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Abstract. webm is a recent process calculus introduced to formally
specify Web Services composition. It extends the m-calculus with timed
workunits, namely an asynchronous and temporized mechanism for
events raising and catching. In this paper we encode Berger-Honda
Timed-7 in webw timed workunits and we prove a simulation theorem.
The overall perspective of this work is to make webm comparable with
both real composition languages and well established models for dis-
tributed components.

1 Introduction

Service Oriented Computing (SOC) is an emerging paradigm for distributed
computing and e-business processing that finds its origin in object-oriented and
component computing. Web services technology is a widespread accepted in-
stantiation of SOC which should facilitate integration of newly built and legacy
applications both within and across organizational boundaries avoiding difficul-
ties due to different platform, heterogeneous programming languages, security
firewall, etc... Exploiting this kind of ubiquitous network fabric would result in
an increase of productivity and in a reduction of costs in B2B processes [I7]. The
idea behind this approach is to allow independently developed applications to be
exposed as services and interconnected exploiting the already set up Web infras-
tructure with relative standards (HTTP [3I], XML [I2], SOAP [7] and WSDL
[11]). These technologies, related to develop basic services and interconnect them
on a point-to point basis, can be considered well established but B2B processing
requires managing complex interactions involving a large number of participants
and none of the above standards are able to meet this need. The way to build
complex services out of simpler ones is called composition and it is still an open
challenge [28].

Different organizations are presently working on composition proposals. The
most important in the past have been IBM’s WSFL [21] and Microsoft’s XLANG
[29]. These two have then converged in Web Services Business Process Execution
Language [3] (WS-BPEL or BPEL for short) which is presently a working draft
by OASIS. Another recent proposal in phase of standardization by the World
Wide Web Consortium (W3C) is WS-CDL [18]. Both allow the definition of
workflow-based composition of services with some similarities and some differ-
ences. Describing in details a synopsis between these two proposals is beyond
the scope of this paper, however in section [2] some points will be sketched.
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1.1 Need for Foundations

XLANG, WS-BPEL and WS-CDL are claimed to be based on formal models
(the m-calculus or its variant) to allow rigorous mathematical reasoning. For
example, WS-CDL authors explicitly state to be in some relation with fusions
and solos. In particular, WS-CDL is built atop the Global Model formalism
(as presented in [I7]) which refers to a precise m-calculus variant: the Explicit
Solos Calculus [I3], the theory underlying the Fusion Machine (a virtual machine
implementing in a distributed manner the m-calculus). However, despite all this
hype, no interesting relations with process algebras have been so far emphasized
(no conceptual tools for analysis and reasoning, no software verification). In this
way any mathematical rigor becomes pointless.

webmo [24] has been introduced to fill this gap. It is a simple and conser-
vative extension of the m-calculus where the original algebra is augmented with
an operator for asynchronous events raising and catching in order to enable the
programming of widely accepted error handling techniques (such as long run-
ning transactions and compensations) with a reasonable simplicity. The ability
to handle time is also considered a very appropriate feature when programming
transactions where business services cannot wait forever for the reply of other
parties. For this reason, webms, has a timed counterpart, websr [19], which al-
lows events to be temporized, i.e. to happen not only when processes explicitly
raise them but also when timers expire. We address the problem of compos-
ing services starting directly from the 7-calculus and considering our proposals
as foundational models for composition simply to verify statements regarding
any mathematical foundations of composition languages and not to say that
the m-calculus is more suitable than other models (such as Petri nets) for these
purposes. For an ongoing discussion about these foundational aspects refer to
[30].

1.2 Error Handling and Web Transactions

Loosely coupled components like Web services, being autonomous in their deci-
sions, may refuse requests and suspend their functionality without notice, thus
making their behavior unreliable to other activities. Henceforth, most of the
web languages also include the notion of loosely coupled transaction — called
web transaction [22] in the following — as a unit of work involving loosely cou-
pled activities that may last long periods of time. These transactions, being
orthogonal to administrative domains, have the typical atomicity and isolation
properties relaxed, and instead of assuming a perfect roll-back in case of failure,
support the explicit programming of compensation activities. Web transactions
usually contain the description of three processes; the body, the failure handler,
and the compensation.

