A Compositional Operational Semantics

for OWL-S

Barry Norton'2?, Simon Foster?, and Andrew Hughes?

! Knowledge Media Institute, Open University, UK.
2 Department of Computer Science, University of Sheffield, UK.
e-mail: b.norton@dcs.shef.ac.uk

Abstract. Software composition via workflow specifications has received
a great deal of attention recently. One reason is the high degree of fit
with the encapsulation of software modules in service-oriented fashion.
In the Industry, existing workflow languages have been merged to form
WS-BPEL, the Business Process Execution Language for Web Services.
In the Research community OWL-S, a ontology for web services, has
been submitted for standardisation alongside OWL, the Web Ontology
Language in which it is expressed. The OWL-S Process Model is based
on an abstraction of the common features of industrial workflow lan-
guages. On the one hand, WS-BPEL has only informal semantics; on
the other, the type of semantics given to ontology-based work tends to
be structural rather than computationally oriented. As a result the se-
mantics developed for DAML-S, which led to OWL-S, are still deficient
in some regards. In this paper we shall survey the existing semantics
and introduce a novel semantics for the latest version of OWL-S that is
focussed on the principle of compositionality, so far not tackled.

1 Introduction

A recent article in the inaugural editorial of the International Journal
on Semantic Web and Information Systems [12] reviewed the properties
necessary for work on semantics for the Semantic Web. One fundamental
proposed explained was that of compositionality. While well understood
by the formal methods community as a property that should apply to
behavioural semantics, the time is right to make this point, and present
means to achieve it, to the semantic web (services) community. Gener-
ally stated, this principal means that where semantics are given to a
formal language, any respective members of the equivalence classes of
two terms should semantically compose into the same equivalence class
as the semantics given to the composite expressed in the target language.
There are two important practical consequences that we should like to
draw out in the context of behavioural semantics for service composition.
The first is the ability to form a semantic model for an orchestration, step
by step matching the workflow by which it is syntactically expressed, as
this is built via interaction with an editor. The point is to avoid rebuilding
the semantic model from scratch at each step. By rather extending the
model incrementally, we can hope to represent semantic properties to
the user in real time.

The second consequence relates to the principal of substitutability, to
which compositionality leads. Practically this allows us to take any mem-
ber of the equivalence class of the semantics for a term to represent that
term as further composition takes place. This allows us to somewhat
avoid the state explosion problem, fundamental to concurrent systems,
by abstracting from internal states at each point encapsulation takes
place, having shown that a so-called observational equivalence that we
shall review later, is a congruence in our intermediate syntax for seman-
tic translation. Such an observational theory, allowing this abstraction, is
the basis of the process calculus CCS [5] which is extended with mobility
to form the Pi-Calculus [6], the inspiration for much work in workflow-
oriented service composition.

Our previous work [8] has demonstrated the compositional modelling
of dataflow-oriented software composition using a novel process calcu-
lus CaSE, a conservative extension of CCS. This calculus develops on
the tradition of encoding the progress of time qualitatively via abstract
ticks of a clock related to communication behaviour via the principle of
maximal progress [4], i.e. where silent actions are preemptive over clock
transitions. CaSE introduced the concept of setting scopes under which
behaviour is measured by a specific clock, running at a different rate from
other such, via an operator that at once ‘hides’ that clock, i.e. makes it
both immune from the preemptive effects of outsiders’ silent actions and
unobservable to outsiders, and makes it preemptive over the clocks that
are still open in the outside.

Our previous model was for systems where scheduling is governed in
a data-driven fashion according to generalised dataflow graphs and in
a serialised fashion, i.e. with course-grained interleavings so that the
execution of each actor is atomic. In OWL-S this execution model is just
one (specifically the AnyOrder process type) of several in an algebraic
definition of workflow-oriented processes — analogous to ‘components’
in our previous work — defined hierarchically in terms of performances
— analogous to our previous ‘component instances’ [3].

Rather than defining a compositional model for a grammar directly based
on the Process Model part of the OWL-S ontology, we define a derived
formal language, which we called CASheW-S (named for our project on
the Composition And Semantic Enhancement of Web Services) that has
a greater degree of ‘composability’ than this. In particular we seperate
a first class notion of connection from the definition of performance.
In OWL-S, performances have to be declared with their complete in-
bound dataflow attached. In CASheW-S, performances and connections
between them can be seperately composed in the same way as they are
in a graphical editor.

In the following section we will complete and explain our adapted syn-
tax and review its informal semantics. In Section 3 we will present our
syntax and operational semantics for a conservative extension to CaSE,
which we name CaSHew-NUtS for Calculus for Synchronous Hierarchies
extended with Non-deterministic and Un-timed Synchronisations. With
this in place we can present a translation from our CASheW-S syntax
into CaSHew-NUtS in Section 4. We compare this to existing approaches
in Section 5 and conlude in Section 6.

