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Abstract. Sophisticated parallel matrix multiplication algorithms like
PDGEMM exhibit a complex structure and can be controlled by a large
set of parameters including blocking factors and block sizes used for the
serial execution on one of the participating processors. But it requires
a deep understanding of both the parallel algorithm and the execution
platform to select the parameters such that a minimum execution time
results. In this article, we describe a simple mechanism that automati-
cally selects a suitable set of parameters for PDGEMM which leads to a
minimum execution time in most cases.

1 Introduction

There is usually a complex dependency between the computations and the mem-
ory accesses performed by a computation-intensive program, the required data
exchanges between neighboring processors, and the computation and communi-
cation characteristics of the execution platform. Parallel numerical libraries like
ScaLAPACK (Scalable LAPACK) [1, 2] or PETSc [3] try to cope with these
dependencies by providing a set of parameters which allow the user to adjust
the execution behavior of the library routines to the characteristics of the execu-
tion platform such that the parallel execution time is reduced as far as possible.
By selecting appropriate parameter values, the library routines can run very effi-
ciently on most parallel execution platforms. But it is often quite difficult for the
user to select suitable parameter values, since this requires a deep understanding
of the algorithmic behavior of the library routines. In many situations, the user
wants to use the library as black-box and does not have time to learn more about
the internals of the algorithm. Moreover, even knowing the algorithmic details
of a library routine does not necessarily yield a suitable set of parameters to use.
The complex dependency between the algorithm and the characteristics of the
execution platform is still present and it is usually necessary to perform runtime
experiments with different parameter settings before a suitable set of parame-
ters can be identified. It even might be the case that for different numbers of
processors different parameter values lead to the best performance.

In this situation, it would be useful to have a tool that automatically selects
a suitable set of parameters, thus relieving the user from this time-consuming
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work. In this article, we address this issue. In particular, we consider the matrix-
matrix multiplication routine PDGEMM of ScaLAPACK. PDGEMM is part of
PBLAS which is the parallel implementation of BLAS (Basic Linear Algebra
Subprograms) for distributed memory machines. It can be used as a building
block in a parallel version of Strassen’s algorithm [4] as well as in many ad-
vanced algorithms from scientific computing. We investigate which parameters
have a major impact on the overall performance and should therefore be consid-
ered in more detail. In particular, we present an approach to tune the PDGEMM
routine by adjusting the parameters gradually to the given execution platform.
The Automatically Tuned Linear Algebra Software (ATLAS) [5] provides an
approach for the sequential case, but there is no solution for a parallel execu-
tion yet. An experimental evaluation shows that the proposed method selects a
parameter setting that leads to significant performance gains compared to the
default setting for different test platforms.

The rest of the paper is organized as follows. Section 2 gives an overview
of the algorithmic details of the PDGEMM routine and shows examples of how
to use PDGEMM routines in a C environment. Section 3 analyzes the impact
of different parameters for PDGEMM. In Section 4 we describe an heuristic
method for an automatic selection of suitable PDGEMM parameters to optimize
PDGEMM. Section 5 evaluates the experimental results and Section 6 concludes.

2 Algorithmic Details

To improve the performance of the PDGEMM routine efficiently we must first
consider some algorithmic details. The PDGEMM routine which is part of
ScaLAPACK is derived from the DIMMA algorithm (Distribution-Independent
Matrix Multiplication). DIMMA is an enhanced version of SUMMA (Scalable
Universal Matrix Multiplication Algorithm), see [6] for a detailed description
of SUMMA and [7] for an introduction of DIMMA. We also refer to [8] for an
overview of basic parallel matrix-matrix multiplication algorithms such as the
algorithms of Cannon or Fox.

In the following, we summarize the basic ideas which make PDGEMM (using
DIMMA) a well-performing algorithmic option in many cases. An example of
the starting configuration of matrix A for DIMMA and SUMMA is shown in
Figure 1. In SUMMA, the processors P0 and P3 broadcast the first column
of A along their row, i.e., P0 sends its first column to processors P1 and P2.
At the same time, the first row of matrix B which is distributed likewise is
broadcasted along the processor columns. When the broadcasts are performed
on a logical ring, SUMMA takes advantage of a pipelined communication scheme.
The authors of DIMMA state that SUMMA contains extra waiting times between
two communication procedures [7]. Hence, DIMMA improves the communication
scheme and eliminates the extra waiting time by proceeding to send blocks of
columns (rows) from the current column (row) of the processor grid. That means,
in SUMMA the processors P1 and P4 broadcast column 1 directly after receiving
column 0 from P0 and P3, respectively. In case of DIMMA, P0 and P3 continue
with broadcasting another column whose distance is LCM blocks where LCM
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Fig. 1. DIMMA snapshot for a 2 × 3 processor grid. DIMMA uses a block cyclic dis-
tribution of matrix A onto the processors.

is the least common multiple of the grid dimensions p and q. For a further
performance improvement, SUMMA as well as DIMMA use blocks of columns
(rows) rather than single columns (rows).