The failure handler is responsible for reacting to events that occur during
the execution of the body; when these events occur, the body is blocked and
the failure handler is activated. The compensation, on the contrary, is installed
when the body commits; it remains available for outer transactions to require
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some undo of previously performed actions. BPEL and WS-CDL both use this
approach. However, in [2523] we showed that different mechanisms for error
handling are not necessary and we presented the BPEL semantics in terms of
webm,, which is based on the idea of event notification as the unique error
handling mechanism. The same is feasible considering WS-CDL. This result
allows us to extend any semantic considerations about web7m, and webw to BPEL
and WS-CDL.

1.3 Contribution of the Paper

In [24] we used webm, as a theoretical and foundational model for web services
composition and we proved its usefulness formalizing an e-commerce transac-
tional scenario experimented in our preliminary work [14]. In those papers we
did not address timing issues at all. We recognized the limits of those works and
the usefulness of time handling when programming business transactions. For
this reason, in this paper we consider timed transactions, i.e. transactions that
can be interrupted by a timeout. Real workflow languages presently provide this
feature: XLANG, for instance, includes a notion of timed transaction as a special
case of long running activity. BPEL also allows similar behaviors by means of
alarm clocks.

To meet the challenge of time in composition, webm has been equipped with
an explicit mechanism for time elapsing and timeout handling. Adding time
we are able to express more meaningful and realistic scenarios in composition.
The webm model of time is inspired by Berger-Honda Timed-7 skipping the idle
rule plus some minor variations. In this paper we present a synopsis of the two
approaches underlying differences and similarities. We show the ability of webm
to cope with timing issues in a context of B2B web transactions proving that
skipping the idle rule is not source of expressiveness loss. To do this we encode
their time construct, called timer, in our timed workunit and we prove in detail a
simulation theorem. This is intended as a major result of the paper and convinces
us of the great flexibility of webm.

Another contribution stands in section 2l where we clarify some semantical
aspects of composition languages and where we modify some terminology of websr
presenting detailed motivations. The overall perspective of this work is to make
webm comparable with both real composition languages and well established
model for distributed components.

1.4 Related Work

Other papers discussing the formal semantics of compensable activities in this
context are: the work by Hoare [I5] which is mainly inspired by XLANG, the cal-
culus of Butler and Ferreira [10] which is inspired by BPBeans, the mt-calculus [6]
considering BizTalk and the work [§] dealing with short-lived transactions in
BizTalk. The work in [9] also presents the formal semantics for a hierarchy of
transactional calculi with increasing expressiveness.



290 M. Mazzara

1.5 Outline of the Paper

The paper is structured as follows: after the above introduction, section [ tries
to clarify some semantical aspects of composition languages and of our model.
Section [3] presents webm with its syntax and semantics while section Elis devoted
to an analogous description of the counterpart, ;. The encoding of timers is
showed and explained in section [0l where the correctness proof is also detailed
and described. Finally, section [0l reports some conclusive considerations.

2 WS-BPEL, WS-CDL and webw

It is worth noting that in this paper we are changing some terminology with
respect to previous works presenting webnm [19J20] or webmy, [24123]. In partic-
ular we are replacing the term transaction or timed transaction with the term
timed workunit and the term compensation with the term event handler. This is
because we believe that, using the old terminology and continuously associating
webm with real composition languages like WS-BPEL or WS-CDL, confusion
and ambiguity can raise.

As explained in detail in [23], the WS-BPEL Recovery Framework has two
different mechanisms for coping with abnormal situations: fault handler and com-
pensation handler. Also WS-CDL provides mechanisms with a similar semantics
called exceptions and finalizers. The basic wrapper containing operations and
associated handlers is scope for WS-BPEL and choreography for WS-CDL.
These mechanisms are thought to be used at different stages of computation:
fault handling during the execution of an activity while compensation handling
after its successful completion. While fault/exception handlers are typically pro-
vided by classical concurrent programming languages, compensation handlers or
finalizers are peculiar to composition languages. Compensations are related with
long running web transactions and the relative semantic deserves some attention.