2 CASheW-S Syntax

As shown in Table 1, processes in CASheW-S are either atomic or com-
posite. Both are named from a set we chose, for the purposes of the
semantics, to range over with m. Composite processes are defined in
terms of performances of other processes each of which is given a name
that, for our purposes, we allow to be ranged over by n and o and, like
process names, must be guaranteed unique.

Process ::= AtomicProcess m AProcess |
CompositeProcess m CProcess
ConsumelList ProduceList
CProcess ::= Any-Order Per formanceList |
Sequence Per formanceList |
Split Per formanceList |
SplitJoin Per formanceList |
ChooseOne Per formanceList |
IfThenElse Per formance Per formance
RepeatWhile Per formance |
RepeatUntil Performance

Per formance ::= Perform n Process DataAggregation
Connection ::= Connect n co a j
Per formanceList ::= Per formance |

(Per formanceList); Per formance |
(Per formanceList); Connection
DataAggregation ::= ValueDataList
ValueCollector List
ValueData ::= ValueData a
ValueDataList ::= € | ValueData ValueDataT ail
ValueDataTail ::= € | ; ValueData ValueDataT ail
ValueCollector ::= ValueCollector a k
ValueCollector List ::= € | ValueCollector ValueCollectorT ail
ValueCollectorTail ::= € | ; ValueCollector ValueCollectorT ail

Consume ::= Consume a n b j
ConsumelList ::= ¢ | Consume ConsumeT ail
ConsumeTail ::= € | ; Consume ConsumeT ail

Produce ::= Produce cn d
ProduceList ::= € | Produce ProduceT ail
ProduceTail ::= € | ; Produce ProduceT ail

Table 1. The CASheW-S Process Type

When it comes to the declaration of dataflow, there are two differences
from OWL-S, but each allows a direct and compositional translation from
the constructs there. We consider first the Connection syntax, introduced
with the keyword Connect. This is a first class equivalent to the more
restrictive ValueSource construct, as well as providing part of the role of
the ValueFunction construct, in OWL-S. This also allows us to clarify
the role of the Produce construct, which we cast as a specialisation
to these connections rather than a specialisation of performance as in
OWL-S, and to introduce the dual Consume construct.

ValueSource and ValueFunction declarations in OWL-S are strictly tied
to performances, in particular their implicit destinations, meaning that
a performance must declare explicitly its complete in-coming dataflow
when composed into a system, and can not be the subject (in the role
of destination) to any further dataflow. In CASheW-S we should like to
represent the degree of composition appropriate to an interactive editor
and so allow connections to be composed as first class entities between
any existing performances. As such they must identify two performances,
n and o, and respectively the output c of the destination, and the input
a of the source. It also declares a (numbered) component of the input,
which is to be supplied, j.

Performances can split the inputs of the process being performed into
components via the ValueCollector construct. This allows the second
function of OWL-S ValueFunctions to be represented (the actual defin-
ition of the associated function is elided, just as it is as an XML literal
in OWL-S, but we must know how many communications are needed).
Whereas OWL-S performances contain ValueData, ValueFunction and
ValueSource declarations, their associated DataAggregation construct in
CASheW-S contain only ValueData and ValueCollector declarations.
The dataflow that provides the input components of the value collec-
tors, as well as the other inputs not provided as constants via value
data declarations (implicitly having only a singleton component, num-
bered 0), is defined via connections. In our semantics these will become
atomic names for channels c" and a respectively. OWL-S performances
can be compositionally translated since the implicit connections can be
immediately composed with the CASheW-S performance.

In order to define a composite process two different type of connections
are needed. To define a prototypical input, a, this must be associated
with a component, b7, of a performance input (associated with the pro-
totypical input, b, defined by the process performed) of some component
performance, n. This type of connection is introduced with the keyword
Consume. The keyword Produce, unlike the one in OWL-S, is the
direct dual to this, connecting a performance output, d”, to the proto-
typical output, ¢, of the enclosing composite process. Neither of these
constructs requires the use of the poorly named so-called dummy vari-
able ‘theParentPerform’ used in OWL-S, but can be translated directly
from such OWL-S Produce and ValueSource declarations.

3 CaSHew-NUtS

To provide an operational semantics for the CASheW-S language, we
translate each term into the process calculus CaSHew-NUtS, for which
the core syntax is defined in Table 2.

