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Mihail Kogălniceanu 1, 400084 Cluj-Napoca, Romania

claudiu@cs.ubbcluj.ro

Abstract. Proxy-cache deployment in LANs has become a current prac-
tice with well known benefits. For situations when a proxy-cache comes
under constraints, due to increased load, and has to drop requests or
perform cache replacement, we propose the alternative solution of cache-
splitting. This means to dynamically deploy additional proxy-caches in-
side the LAN, and divert towards them some of the requests addressed to
the original proxy-cache(s). By doing this, better response time, load bal-
ancing, higher availability and robustness of the service can be achieved
than when using a single proxy-cache.

1 Introduction

The constant increase in both volume and demand of multimedia data in the
Internet tends to stress the existing infrastructure. The main factors are the
characteristics of multimedia data (e.g. size, bandwidth requirements) which
highly differ from those of typical web data. The traditional way to cope with
such situations is to deploy proxy-caches at LAN edges. Under certain conditions
a single proxy-cache does not suffice, so multiple proxy-caches have to be used.
Cooperative caching has been introduced for web caches, e.g. Harvest [4] and
Squid [18], and for video caches as well, e.g. by Brubeck and Rowe [3] and
MiddleMan [1].

Our paper proposes a novel proxy-cache system that is able to “spawn” new
proxies via split operations whenever the actual situation demands it. Examples
of such situations include extremely high load and severe storage constraints on
the proxy. In those cases, one additional proxy-cache in the LAN would help
lower the load on already running proxy-caches as well as increase the capacity
of the “federate” cache.

The system we propose dynamically adjusts the number of running proxies in
the LAN, depending on the load and on client request patterns, by either spawn-
ing new proxies on periods with high activity or putting them in a “hibernate”
state or even stopping them on periods with low activity.
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2 Proxy-Cache Splitting

There are situations when having a single proxy-cache in the LAN does not
suffice, for example when servicing large, popular content to many clients, or
when the volume of requested data puts the proxy-cache under constraints (cpu,
mem, storage, etc.). In those cases, requests have to be rejected in order to lower
the load on the machine and cache replacement has to be performed in order to
free disk space. We state that in some circumstances it would be more beneficial
to just deploy an additional proxy-cache inside the LAN. This new proxy-cache
could take over some of the load on the existing proxy-cache(s) and by doing
so, avoid both request dropping and cache replacement. On the other hand, if
current and maybe predicted future load could be handled by a smaller number
of proxy-caches than those currently active, then some of them could enter a
“hibernating” state or could be shut down (stopped).

The distributed architecture we propose, assumes the deployment of two
types of entities: the dispatchers and the daemons. The dispatchers are pro-
cesses/threads that run on the same node as the proxy-cache and can be seen
as front-ends of the proxy-caches which:

– handle incoming requests - serve them either from the local cache, or from
the origin server; if this is not possible, the requests are forwarded to other
active dispatchers/proxies in the LAN or they are discarded; a request is
forwarded to the best candidate (the dispatcher that has a cached copy of
the requested object or the one with the smallest load);

– manage the proxy code - archive the proxy code and send it to the location
on which a new proxy-cache is to be spawned (using the daemon running on
the selected target)

– manage the “child” proxy-cache processes - the dispatchers are responsi-
ble with stopping/ pausing/ restarting a “child” proxy-cache depending on
various conditions (global load, volume of the clients’ requests, volume of
streamed/stored data, etc.)

The daemon processes/threads run in the ideal case on every node of the
LAN and are responsible for:

– managing clients’ requests - the daemon either directly receives, or it inter-
cepts the client requests and then decides to forward them to the appropriate
proxy-cache, depending on the local available knowledge about the global
state of the proxy-cache “federation”

– managing the proxy code - the daemon receives/compiles the code sent by a
dispatcher that initiates a proxy split operation;

– managing the local proxy-cache process - stops/ pauses/ restarts it, either
as a result of incoming requests from its “parent” proxy, or depending on
specific local conditions (load, storage capacity).