It is important to remind that scopes and choreographies can be structured
in a tree of nesting. Both WS-BPEL and WS-CDL allow compensations (or
finalizer) to be available for a scope (or choreography) after its successful termi-
nation. BPEL has a constraint which forces a compensation to be triggered only
by an enclosing scope which failed for some reason. WS-CDL, instead, allows a
finalizer to be simply activated by a parent choreography which failed or not,
without imposing particular constraints (motivation for this decision are related
to speculative parallelism and can be found at [112]).

Anyway, compensation semantics is strictly about ”partially reversing” of
successful activities included in a ”larger work” which failed. Differently, fault
handling is a mechanism thought to interrupt ”immediately” an activity when
some abnormal situation happens. At that point, the normal execution is bro-
ken and no way to access the compensation handler is still available. After these
considerations it is easy to see how webm semantics is very far from the com-
pensation semantics of composition languages. Indeed, webm mechanism is more
similar to fault handling. Anyway, we want to avoid to call it fault handler be-
cause we want to provide a foundational mechanism which is able, as already
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showed, to encode both the presented mechanisms. In some sense, our work is
close to the CORBA Activity Service Framework [I6] which uses a similar event
signalling mechanism. Both these approaches result more flexible with respect
to WS-BPEL and WS-CDL semantics. For this reason we call it event handler.
In fact, it is simply a generic framework for event handling and catching.

A last remark deserves to be made to clarify completely any possible ob-
jections. While WS-CDL does not support additional mechanisms except the
two described above, WS-BPEL provides also a third mechanism called event
handler, as in webm. Its semantics, however, is different: a BPEL event han-
dler listens to messages or alarm clock concurrently to the scope execution and
handles all the events concurrently, even when multiple instances occur. If the
scope terminates but some of these occurrences are still alive, they are allowed
to normally terminate their execution. We showed that also this semantic can
be encoded in webm, so the presence of this additional machinery is not harmful.
Anyway, it is important to underline that, although the names are equal, the
behaviors are different.

We decided to adopt what we intend to be the more foundational mechanism
to encode all the others and we gave it a name which was as general as possible.
As a consequence of all these considerations, we changed also the term trans-
action in workunit, because, in general, a transaction is the composed effect of
many workunits, not just a single one.

3 The Calculus webw

web7 is a timed extension of the asynchronous m-calculus with an explicit wrap-
ping constructor for activities and an associated event handler, developed in or-
der to provide mathematical foundation for composition languages. Composition
essentially describes workflow, with a particular emphasis on the communication
aspects of loosely coupled activities, i.e. activities executed by remote, hetero-
geneous and independent services that could belong to different administrative
domains, such as different companies.

3.1 webw Syntax

The syntax of webm relies on a countable set of names, ranged over by x, vy, z, u, w,

s, 8"+ -. Tuples of names are written u. Natural numbers {0, 1,2,3,---} or co are
ranged over by n,m, - --. The set of processes is defined by the following syntax:
P = (processes)
0 (nil)

| z (@) (message)

| z(w).P (input)

| (z)P (restriction)

| P| P (parallel composition)

| lz(u).P (lazy replication)

|(P; P)7 (timed workunit)
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A process can be the inert process 0, a message = (i) sent on a name z that
carries a tuple of names «, an input z(u).P that consumes a message x (w) and
behaves like P{®/3}, a restriction (u) P that behaves as P except that inputs and
messages on u are prohibited, a parallel composition of processes, a replicated
input !z(u).P that consumes a message x (w) and behaves like P{w/3} | 'z(u).P
or a timed workunit (P ; R). that behaves as the body P except that the
event handler R is triggered after n steps or because the opportune abort signal
s () is received. The label n is called the time stamp. We remark that workunit
names should be used with output capability only. For instance, it is not possible
to write s().P. Our intuition is that workunit names are process identifiers,
therefore two different workunits should never have the same name. Even if we
conform with such intuition in this paper, we purposely do not enforce in webrw
a discipline for the use of these names.