Ex=0|A| As | & | |E]a(&) | TETo(E) | E4+E | EIE |
Ela—b] | ENa | Efo | Effo | pX.E | X
Table 2. Core CaSHew-NUtS Syntax

a,a,b,b,--- € AUA p,o,--- €T

LCA TCT
A=AUAU{r} L£L=AUC C=Tx{0,1}
a:/Bv"'EA ’77576‘6 pi70-]'"'ec

Table 3. CaSHew-NUtS Labels

This depends on the labels defined in Table 3, which are divided into
actions (a, (), on the left, and clocks (p, o), on the right, and gives
rise to an operational semantics in terms of a labelled transition system
where terms are nodes and the edges represent behaviours labelled from
the union of actions and clocks (), the latter being indexed from the
set 0,1 to represent whether they respect maximal progress or not. The
transition relation is of type £ X £ x &, and is the greatest such relation
that satisfies the rules in Table 5.

As in CaSE [8], we ensure the well-definedness of the semantics by mak-
ing the negative definitions in the latter side conditions depend only on
auxiliary well-formed sets (so-called initial actions, ZA, and initial clocks,
IC), rather than the transition relation itself. The main difference is in
the effect of maximal progress on, and determinism of, clocks. Whereas
the latter principle has an immediate preemptive effect in CaSE, i.e. the
presence of a T-transition removes all o-transitions from the semantics,
in CaSHew-NUtS we simply note the effect in the index to the label
(¢f. rule Com4). In particular a oi-labelled transition is respectful of
maximal progress and deterministic, a op-labelled transition is not.
Regarding determinism, whereas in CaSE the so-called ‘time-out’ oper-
ators |F|o(F) and [Elo(F), by which clocks are introduced, overrides
previous transitions on that clock, CaSHew-NUtS has variant operators
|E]o(F) and [E|o(F) where the index of the previous clock is sim-
ply decremented so that there is at most one deterministic transition,
labelled o1, per clock o.

We take advantage of these changes in the semantics by having two hiding
operators in CaSHew-NUtS. The first, E/o, brings hidden clocks back in
line with CaSE by only turning into silent actions deterministic, maximal
progress-respectful clocks, o1. As in CaSE, this both closes the scope of
a clock, so that it is neither synchronised, nor open to preemption by,
the environment, but is capable of preempting open clocks (a kind of
hierarchical scoping, as explained in [8]). In order to exploit the new
semantics we have a second hiding operator, E /o, which allows non-
deterministic and non-maximal-progress-respecting clocks to be hidden
as well. This allows us to synchronise agents that still have internal work
to do, as we shall later consider in giving semantics to the ‘Split’ operator.
In this work we shall consider only deterministic clocks so we derive the
CaSE timeout operator, and several other derived operators used in that
system, as follows:

aE=aF+A |E|o(F) = |E+Ac]o(F) Ar = YscrAs
ap.E=aE+ Ar [Elo(F)=[E+ A;]o(F)

o F = |—0.|O'(E) a.F = Ei<\d‘\ ai.<a1 e a(i,l) . a(i+1) e a‘aQ.E
or.E=[Ar]o(E) where |@| > 1; (a).E = a.E

Table 4. Derived CaSEew-NUtS Syntax

Stall ————1

Idle _
00 A, 5 A,
At —— Patient————
aF — F a.E 25 aE
« 12 &2 /
Sum1 _E2E Sumz P2
E+F —FE E+F — F'
T ’ 95 ’
Sum3 E—>€ _F—>F
E+F -5 E +F
Comp —E2E comz P2
E|F—>FE|F E|F—>E|F
a / a ’ ; / 5 /
Coms B2 ELF 2P Coms B2 E P
E|F > FE|F E|F X2 E | F
T /
TO1T —— 4 TO?2 %
lE|o(F) — F |E|o(F) = E
el ’
oy _EEE
LE]o(F) — £
T /
STOl ——— %
[Elo(F) — F [Elo(F) = E/
a / Pi ’
sTo3a— L2 —F 5 sTO38 E — E
[Elo(F) = £ [Elo(F) — [ETo(F)
o1 ! @ !
Hdt 2 — P Hd2 —2—E
E/oc — FE'/o E/oc > E'/o
Pi /
i3 —— L
E/oc — E'/o
T / «@ /
UHid1 ET;E UHid2%
Effo = E'jo Efoc = E'jo
Pi !
Umﬁ——EQ;E;—7
Ejoc — FE'Jo
2l / 2 /
Res EW;EV ¢ {a,a} R _E—E
E\a=E'\a EB(f) Y By
EZLE
Rec —

pX.EL B {uX.E/X}

and: a) ¢ =0 if 7 € ZA(E), 1 otherwise
b) k=0if 7 € ZA(E | F), 1 otherwise
c) o1 ¢ TA(E)
d) #i -0 € TA(E)

where: 1) p # o
2) fi-y =0

Table 5. Operational Semantics for CaSHew-NUtS

ZA(0) =0 TA(E+ F) =ZA(E) UZA(F)
TA(A) =0 TA(E | F) = TA(E) UZA(F)
TA(A,) =10 U{r |a € ZA(E) Aa € ZA(F)}
TA(a.E) = {a} TA(nX.E) = IA(E)
JA(T.E) = {7} JAX)=0
TA(LE]o(F)) = ZA(E) ZA(E\L) =ZA(E)\ (LUL)
TA([Elo(F)) = ZA(E) TJA(E/o) = TA(E)U{T |n € IC(E)}
TA(Efo) =TA(E) U {r | € IC(E)}