In the case the daemon thread/process hosted on a certain node crashes, the
clients from that node still have access to the federate cache as long as the proxy-
cache(s) set as default in the client’s browser is/are still running. This is also
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true for the clients from nodes with no running daemons at all. The daemon is
essential in the proxy-cache splitting process, as it is used by the “parent” to
transfer its code if it is not already available at the selected node.

2.1 The Model of the Proposed Distributed
Proxy-Cache Architecture

We consider that the number of nodes in the LAN is n. Let P be the set of
available proxy-caches (there is at least one running proxy cache in the LAN):

P =
k⋃

i=1

Pi, k = |P |, 1 ≤ k ≤ n

A proxy-cache Pi is defined as follows:
Pi = (maxResourcesi, minResourcesi, LCi), i = 1..k

where:

– maxResourcesi - represents the maximum amount of resources that can be
used by the proxy-cache:

maxResourcei = (maxCpui, maxMemi, maxCapacityi, maxLani)
namely the maximum amount of CPU power, memory, storage space and
external bandwidth;

– minResourcesi - represents the minimum amount of resources that have to
be used in order to serve any client’s request. It is defined in a similar mode
with the maxResourcesi;

– LCi - the content of the local cache
LCi = {cij , j = 1..q}, q = the number of cached objects

An object cij is defined as:
cij = (size(cij), timeLastAccess(cij), hitCount(cij), qualityV alue(cij))

where size(cij) is the size of the object, timeLastAccess(cij) indicates the last
time the object has been requested, hitCount(cij) shows the number of times
the object has been served from the cache and qualityV alue(cij) ∈ [0..1] is the
measure of the object’s quality (based on the actual characteristics of the video
object, such as resolution, color information, etc.)

The qualityV alue is a relative value that shows the degree in which the
cached object matches the desired quality of a certain class of users. A value
equal or close to 1 corresponds to the objects that have exactly or almost the
desired quality, while values close to 0 are assigned to objects that show the most
drastic difference between actual and desired quality. High absolute quality does
not necessarily mean that the qualityV alue is close to 1. For example, if the vast
majority of the users have only limited display size, say 800x600, a video object
encoded at 1280x1024 will have a qualityValue closer to 0 than to 1, because
further operations (e.g. transcoding) have to be performed in order to deliver
the object to the requesting clients.

For each object cij , a utility value can be computed using a function
u : LCi → R:
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u(cij) = const1 ∗ size(cij) + const2 ∗ 1
timeLastAccess(cij)+

+const3 ∗ hitCount(cij) + const4 ∗ qualityV alue(cij)
where const1, const2, const3, const4 ∈ [0, 1] and const1 + const2 + const3 +
const4 = 1 (u(cij) is computed as a weighted average of the different char-
acteristics of the cached video object).

Those constants can be fixed when the proxy-cache is started and remain
the same during the run period of the proxy-cache. Another possibility that
needs further investigation would be to dynamically modify those values when
traffic conditions, load level, request rate, etc. reaches certain values, in order to
maximize the byte hit ratio. The utility value of the cached objects is used to
decide which objects get discarded when performing cache replacement.

We use D to denote the set of dispatchers:

D =
k⋃

i=1

Di, k = |P |, 1 ≤ k ≤ n.

As each dispatcher corresponds to a certain proxy-cache, there is a function
f (bijection), f : D → P, f(Di) = Pi, ∀i ∈ {1, .., k} (a proxy P has exactly one
dispatcher D). One dispatcher Di is defined as follows:

Di = (Pi, GC, GU, siblingsi), ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where:

– Pi - the corresponding proxy
– GC - the content of the global cache (viewed as the union of all local caches)

GC =
k⋃

i=1

LCi, ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

– GU - the utility values for the objects in GC

GU =
k⋃

i=1

LUi, ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where LUi = the set of utility values for the objects in LCi

LUi = {u(cij)|cij ∈ LCi, j ∈ {1, ..., q}, q = |LCi|)}, i ∈ {1, ..., k}
– siblingsi - the rest of the running proxies/dispatchers (siblingsi = P \{Pi}).

We denote by A, the set of daemons, ideally running on each node of the
LAN.