The calculus accounts for time by using positive natural numbers or oo.
The timeless workunit (P ; R), is an abbreviation for (P ; R):°, and we
assume that oo + 1 = co. Input z(u).P, restriction (z)P and lazy replication
lz(w).P are binders of names @, x, and u, respectively. The scope of these
binders is the process P. We use the standard notions of alpha-equivalence,
free and bound names of processes, noted fn(P) and bn(P), respectively. In par-
ticular, fn((P ; R).) = £n(P) U £n(R) U {z} and alpha-equivalence equates

@) (P 5 Q)y) with (s)((P{5/4} 5 @{s/2}D7)-

3.2 The Reduction Semantics

We are now ready to introduce the formal specification of the semantics of webr.
Following the tradition of m-calculus [2627], we first define a structural congru-
ence which equates all agents we will never want to distinguish for any semantic
reason, and then use this when giving the operational semantics.

Definition 1. The structural congruence = is the least congruence closed with
respect to alpha-renaming, satisfying the abelian monoid laws for parallel (asso-
ciativity, commutativity and 0 as identity), and the following azioms:

1. the scope laws:

(u)0 =0, (u)(v)P = (v)(u)P,
Pl(uw)Q=(u)(P|Q), ifudtn(P)
()P QD% = ()P ng ., if 2 ¢ {s}Un(Q)
(P; (2)Qb, = (NP; Q)y, ifz&{s}uUtn(P)

2. the repetition law:

3. the workunit laws:

(0; Q) =0
UP; Qo | Ry R =(P; Q)L (R R)
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4. the floating laws:

(=@ P; Qb = 2@ [(P; Q)
(y(@).P|P"; z(w)| Q) = = <U>|4()P|P" Qly

The scope and repetition laws are almost standard: let us discuss worku-
nit and floating laws. The law (0 ; Q) = 0 defines committed workunits,
namely those with 0 as body. These workunits, being committed, are equiva-
lent to 0 and, therefore, cannot fail anymore. The law ((P; Q). |R; R'). =
(P; Q). |(R; R'))" moves workunits outside the parent, thus flattening the
nesting. Notwithstanding this flattening, the parent can still affect the children
by means of workunit names. The law (z () | P ; R) =z (u)| (P ; R)" floats
messages outside workunits, thus modelling the fact that messages are particles
uploaded on the network as soon as they are emitted. The intended semantics
is the following: if a process emits a message, this message traverses the sur-
rounding boundaries, until it reaches the corresponding input. In case an outer
workunit fails, recoveries for this message may be detailed inside the relative
handler.

The main technical difficulty is time elapsing. In this model all the processes
run on the same orchestrator, thus competing for the same processor time. We
assume that every reduction costs one time slot. When a subprocess performs a
reduction, the flow of time is communicated to all the running processes. This
amounts to decrease the time stamps of the running timed workunits by 1,
thus triggering handler processes of those that become dead. This operation is
modelled by the time stepper function below, which is an accommodation to
webm of the corresponding function in [4]. The definition of this function and
two other auxiliary functions are in order:

the input predicate inp(P): this predicate verifies whether a process con-
tains an input that is not underneath a workunit. Formally:

u).P)

)-
)P) if inp(P)
(\Q

inp(a(@

1np((m
(P|Q) if inp(P) or inp(Q)
(tz(u).P)

,_.
=
"O

the time stepper function ¢(P): this function decreases the time stamp by
1 and is defined inductively in the following way:

¢((2)P) = (2)6(P)
WPl =g o)
(4 ot
(P R)g +1):4¢( ) R);
¢(P)=P  otherwise

All the preliminaries are in place for the definition of the reduction relation.
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Definition 2. The reduction relation — is the least relation satisfying the fol-
lowing reductions:

(com) z (0) | z(w).Q — Q{V/u}
(karw) s () [ (2(@).P|Q; R)™™ — (2().P|6(Q) ; R)®

and closed under =, (x) , and the rules:
P—-Q P—-Q
PIR—Q|¢(R)  (P; R):™ —(Q; R)!

