) Block_BFeval(.., , g ,)Y Vgi i

...

a) b)

Fig. 1. a) Generic description of PIMEXRK3, b) Description of task scheduling

2. Adaptation to a Particular ODE System
The generic description of the PIMEXRK3 method has been adapted, following
the second COMPODES phase, to perform the time integration of a hydrody-

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 821

namical model of the Boltzmann equation for rarefied gases in 1D [11]. This
model is based on a system of 5 PDEs, termed the relaxed Burnett system [6],
which can be written in the following form:

(
Ut

Vt

)
=

(−F (U, V)x

−G(U, V, Ux, Vx) + D(U, V, Ux, Vx)x

)
, where (5)

U =




ρ
m = ρu

z =
1

2
ρu2 +

3

2
p


 , V =

(
σ
q

)
, F (U,V) =




ρu

ρu2 + p + σ
1

2
ρu3 +

5

2
up + σu + q


 .

The terms G(U, V, Ux, Vx) and D(U, V, Ux, Vx) are defined in [6]. In this sys-
tem, we have five independent variables ρ (mass density), m = ρu (momentum,
where u is the macroscopic velocity), z = 1

2ρu2 + 3
2p (total energy, where p is

the normal pressure), σ (pressure deviation tensor) and q (heat flux vector).
A spatial discretization of this system is proposed in [11]. This discretization

is based on combining relaxation schemes for the conservative part and standard
second order central differences for the non conservative part. The resulting
system has 5N ODEs when the 1D space is discretized by using N grid points. A
suitable arrangement of the equations leads to a a narrow banded ODE system
whose Jacobian matrix has 9 subdiagonals and 7 superdiagonals.

The stiff and nonstiff terms in (5) have the following form:

f(U, V) = (−F (U,V)x, 0)T , g(U, V) = (0, D(U, V, Ux, Vx)x − G(U,V, Ux, Vx))T .

If we maintain the same spatial discretization and arrangement which it is
proposed in [11], the subsystem associated to g has a banded structure and the
Jacobian of g has 9 subdiagonals and 5 superdiagonals. Therefore, the banded
structure of the function g and its Jacobian is narrower than in the original
system (f = f + g). Since the structure of the Jacobian matrix for g determines
the complexity of the more costly calculations in the implicit time integration,
the use of an IMEXRK method involves an important reduction of computational
costs.

The initial vector y0 of the ODE system captures the state before a one-
dimensional shock profile with Mach number 10 [11].

In order to enable the exploitation of the particular structure of the sub-
systems f and g, the generic specification of the PIMEXRK3 scheme has been
adapted by replacing several operations (for instance, LUdecomp, MJacobian and
Feval) by specializations which assume a banded structure [10].

3. Parallel Design Decisions
Following the third COMPODES phase, several parallel design decisions have
been made in order to compute efficiently the specialized PIMEXRK3 scheme
on a processor number, P , which is multiple of 3. These decisions include the
scheduling of the tasks and the selection of the best data parallel implementation
and data distribution to realize each operation. An approximation method has
been proposed to make these decisions systematically [10].

822 José Miguel Mantas, Pedro González, and José A. Carrillo

A summarized graphical description of some of these decisions is shown
in Figure 1b). Several groups of processors have been considered to sched-
ule the tasks: a global group with P processors (G1), and 3 disjointed sub-
group with P/3 processors (G3(i), i=1,2,3). To compute an approximation of
the Jacobian of g, we chose an optimal implementation for banded Jacobians
Block SplitBandedMJacobian on the global group G1. This implementation
generates a block column distribution of a compact representation of the Jaco-
bian. The evaluations of the function f are performed on the group G1 while the
evaluations of g for the i-th stage (i = 1, 2, 3) are performed on G3(i). These
evaluations are implemented by using a parallel block routine (Block BFeval)
which takes into account the banded structure of the ODE system terms in or-
der to reduce the remote communication. The LU decompositions and system
solutions for the i-th stage are computed on G3(i) by using the routines of
the ScaLAPACK library [3] PDGBTRF (banded LU Factorization) and PDGBTRS
(banded system solution). These routines takes advantage of the banded struc-
ture of the system and follows a block column distribution.