Since it is not very straightforward to use ScaLAPACK routines from C
we would like to demonstrate the calling conventions from within C. We indi-
cate that this method is compiler specific. Because Fortran 77 uses the call-by-
reference paradigm we need to pass the address of each parameter to Fortran
functions. The basic problem of calling Fortran routines from C is the conversion
of strings. Figure 2 shows a sample call of PDGEMM from C for our compiler
collection, see Table 1. The function c2f char copies a character into a charac-
ter buffer. Since there is no header file for C, an underscore is required for the
linker to resolve the PDGEMM function. But primarily we want to emphasize
the use of hidden parameters. The last two arguments of the call to PDGEMM
are hidden parameters because they need to be passed in order to make the
Fortran function work but the arguments are not part of PDGEMM’s Fortran
interface. The hidden parameters 1L denote the length of the passed strings, i.e.
the length of cha and chb. If we had a function with three string parameters we
would need to pass three hidden parameters as well.

c2 f cha r ( cha , ’N ’ ) ;
c 2 f ch a r ( chb , ’N ’ ) ;
pdgemm ( cha , chb , &m, &k , &n , & sca la r , a [ 0 ] ,

&one , &one , & desca , b [ 0 ] , & one , &one , & descb ,
&sca la r , c [ 0 ] , & one , & one , & descc , 1 L , 1L ) ;

Fig. 2. Call to PDGEMM from C.

3 Parameter Analysis and Optimization Strategies

In this section we examine the performance dependencies of PDGEMM from
different parameters. The experiments were performed on a cluster with 32 Dual
Opteron nodes. An overview of the configuration is given in Table 1.
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Table 1. System configuration used for experiments.

System 32 node cluster (each node equipped with 2 AMD Opterons)
Linux 2.4.21

Processor Opteron 244, 1.8 GHz, 128 KB L1-Cache, 1024 KB L2-Cache
C/F77 Compiler GCC 3.4.0
MPI version MPICH 1.2.5 + VMI 2.0 (Infiniband)
Infiniband driver Mellanox HPC Gold Collection (IBHPC) v0.5.0 for Linux

Mellanox THCA for Linux 3.2-rc17
ScaLAPACK 1.7
ATLAS 3.6.0

As the sequential computation of PDGEMM is based on BLAS [9], the right
choice of the BLAS implementation is crucial for the overall parallel performance
of PDGEMM. There is a tremendous performance difference between hardware-
optimized BLAS routines and the standard routines. When the user has no
access to a vendor-provided BLAS library like ESSL, we recommend using the
ATLAS library [5]. All local computations used in the evaluation of the parallel
algorithms are performed by ATLAS. Moreover, each experiment reported herein
was repeated at least three times.

Since all variables in the parameter list of PDGEMM and also the logical
block size defined inside ScaLAPACK may influence the runtime, the search
space for optimization is extremely large. To obtain a satisfactory parallel per-
formance, it is necessary to use a local computation kernel which almost achieves
the peak performance of the processor.

The parameters with the biggest influence on the performance of the algo-
rithm are the dimensions of the input matrices, the number of processors and
their arrangement within the processor grid.

There are also other parameters that strongly influence the MFLOPS rate of
the algorithm but are not obvious. These are

1. the three blocking factors mb, nb and kb of the block-cyclic distribution of
matrices A, B and C which are of size m × k, k × n and m × n,

2. and the logical block size lb.

Blocking factor The blocking factor is used to distribute the rows and columns
of the matrices onto the processor grid. A blocking factor of b means that
blocks of matrix M of size b × b are distributed block-cyclicly. It is also
possible to have distinct blocking factors for each matrix dimension.

Logical block size The logical block size denotes the size of the sub-matrix of
C which is computed by each processor per parallel step of PDGEMM. Let
the logical block size be lb. In each parallel step, a processor Pi gathers lb
rows of A and lb columns of B and computes a part of the result matrix C
of size lb × lb.