P—Q
(y@®).R|R'; P)} — (y(@).R|6(R) ; Q)7

Rule (com) is standard in process calculi and models the input-output interac-
tion. Rule (raiL) models workunits failure: when an abort is emitted, the corre-
sponding workunit is terminated by setting the time stamp to 0, thus activating
the event handler (last rule). On the contrary, aborts are not possible if the
workunit is already terminated, namely every thread in the body has completed
its own work. The inference rules lift reductions to parallel contexts and workunit
contexts, updating them because a time slot is elapsed.

We say that P has a barb z, and write P | x, if P manifests an output on
the free name =x.

Definition 3. Let P | x be the least relation satisfying the rules and closed for

(@) |

x
()P | if Pla andx # 2
(P|Q)l$ ifPlaxorQla
(P ; R[) lx if P |z or (inp(P) and R | x)

(P; RS LaifPla

4 The Calculus m;

The advent of m-calculus has shown how diverse computational structures in
both sequential and concurrent computing are uniformly representable as in-
teracting processes. This allows the application of standard syntactic reasoning
methods developed for process calculi to a wide variety of computational phe-
nomena. However, in spite of its high expressive power and its interaction-based
computing model, the m-calculus does not suffice for a complete and satisfactory
description of basic elements of distributed computing systems. This is due to the
difficult in decomposing some operations and phenomena in terms of message-
passing, because they represent computational mechanisms left implicit or not
treated in the m-calculus. For example, loss of message in transit, timers, process
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failure and recovery are not taken into account by the m-calculus. The work by
Berger — his PhD thesis [B] and other papers (for example [4])— is concerned
on the study of an extension for the original m-calculus in order to provide a
reasonable framework able to represent more realistic distributed systems. He
tried to give extensions that can be basic and incremental, i.e. that combinations
of a few simple extensions can represent a wide range of phenomena essentials
to distributed systems.

4.1 Core Syntax

In this section we will illustrate the core syntax of the calculus presented by
Berger.

P = (processes)
0 (nil)
| = (¥) (message)
| z(y).P (input)
| (z)P (restriction)
| P| P (parallel composition)
| lz(y).P (lazy replication)
| timer™(x(v).P,Q) (timer)

A timer is a pair of processes, say P and @, and a deadline n, which rep-
resents the amount of disposed time. The semantic of timers is quite simple:
a timer timer”(u.P, Q) waits for a g action until the total amount of time n
elapses. If the action p is performed, the timer reduces to the continuation P,
and the timeout continuation @ is discarded. Contrariwise, if the time n elapses
without any action p, the timer reduces to the continuation @, and the time-in
continuation P is discarded. The introduction of timers requires some exten-
sions to the original 7-calculus, which is not able to manage time. In particular,
Berger and Honda introduce the time-stepper function ¢, , which indicates how
the time passing influences the various constructs:

timer" 1(Q, R) if P = timer™(Q, R), t > 1

R if P=timer"(Q,R),t<1
w(P) = { Q@ Ia(R) HP=QIR

@@ i P=()Q

P else

Thus ¢(P); ticks each timer in P by one discrete degree: this can be thought
of as the passing of, say, one second. Now we can introduce the reduction se-
mantics, =; is as usual.

Definition 4. The reduction relation —; is the least relation satisfying the fol-
lowing azioms and rules, and closed with respect to =¢ and (x) :
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(REP)
2@ | e@).P = P{O/g}|2(@).P
(sTop)
tiner™ ! (¢(7).P,Q) [« (§) — P{i/z}
(PAR)
(IDLE) P —, P
P — ¢:(P)

P|Q —¢ P ¢+(Q)

Rules (sTopr) and (PAR) are quite simple; they model the execution of timers
and parallel processes. The rule (IDLE), instead, is a little more subtle: it allows
the computation to pause or idle at arbitrary moments and, through repeated
applications, for an unlimited period of time.

Now, we are ready to introduce the concept of barb, which will be used to
prove the correctness of timers encoding. Informally, we say that P has a barb
x, and write P |; x, if P manifests an output on the free name =x.