These decisions have been translated into a parallel program which is ex-
pressed in Fortran augmented with routines of ScaLAPACK and MPI [4].

6 Numerical Experiments

We have performed several numerical experiments on a cluster of 8 dual AMD
processors 2.5Ghz, running Linux, connected via a Gigabit ethernet switch.

Table 1. Comparison among LRR(3,2,2) and PIMEXRK3 numerical solutions

hn= 0.5 0.25 0.125 0.0625

||yLRR − yP3||2 5.599 · 10−2 7.956 · 10−5 2.223 · 10−5 5.970 · 10−6

In order to show the accuracy of the numerical results obtained with the
parallel solver, we compare the numerical solutions obtained with a sequential
implementation of the LRR(3,2,2) method (yLRR) and with an implementation
of the PIMEXRK3 scheme running on 6 processors (yP3). Table 1 shows the
L2-norm of the difference between the numerical solutions obtained with both
solvers (||yLRR − yP3||2). These results have been obtained for t = 5.0 and
N = 200. Several experiments has been performed with a fixed step size although
a different step size has been used in each experiment. The results prove that
there is a great agreement between the solutions obtained by both methods.

The time results (in seconds) obtained for different values of N on several
processor numbers P are shown in Table 2. The speedup results are graphically
shown in Figure 2. These speedup results have been obtained by comparing
the parallel execution time for several values of P , with the execution time
of a sequential implementation of the LRR(3, 2, 2) scheme running on a single

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 823

Table 2. Time results for the PIMEXRK3 scheme applied to the test problem

N = 72 396 900 1296 1800 2520 3600 3996 7200 9000

LRR(P = 1) 0.258 1.417 3.222 4.644 6.451 9.026 12.94 14.37 25.89 32.37
P = 3 0.0899 0.476 1.093 1.585 2.1932 3.074 4.383 4.867 8.76 11.76
P = 6 0.0559 0.259 0.572 0.824 1.1439 1.591 2.292 2.527 4.55 5.71
P = 9 0.063 0.227 0.407 0.569 0.791 1.108 1.562 1.756 3.09 3.78
P = 12 0.0424 0.153 0.311 0.435 0.6013 0.822 1.173 1.286 2.32 2.87
P = 15 0.1906 0.273 0.298 0.399 0.5167 0.707 0.970 1.067 1.94 2.36

3

6

9

12

15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sp
ee

du
p

va
lue

s

Number of spatial grid points

P=15
P=12
P=9
P=6
P=3

Fig. 2. Speedup results for several spatial grid sizes

processor. This implementation of the LRR(3, 2, 2) scheme also takes advantage
of the banded structure of the subsystems. The time results were taken for one
time step and meshes varying from N = 80 to N = 4000 grid points.

The experiments show that a speedup close to the linear speedup can be
achieved when N is greater than 500. In general, efficiencies higher than 90%
are achieved with a sufficiently large number of grid points, except on P = 15
processors where a larger problem size would be necessary to achieve this ef-
ficiency. The results reveal the parallelism which exhibits the new parallel nu-
merical scheme and the satisfactory scalability which offers the implementation
derived by the COMPODES approach.

7 Conclusions

A method to obtain efficient implementations of IMEXRK methods for PC clus-
ters has been described. This method incorporates two procedures:

1. A technique to decouple the computation associated with each stage, when
an s-stage IMEXRK method is applied to a partly stiff system with d ODEs,

824 José Miguel Mantas, Pedro González, and José A. Carrillo

has been introduced. The technique is based on considering the s coupled
d-dimensional nonlinear systems, which arise when an IMEXRK method is
applied, as only one sd-dimensional nonlinear system, and imposing several
reasonable approximation assumptions when the modified Newton method
is used to solve the nonlinear system. As a result, the calculations associated
with each stage of the method can be performed in parallel for each round
of the Newton iteration.