A =
n⋃

i=1

DAi

There is a function g (bijection), g : [1..n] → A, g(i) = DAi, ∀i ∈ {1, .., n}
which assigns each node in the LAN a running daemon. One daemon DAi is
defined as follows:

DAi = (P ′i, LOAD(P ′i),
⋃

p∈P ′
MLCp(m)), ∀i ∈ {1, ..., n}
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where:

– P ′i - a subset of the proxy-cache set P (P ′i ⊆ P )
– LOAD(P ′i) - the load of the proxy-caches in the subset P ′

LOAD(P ′i) =
⋃

p∈P ′
LOAD(p)

where LOAD(p) represents the current load of the proxy p ∈ P ′
– MLCp(m) - the most “useful” m objects stored in the cache p ∈ P ′

MLCp(m) =
m⋃

i=1

cij , u(cij) ≥ u(cij+1), ∀j ∈ {1, ..., q − 1}

where cij represents the cached object and u(cij) the value returned by the
utility function defined above for the object.

2.2 Proxy Splitting Scenarios

As mentioned before we intend to perform a splitting operation under two con-
ditions: when the proxy-cache is under storage constraints or under load con-
straints. The question is how to decide that a splitting operation is more appro-
priate than performing cache replacement or reject the incoming requests? We
propose the following two conditions:

A. In the Case of Storage Constraints
If ∀i ∈ {1, .., k}, ∀m, s ∈ {1, .., q}(m 	= s), k = |P |, q = |LCi|

|u(cim) − u(cis)| < δ (1)

then perform splitting, else perform cache replacement.
In other words, splitting is performed when all cached objects are essentially

“equally” useful - the difference between the utility of all objects in the cache is
smaller than a certain fixed limit δ. The condition could be relaxed, if considering
that not for all, but for a certain fraction of the cached object set, the above
mentioned condition holds.

If the condition does not hold, than cache replacement should be performed
with regard to the utility of the objects. As an observation, if const1 = const3 =
const4 = 0 then the cache replacement strategy is basically LRU (Least Recently
Used), and if const1 = const2 = const4 = 0, the cache replacement strategy is
LFU (Least Frequently Used).

We present a short example of how the values of those constants could in-
fluence the decision of making either a split operation or perform cache replace-
ment. Consider that the cache contains only 5 objects with the characteristics
described in Table 1. Consider now Table 2 with four values configurations for
the constants that appear in the definition of the utility function (see Subsec-
tion 2.1).
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Table 1. Characteristics of the cached objects

Cached objects Size (MB) Time of last access Hit count Quality value

c1 100 1 60 1
c2 100 5 70 1
c3 100 10 80 1
c4 100 20 90 1
c5 100 30 100 1

Table 2. Values for the coefficients used by the utility function u

Configuration const1 const2 const3 const4

conf1 0.25 0.25 0.25 0.25
conf2 0.10 0.40 0.40 0.10

conf3(LRU) 0 1 0 0
conf4(LFU) 0 0 1 0

The graphical representation of the utility values corresponding to the data
in Table 1 and Table 2 can be seen in Figure 1.

It can be seen that the decision to perform either cache replacement or a
split operation highly depends on the value configuration of the coefficients. For
example, if δ = 15 and the proxy is under storage constraints, cache replacement
will be performed if configuration 3 or 4 are used, but a split operation will be
initiated if configuration 1 or 2 are considered.

B. In the Case of Load Constraints
When servicing a request for an object cij a certain amount of resources must be
available. If ∀Pi ∈ P the available resources are not enough to service a request
ri, than ri is discarded and the particular time ti is marked.

If ∀i ∈ {1, .., p− 1} (p fixed) we have

ti+1 − ti < ξ (2)

(the time interval between p consecutive discarded requests is smaller than a
fixed threshold ξ), than we make a split operation.

It is to investigate in a real time environment how different values for δ and
ξ influence the dynamics of the system.

2.3 Additional Costs Induced by the Proposed Architecture:
Best-Case/Worst-Case Scenarios

Inside the system, the message exchange cost can be viewed with regard to the
required time to transmit a message, with regard to the amount of data that is
transferred, or as a combination of the two (both time and data volume).