Definition 5. Let P |; x be the least relation satisfying the rules and closed for
=t
z(y) lsx
(PlQ) lyxif Pliz or @l
@)P leyif Pliy andy # =

5 Encoding Timers

In this section we show how to implement timers using workunits, then we will
prove the correctness of this encoding. To this end we define the recursive func-
tion [[P] : m— webm which maps 7 in webw processes:

Definition 6 (7; encoding in webw). Timers are defined by induction on n,
for the missing cases it holds [[P]] = P.

@).P, Q)] = (x)(s)({y(@).x (@) 5 [QD), |2(@).[P])

w).P, Q)] = («)(s)({y(@)-x () ; [timer" " (y(u).P, Q)b: |=(w).[PT)

It is worth noting that this is not the only function satisfying our goals. We
decided to adopt it after several investigations in order to achieve a tradeoff
between mathematical elegance and quick understandability.

The encoding of a timer set to 1 behaves as follows: if the input-prefix y()
can react, the workunit emits the output message x (u), which triggers the con-
tinuation P. In this case, the workunit becomes the null process 0, and commits.
Otherwise, if the input-prefix cannot react, it triggers the handler, reducing to
the time-out continuation @. It is easy to see that this is the expected behavior.
The inductive case is quite similar, because it uses the same workunit set to 1.
In this case, however, the event handling process is the recursive encoding of
a timer, in which the deadline has approached of one unit. If the input-prefix

[timer! (y(
(

[timer™(y
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y(w) can react, the workunit triggers the time-in continuation P, and commits;
otherwise, the workunit runs the handler, and the timer encoding is called re-
cursively.

The proposed encoding has obviously the required behavior, but it is weak,
i.e. it requires an additional computational step, with respect to the native timer
construct. In particular, when the input-prefix reacts, we must trigger the time-
in continuation, while the timers in 7; reduce directly. Let us illustrate this issue
with an example. The m; program

timer” (z().y (2), Q) |« (V) | timer®(y(@).R, S)
reduces, in one step, in the program
y (3) | timer! (y(@).R, )

for the rules (stop) and (par). Moreover, this evolves in R{Z/3}. The corre-
spondent encoding in webm, instead, reduces, with an adjunctive 7 step, in the
program

y(2) | (@)(s){y(@).2 (@) ; [STDy | 2(@).[R])

for (com) and the rules for parallel and time elapsing. The point is that, while in
the 7 program the second timer had still a possibility to trigger, in its correspon-
dent encoding the timer has elapsed and the time-out continuation is executed.
Fortunately, this issue is harmless, because in 7; we could execute idle steps, ap-
plying the rule (1DLE), in order to synchronize with the correspondent encoding
in webr. In particular, after triggering a timer, we execute an idle step:

y (Z) | timer! (y(w).R, S)
reduces with the rule (1pLE) to
y (3) | timer® (y(@).R, )

and finally to the time-out continuation S.

This example stress out an important difference between m; and webm, i.e.
the former is divergent, because it is possible to idle the computation for an
unlimited period of time, while the latter does not allow to delay reductions to
favor idle steps. So, what we are doing is encoding one of the many possible
computations.

Now we will prove that a simulation exists between 7; processes encodings
and the processes themselves. Although it is possible to prove the existence of
a simulation avoiding any particular constraints, for the sake of brevity we will
show just a restricted proof. We will not allow a process P in a parallel context
C[']|P to be or to contain time sensitive operators (timers or timed workunits)
and we use the notation P~. As a consequence, we will avoid nested timed
workunits because it is always possible to extrude by structural congruence and
run them in parallel.
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Definition 7 (Contexts). Process contexts, noted C[-|, are defined by the fol-
lowing grammar:

CLl ==T[] [ CHIP™ | (2)C]

We always assume that when we write C[P] the resulting process is well-formed.

The result can be easily extended to the general case but we got a longer
proof. The basic idea behind the extended proof stands in the explanation above.
When we introduce time sensitive operators in the context we have to force m
processes to synchronize with the correspondent encoding in webw applying the
rule (1ipLE). The inductive case for parallel in the second part of the proof has to
be extended with the relative sub-cases for time sensitive operators. This require
some space and does not give additional hints about the result. For this reason
we do not present here that part.