Automatic Tuning of PDGEMM Towards Optimal Performance 841

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1664 1536 1408 1280 1152 1024 896 768 640 512 384 256 128 1

M
F

LO
P

S
/p

blocking factor

p = 64, logical block size  = 128

1024
2048
3072

4096
5120
6144

7168
8192
9216

10240
11264
12288

13312

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1664 1536 1408 1280 1152 1024 896 768 640 512 384 256 128 1

M
F

LO
P

S
/p

blocking factor

p = 64, logical block size  = 512

1024
2048
3072

4096
5120
6144

7168
8192
9216

10240
11264
12288

13312

Fig. 3. Performance of PDGEMM, number of processors p = 64 for matrix sizes from
1024 to 13312 for different blocking factors.

3.1 Impact of the Blocking Factor

In order to analyze the performance dependency on the blocking factor, we have
performed several tests of PDGEMM with varying block sizes. Due to the huge
number of degrees of freedom we limited the test cases to square input matrices
and square matrix blocks where mb = nb = kb. We performed numerous tests
with blocking factors ranging from 1 to a logical maximum which is defined by
the matrix dimensions and the processor grid. Furthermore, we also examined
how the logical block size is reflected in the runtime of PDGEMM for each range.
Figure 3 shows the performance of PDGEMM for 64 processors and for different
blocking factors using logical block sizes of 128 and 512. The experiment was
repeated for 8, 16 and 32 processors as well, using logical block sizes of 32, 64,
and 256. We observed that the coarse characteristics of the resulting MFLOPS
rate does not depend on the logical block size, but the MFLOPS rate is only
slightly increased (decreased) for a smaller (larger) value of the logical block
size. Hence, big differences in the MFLOPS like at 1536 and 1664 in Figure 3
can not be compensated by adjusting only the logical block size. But let us have
a closer look at Figure 3. The MFLOPS rates for matrix dimension 13312 show
peaks for blocking factors 1, 128 and 1664. This behavior can be explained as
follows: The 64 processors are arranged in a grid of 8×8 elements. Thus, in each
dimension the matrix is distributed evenly among the processors if 13312

8 = 1664
is a multiple of the blocking factor. And indeed, 1664 is a multiple of 1, 128
and 1664. In these cases, the data is uniformly distributed over all processors in
the grid which leads to a balanced workload on homogeneous systems. So, when
in doubt which blocking factor to use, it is a good choice to use the possible
maximum M which is M = matrix dimension

# processors in row (colum).

It is not surprising that high performance is achieved when the matrix di-
mensions are multiples of the blocking factor. But choosing the blocking factor
appropriately does not necessarily lead to best performance. The central param-
eter to optimize is therefore the logical block size.
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Fig. 4. MFLOPS achieved by PDGEMM with different logical block sizes, number of
processors p = 32, blocking factor nb = 128 (Infiniband).

3.2 Impact of the Logical Block Size

The logical block size directly influences the overall performance of PDGEMM.
A small value of the logical block size (lb) will not only cause more communi-
cation but worse, the local matrix updates (multiplications) will not reach the
processor’s peak performance. On the other hand, choosing a very large value
may hamper the pipelined communication scheme and so the overlapping of
communication and computation as well.

Finding the best value for the logical block size is highly machine-dependent
and the impact on the resulting execution time can only be determined exper-
imentally. We ran a series of tests with PDGEMM on the cluster system for
varying values of lb. Since the value lb is hard-coded in file pilaenv.f of the
ScaLAPACK distribution, the value lb in pilaenv.f needs to be changed and
ScaLAPACK must be recompiled for each test. The results of this experiment is
shown in Figure 4 and Figure 5. Figure 4 contains the MFLOPS rate achieved by
PDGEMM using the Infiniband network. Figure 5 shows the results for the Gi-
gabit Ethernet. We can observe that the plots in both figures have similar char-
acteristics, i.e., the bandwidth and latency of the interconnection network plays
a minor role. As example, we consider the steep increase of the MFLOPS rate at
block size 672 for a matrix dimension of 12288. The 32 processors are arranged
in a 4 × 8 grid and each processor stores 12288