2. A component based approach [10] can be applied to easily derive efficient
implementations of the previously defined parallel schemes. This approach
allows us to exploit the task and data parallelism which exhibits the scheme
by using software components of parallel libraries.

The method has been illustrated by deriving an efficient implementation of
a second order 3-stage IMEXRK method. The experimental results obtained on
a cluster of dual PCs reveal the good speedup and the satisfactory scalability of
the parallel solver for the range of processor numbers which has been considered.

Acknowledgements

The authors acknowledge support from the European IHP network HYKE
“Hyperbolic and Kinetic Equations: Asymptotics, Numerics, Applications”
HPRN-CT-2002-00282. JM and JAC acknowledge partial support from DGI-
MCYT/FEDER project BFM2002-01710. PG acknowledges partial support
from DGI-MCYT/FEDER project BFM2002-02649. JM also acknowledges par-
tial support from MEC/FEDER project TIN2004-07672-c03-02.

References

1. Ascher, U. M., Ruuth, S. J., Spiteri, R. J.: Implicit-Explicit Runge-Kutta Methods
for time-dependent Partial Differential Equations. Applied Numerical Mathema-
tics. 25 (1997) 151-167

2. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford Science Publications. (1995)

3. Dongarra, J., Walker, D. W.: Software libraries for linear Algebra Computations
on High Performance Computers. SIAM Review. 37 (1995) 151-180

4. Message Passing Interface Forum. MPI: A Message Passing Interface Standard.
Univ. of Tennessee, Knoxville, Tennessee, (1995)

5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Dif-
ferential Algebraic Problems. Springer-Verlag. (1996).

6. Jin, S., Pareschi, L., Slemrod, M.: A Relaxation Scheme for Solving the Boltz-
mann Equation Based on the Chapman-Enskog Expansion. Acta Mathematicas
Applicatae Sinica (English Series). 18 (2002) 37-62

7. Kennedy, C. A., Carpenter, M. H.: Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Applied Numerical Mathematics. 1 (2003) 139-181

8. Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes for stiff systems of
differential equations. In Recent Trends in Numerical Analysis. 3 (2000) 269-289

Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs 825

9. Mantas, J. M., Ortega, J., Carrillo, J. A.: Component-Based Derivation of a Stiff
ODE Solver implemented on a PC Cluster. International Journal of Parallel Pro-
gramming. 30 (2002) 99-148

10. Mantas, J. M., Ortega, J., Carrillo, J. A.: Integrating Multiple Implementations
and Structure Exploitation in the Component-based Design of Parallel ODE Sol-
vers. Recent Advances in Parallel Virtual Machine and Message-Passing Interface.
Lecture Notes in Computer Science. 2840 (2003) 438-446

11. Mantas, J. M. , Pareschi, L., Carrillo, J. A., Ortega, J.: Parallel Integration of
Hydrodynamical Approximations of the Boltzmann Equation for rarefied gases on
a Cluster of Computers. J. Comp. Methods in Science and Engineering. 4 (2004)
33-41

12. Verwer, J.G., Sommeijer, B. : An implicit-explicit Runge-Kutta-Chebyshev scheme
for diffusion-reaction equations. SIAM J. of Sci. Comp. 25 (2004) 1824-1835

13. Zhong, X.: Additive Semi-Implicit Runge-Kutta Methods for Computing High-
Speed Nonequilibrium Reactive Flows. Journal of Comp. Physics. 128 (1996)
19-31

	Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs
	1 Introduction
	2 Implicit-Explicit Runge-Kutta Methods
	3 An Approach to Parallelize IMEXRK Methods
	4 Application to a Particular IMEXRK Method
	5 Derivation of Parallel Implementations of the PIMEXRK3 Scheme
	6 Numerical Experiments
	7 Conclusions
	References