In order to present the proof we must introduce some preliminary definitions.
— ...

~ -
If — is a binary relation, —,, is a shorthand for T . We write —7 if —n
for some n > 0. The Barbed Simulation is the basic machinery we use to provide
the correctness proof:

Definition 8 (Barbed Simulation). A barbed simulation S is a binary rela-
tion between processes such that P S Q) implies

1. if Plx thenQ | x
2. if P— P then Q —% Q' and P'SQ’

Barbed similarity is the largest barbed simulation that is closed under contexts.
P and Q are barbed similar and we write P < @ if PSQ for some barbed
simulation S.

Since we are simulating processes over different systems we need a particular
adaptation of the above definition:

Proposition 1 (Barbed Simulation over Different Systems). Given two
different systems (P, —p, |p,=p) and (Q,—q, lg,=q), let us define
S ={(P,Q)| PeP,Q < Q} such that (P,Q) € S implies:

1. if Plpx thenQ |lg =
2. if P—p P andQ—>5 Q' then P’ =p P" and (P",Q") € S with Q" =¢ Q’

In the following we consider the two systems (P, —, |,=) and (Q, —1, ¢, =)
where P are webm processes and Q are m; processes. The following theorem
proves that, if a timer encoded by the timed workunit behaves in a certain way,
also m; timers can behave in the same way.

Theorem 1 (Barbed Similarity between [P] and P).

VP em, C[P]] < C[P]

~
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Proof. The relation S defined as follows is a barbed simulation:

= {(IP}.P) | P e} )
" i@ @' fon) o(@).[P]). P{7/}) | P.Q € m}
(@)@ () 1A 10 1D, @)1 @ € mi

U=
Let us prove the two conditions required to have a simulation.

1. Firstly, if C[[P]]] | « then C[P] |; . By induction over contexts:

(a) Base Case: if C[] is []: By induction on the structure of P:
i. P is not a timer: the statement is obvious, because the encoding in
this case is the identity function;
ii. P is a timer: its encoding does not show any barb, so the statement
is banally true;

(b) Inductive Case for Restriction: we have to prove that if (y)C[[P]] |
x then (y)C[P] |: z. If C[[P]]] | «, there are two possible cases:
i. we restrict the actual name x: (z)C[[P]] |, so the statement is ba-
nally true.
ii. we restrict the name y, y # x: if (y)C[[P]] | =, (y)C[P] l+ z, so the
statement is true.

(c) Inductive Case for Parallel: we have to prove that if C[[P]]|@ | =
then C[P]|Q | x:
if C[[P]]1@Q | z, then C[[P]]] | = or Q | ; moreover, C[P] |; z or @ |: x
by inductive hypothesis. This means that C[P]|Q [: z.

2. The second part of the proof consists in showing that if C[[P]]] — P’ then
C[P] —} P"” and P’ S P". By induction over contexts:

(a) Base Case: if C[] is []: By induction on the structure of P:
i. P is not a timer: the encoding of P is the identity function, and this
preserves the relation:

[P]=P and [[P]] — P’, then 3 P” such that P —; P"” and P'=P"
ii. P is a timer of the shape timer!(y(u).4, B):
[timer' (y(u).A, B)] = (x)(s)({y(w).x (@) ; [BI), | =(@).[A])

This object cannot reduce by itself, it would require some other pro-
cess running in parallel to trigger y(u) or to make possible for the
time to pass. Thus, the statement is obviously true.

iii. P is a timer of the shape timer"(y(u).A, B):
[rimer™ (y(@). 4, B)] = (2)(s)({y(@).2 (@) 5 [eimer™ " (y(@).A, BY), | 2(@).[AD)

this object cannot reduce. The same considerations of above holds.
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Inductive case for restriction: if C[-] is ()C[-], we have to prove that if
(z)C[[P]] — P’, then (z)C[P] —¢ P" and P’ S P".1f (z)C[[P])] — (=)@
then C[[P]] — Q. By inductive hypothesis, C[P] —: Q' such that Q@ S Q’.
By structural congruence, (2)Q S (z)Q’.