In the following, we give a short analysis of the best/worst case scenarios from
the point of view of the latency perceived by the client. For a similar analysis
on the amount of data transferred within the system, please see [5].
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Fig. 1. The utility values for the cache configuration from Table 1 computed using the
constants values from Table 2

The delay perceived by the client depends on the delay introduced by the
LAN communication, the one introduced by the WAN communication, as well as
on the delay introduced by searching the local caches and the server repository.

We make the following notations:

– Delay - the total delay as perceived by the client
– dlan - the delay introduced when transmitting a message in the LAN;
– dwan - the delay introduced when transmitting a message in the WAN;
– dcache - the delay introduced when searching the local cache;
– dserver - the delay introduced when searching the server repository/per-

forming admission control;
– dtimeOut - the time out interval fixed for the proxy-server communication

We propose the following forwarding algorithm for requests passed from one
proxy to another inside the LAN: when a proxy receives a request, it first checks
the local cache and returns the appropriate object in case of a hit. Otherwise
(local miss) it checks the list with cached objects at siblings’ sites in order to
see if the requested object is cached in the federate cache. If it does, it marks
the request and sends it to the appropriate sibling. The decision to forward a
request to a certain proxy is made based on the locally available information
on the global state of the federate cache. It may happen that this information
is outdated and that by the time a forwarded request reaches the sibling, the
requested object does not exist anymore on the sibling site. The worst case would
be when a request received by a dispatcherDi is forwarded from one dispatcher
to the other until it returns to Di. In this case, supposing that the client didn’t
cancelled the request, it is forwarded by Di to the origin server S.

Suppose there are k active proxy-caches, and using the above mentioned
notations, we distinguish the following two worst cases, when it comes to the
user perceived latency:

– bouncing request and server down

Delay = (k + 1)dlan + kdcache + dtimeOut
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– bouncing request and server can’t serve incoming requests

Delay = k(dlan + dcache) + 2(dlan + dwan) + dserver

The best case is of course when the first proxy receiving the client request,
can serve it from the local cache. In this case we have:

Delay = 2dlan + dcache

Assuming the following two configurations, conf1 with dlan = 0.1, dcache =
0.001, dwan = 0.5, dserver = 0.005 , and conf2 with dlan = 0.01, dcache =
0.001, dwan = 0.05, dserver = 0.005 (measurements in seconds) the maximum
introduced delay in the case up to 11 proxy-caches are active inside a LAN is
showed in Figure 2.
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Fig. 2. Maximum introduced delay

It can be seen from the above example that, if the load on both proxy-caches
and server(s) is more or less constant, then only variations in network condi-
tions (local and external) makes the delay vary. In a well connected high speed
LAN/WAN, the more realistic configuration would be one similar to conf2, but
when no control over internal/external network can be assumed, a configuration
like conf1 is very probable. The values for conf1 and conf2 were measured at
Klagenfurt University during normal working hours.

This means that even without constraints regarding the available external
bandwidth, it is highly probable for the maximum number of active proxy-caches
to be limited by the additional latency that would be induced in the worst case
scenario. This holds especially if the network conditions are not very good (we
have high induced latencies for both LAN and WAN) as the delay is highly
dependable on those conditions.

We have performed a series of simulation experiments [6] using synthetic log
traces generated with WebTraff [11]. Figure 3 shows the variation of byte-hit
ratio with the number of active proxy-caches inside the LAN (after up to four
split operations). The log we used for this particular simulation consisted of 1000
requests following a Zipf distribution with α = 0.3 for a number of 300 video
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Fig. 3. The variation of the byte-hit ratio with the number of active proxy-caches and
cache size. (Left) Cache replacement strategy set to LRU. (Right) Cache replacement
strategy uses the utility values of the objects

objects. From those, 70% were one-timers while their size was approximately
3GB and followed a Pareto distribution with the tail index set to 1.2.