4 = 3072 rows and 12288
8 = 1536

columns of the matrices, if a suitable blocking factor nb has been chosen. Let us
examine the case where the biggest performance enhancement has been observed.
For lb = 672, PDGEMM performs a series of local matrix-multiplications using
DGEMM where the matrix A is of size 3072× 672 and Matrix B has 672× 1536
elements. One local matrix update with these parameters achieves about 3508
MFLOPS on a single Opteron processor. In comparison, with a logical block size
of 656 the routine DGEMM achieves 3380 MFLOPS only, which is about 4%
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Fig. 5. MFLOPS achieved by PDGEMM with different logical block sizes, number of
processors p = 32, blocking factor nb = 1 (Gigabit Ethernet).

slower. We measured the cache misses generated by DGEMM using PAPI [10].
Figure 6 clearly shows that the weak performance is the result of producing more
L2 cache misses which is caused by the fact that DGEMM (ATLAS) generates
a different call tree for lb = 656 and lb = 672.

Instead of ignoring possible drops in the MFLOPS rate, we present an ap-
proach to avoid choosing an unfavorable logical block size which is discussed in
Section 4.

4 Automatic Parameter Tuning

In this section, we present an approach for selection a favorable logical block size.
The basic problem of optimizing the logical block size is the huge search space.
The logical block size depends on the network parameters, the dimension of
the matrices, the matrix ordering, the processor grid, the number of processors
and the BLAS implementation. Additional informations about the hardware,
e.g. cache size, will surely decrease the search space but it remains too large to
evaluate all possible combinations.

We present an heuristic method based on an evaluation on a single processor
of the parallel execution platform. The approach is simple, but it turns out to be
fast and provides a suitable logical block size for the parallel case. The algorithm
keeps two matrix dimensions fixed and varies the third one. The size of the matrix
dimensions which are kept fixed is computed by the information provided by the
user, e.g. the number of processors, the typical size of matrices and the preferred
processor grid. The third and varying dimension represents the logical block
size. After the series of tests on a single processor has been completed, the
optimization algorithm selects the smallest logical block size which is only less
than a fixed percentage f slower than the best logical block size (which is in
general the largest, but, as we said before, for the parallel execution the largest
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Fig. 7. MFLOPS by DGEMM (ATLAS). Vertical lines at 668 and 1444.

logical block size is not always the fastest). For a specific parallel platform, the
algorithm only needs to run once on one processor in a pre-computation phase
to determine a suitable value of the logical block size. Then, this block size can
be used for all parallel executions. In our experiments, we obtained the best
performance for f = 2%.

5 Experimental Evaluation

We now consider the experimental evaluation of the proposed method on the
cluster system from Table 1. The cluster consists of 32 processors and we want
to use a rectangular grid, e.g. 4 rows and 8 columns. The typical size of matrices
is set to 12288 in each dimension. Hence, PDGEMM will deal with submatrices
of size 3072× lb and lb× 1536. The tuning algorithm will test all possible logical
block sizes in the range 2 . . . 1536 (odd numbers are not considered). The test
results are shown in Figure 7. The function line has a maximum at 1444. The
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smallest matrix dimension which is less than 2% slower than 1444 is 668. We
marked both values in the plot. The value of 668 is the optimized logical block
size. Surprisingly, the value that has been found is very close to the crucial
value of 656. For a final evaluation of the logical block size, Figure 8 (left)
compares the performance of PDGEMM achieved with the default value of the
logical block size (lb = 32) and with the automatically selected value of 668.
The plot also includes the MFLOPS rates for a logical block size of 1444 for
comparison reasons. It can be observed that the block size which achieves best
results on a single processor is not necessarily gaining the maximum performance
in parallel. For matrix dimensions 10240 and 12288 in Figure 8 on the left, the
performance gain for the automatically selected logical block size is 18% and
15%, respectively. Additional tests have been performed on a cluster consisting
of 16 nodes (Dual Xeon 2 GHz). The nodes are running Linux and are connected
via an SCI network. The resulting MFLOPS achieved by PDGEMM for this
cluster are shown on the right-hand side of Figure 8. The tuning algorithm
selects a logical block size of 216. This block size clearly outperforms the default
settings of PDGEMM. In this experiment, the automatically selected value of
lb = 216 reduces the runtime of PDGEMM by up to 47% for a matrix dimension
of 11264.

6 Conclusions

The performance of ScaLAPACK routines strongly depends on the logical block
size. In this article we have shown how to use the function PDGEMM and how
to improve its performance by selecting a well-suited blocking factor and a logi-
cal block size automatically. The experimental results confirm that the heuristic
method of selecting a logical block size leads to a significant performance en-
hancement of PDGEMM.
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