Inductive case for parallel: if C[-] is C[-]|P~, we have to prove that
if C[[P]]1Q@ — P, then C[P]|Q —¢ P” and P'SP". C[[P]]|Q can
reduce for three reasons:

i. C[[P]]1Q — CIIP]) | Q: we can say that C[[P]]] — C[[P]]’ and, ap-
plying the inductive hypothesis, C[P] —; C[P]" and C[[P]]' S [ ]
Now, [C[P]]"|@SCIP) | Q.

ii. C[[P]]1Q — C[[P]]|Q’": This case is symmetric with respect to the
previous one.

iii. C[[P]]|@ — C[[P])|Q'": since @ is not time sensitive, we must
consider only the following sub-cases:

A. P does not contain a timer: [[-]) is the identity function, and the
statement is obvious.

B. Q triggers a timer in P receiving the message y (0) :

the process has the shape [[timer™(y(w).A, B)] |y (¥) | Q" and re-
duces to (z)(s)({z (V) ;[[timer™ ! (y(u).A B)MS |z(w).[A]) | Q.
On the other side, timer™(y(u).A, B)|y (¥)| Q" in one step
reduces to A{V/7}]Q".

Now, (2)(s)((« (7) ; [[timer™ " (y(@).4, B)]), | =(@).[A]) | Q" is
in relation & with A{v/3}| Q" by definition of S and inductive
hypothesis.

C. P contains a timer and @ makes it possible for the time to pass
and for the workunit to trigger the handler. The timer can have
two possible forms:

[timer! (y().A, B)] = (2)(s)({y(0).x (@ > [BI), | =(@).[AD)

This process reduces to (z )( Y{y(@).z (v) ; HIB]]]DO|90(~) TADD)-

On the other hand, timer! (y(u )A B) —+ B and, by definition
|

of 81 (x)(s)({y(@).x (@) 5 [BI)|«(@).[A])S B.

— P is a timer of the shape timer"(y(u).A, B):
[eimer™ (y(w). 4, B)I=(2)(s) ({y(@).x (@) ; [timer" " (y(@).A, BYD, | 2(@).[AD)

— P is a timer of the shape timer!(y(u).4, B):
)-
)-

This process reduces to:

(2)()({3(@).x (7) ; [eimer™ (y(@).A, BN | 2(@).[A]).

On  the  other  hand, t1mer (y(w).A, B) —
timer"~!(y(u).A, B) by the rule (IDLE) and by defini-
tion of S':

(@)()({y (@) (B) 5 [eimer™ L (y(@). A, BN | 2(@).[A]) S timer” " (y(a).A, B).
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6 Conclusions

In this paper we showed how webr is able to cope with timing issues in the same
way as Berger-Honda did. To show this we encoded their time construct, called
timer, in our timed workunit and we proved a simulation theorem. The proof
has some limitations. Firstly, we did not show the proof including time sensitive
operators in parallel. As explained this was just for the sake of brevity and
we gave some hints about the extension of the proof. A second point, instead,
deserves more attention. Unfortunately, the result we presented is not symmetric,
in the sense that we proved simply a simulation and not a bisimulation. For this
reason our result could be considered too limited. However, we are working on
extended results and we are quite confident about related theorems. We strongly
rely on the fact that an analogous result can be proved for the viceversa. In
particular C[P] < C[[P]|7*] should hold. Another interesting result to verify
is whether P < @ < [[P] < [[Q]- Presently, we are also showing how timed
constructs of composition languages (e.g. BPEL alarm clocks) can be formalized
in this timed calculus. This work can be intended as an extension of we did in
[23] for the untimed ones but presenting here this kind of formalization goes
beyond the scope of the paper.

Finally, we want to remark the fact that any mathematical rigor becomes
pointless without the ability to provide conceptual tools for analysis and rea-
soning or software tools for verification. In this sense contracts conformance
verification between different services should be investigated in the future.
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