We simulated two replacement strategies, LRU and one strategy that used
the utility values of the cached objects (objects with the lowest utility values are
discarded when cache replacement has to be performed). The utility of the cached
objects was computed with the value 0.25 set for all four coefficients. It can be
seen that as the size of the deployed caches increases so does the byte-hit ratio
but, more important, the values obtained when using the two above-mentioned
cache replacement strategies are pretty close. Figure 3 also seems to suggest
that the benefits obtained from adding new proxy-caches inside the LAN tend
to diminish as the number of active proxies increases (the increase in byte-hit
ratio is greater when moving from 1 to 2, or even from 2 to 3 active proxies than
it is when moving from 3 to 4 or from 4 to 5 active proxies).

There is a trade-off between costs and benefits, the best cost/benefit ratio
seems to be achieved at a moderate number of proxies, as Figure 2 and Figure 3
suggest. We intend to validate this assumption in a real time environment, once
our implementation of the system (which is based on the existing implementation
of the QBIX proxy-cache [16]) is completed.

3 Related Work

The last few years have brought an increasing interest in video caching as a
result of the rising popularity and availability of multimedia content on the
Web. The vast majority of the research concentrates on partial video caching,
approach that considers specific parts of videos or is done with respect to the
quality of the videos. Examples of proposals for partial video caching include
caching of a prefix [17], caching of a prefix and of selected frames [10], caching
of a prefix combined with periodic broadcast [8], caching of hotspot segments
[7]. Other approaches consider the caching of a prefix based on popularity [12],
segment-based prefix caching [19] or variable sized chunk caching [2].
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Quality based video caching proposals include periodic caching of layered
coded videos [9], adaptive caching of layered coded videos in combination with
congestion control [14], quality adjusted caching of GoPs (group of pictures)
[15] or simple replacement strategies (patterns) for videos consisting of different
quality steps [13].

Regarding distributed video caching we have, among others, the work of
Brubeck and Rowe [3] proposing multiple video servers accessible via the web
and which manage tertiary storage systems as well as the MiddleMan [1] system
which proposes a cooperative caching video server.

Our proposal, though having similarities with that in [1], differs from previous
work by the fact that our system is dynamic and able to adjust the number of
running proxy-caches in the LAN in a fully distributed fashion depending on a
number of factors including current load, storage constraints, request patterns.

4 Conclusion and Future Work

We have presented a distributed proxy-cache architecture which aims at provid-
ing better service to LAN clients. The feature that distinguishes our proposal
from those made in the past is the dynamic characteristic of our system which
is able to adapt itself to changes in access, request and response patterns as well
as to changes in network conditions.

Future work will focus on finishing the implementation of the system, eval-
uating its performance in real-life situations and compare the performance with
the case in which a single proxy-cache is used. Other points of interest are rep-
resented by the conditions triggering the split, hibernate and shut down opera-
tions. Another interesting problem is what happens in a system like the one we
described, when multiple outgoing links with different capacities are available.
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6. Cobârzan, C., Böszörmenyi, L.: Measurements on byte-hit ratio variation in LANs
deploying multiple proxy-caches. Technical Reports of the Institute of Information
Technology, University Klagenfurt, TR/ITEC/05/2.05

7. Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P., Hsu, L.H.: Proxy Servers
for Scalable Interactive Video Support. In: IEEE Computer, 43(9): (2001) 54-60

8. Guo, Y., Sen, S., Towsley, D.: Prefix Caching Assisted Periodic Broadcast for
Streaming Popular Videos. In: Proceedings of ICC (International Conference on
Communications) (2002)

9. Kangasharju, J., Hartanto, F., Reisslein, M., Ross, K.W.: Distributing Layered
Encoded Video through Caches. In: Proceedings of IEEE INFOCOM (2001)

10. Ma, W.-H., Du, D.H.-C.: Reducing Bandwidth Requirement for Delivering Video
over Wide Area Networks with Proxy Server. In: IEEE International Conference
on Multimedia and Expo, (2000) 991-994

11. Markatchev, N., Williamson, C.: WebTraff: A GUI for Web Proxy Cache Workload
Modeling and Analysis. In: IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, Vol. 10, (2002)
356-363

12. Park, H. S., Chung, K.D., Lim, E.J.: Popularity-based Partial Caching for VOD
Systems using a Proxy Server. In: Workshop on Parallel and Distributed Comput-
ing in Image Processing, Video and Multimedia (2001)
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