Table 6. Initial Action Set
(B + F) = {0, | o € TO(E)

IC0)={o1 |o€T}

04— 9 Aoy € T(F))
(4 = (| peTnppoy HEIDZIm0mmmme ol
TC(a.E)={o |0 €T} ‘; .
T(r.E) = 0 o

T0(|EJo(F)) = TC(E) x (‘;f(f(; Y
Ulaw | 7 ¢ ZA(E)} B
Olo |7 ez VBN o e 205
IC([Elo(F)) = IC(E) L(B/o) = {IC(E) " otherwise
U{o1 | T ¢ ZA(E)} [
0 if 3i-0; € IC(E
W{ew | 7 € TA(E)} L(E)o) = {IC(E) ((fhvi)g

Table 7. Initial Clock Set

A symmetric relation R C P x P is a weak bisimulation if whenever
(P,Q) € R:
—IfPL P y#7,then3Q -Q 5 25" Q and (P',Q') € R
—IfP L P then3Q"-Q 5 Q and (P,Q) €R
We say that P is weakly equivalent to @ and write P =~ Q, if (P,Q) € R for
some weak bisimulation R.

A symmetric relation R C P x P is a temporal observation congruence if
whenever (P, Q) € R:

1. P % P implies 3Q". Q L*ﬁlf Q and P' =~ Q'

2. P% P implies 3Q".Q % Q' and (P',Q') € R .

Proposition 1. Compositionality
Temporal observation congruence is compositional through all operators.

Proposition 2. Full Abstraction
Temporal observation congruence is the coarsest congruence contained in
temporal weak bistmulation.

4 CASheW-S Semantics in CaSHew-NUtS

In the semantic translation from the CASheW-S to the CaSHew-NUtS
language we will use the variables in Table 8.

p : Process q : Performance

m : Process Name n,o : Performance Name

a,b : (Process) Input ay,b; : (Performance) Input Component
¢,d : (Process) Output ¢",d° : (Performance) Broadcast Output
g : Consume U : Value Data

h : Produce v : Value Collector

w : AProcess z : CProcess

Table 8. Variables

When we want to represent a collection we will use the corresponding
capital, for instance A is a set of inputs; we abuse this syntax slightly by
allowing lists to be represented the same way so that G represents, for
instance, a consume list as defined in the CASheW-S syntax. Finally Q
stretches the notation further by representing a CASheW-S performance
list which has connections, as well as performances, as members and
strictly has a performance at the head (and is expanded by ‘snocing’,
i.e. adding new members to the tail, and decomposed by reverse tail
recursion).

At the top level we look at the semantics of processes. Our main semantic
function [J is of type p —> m —> A —> C' —> £ (which then composes
with the CaSHew-NUtS semantic function to derive a labelled transition
system). There are two possibilities matched by this function: the atomic
process and the composite process.

m[AtomicProcess m w]& = ™ [w]a
m[CompositeProcess m z G H]&
= ("[1&n | [CT5 | [H])\ AmuC™ /{o" | " e C™}

Table 9. Process Semantics

For an atomic process the process name must match the one declared
syntactically, the inputs and outputs must match those semantically as-
sociated with the AProcess, the syntactic nature of which we have left
open. One possibility is to consider all services as grounded in WSDL
and having ‘functional’ behaviour, i.e. with all inputs required, and all
outputs produced, at every execution. In this case all AProcess semantics
will take the form shown in Figure 1, generalised for different numbers
of inputs and outputs, and the match will be syntactically based on a
representation of WSDL. Our aim in the wider context, however, is to
plug in a semantic translation of a choreography language at this point.

Fig. 1. Example AProcess Semantics

WSMO has proposed that two process models should be associated with
a service to be properly described [11]. One, which we concentrate on in
this paper, is named the orchestration and focuses on how the behaviour
of a composite process is formed from the behaviour of its component
services. The choreography, on the other hand establishes, in terms of
interaction, how a client should interact with the service. There are many
forms that this could take, and as yet little agreement, but our own
previous work [9] has generalised on the ideas of interface automata [2].
We previously concentrated on data-driven scheduling of generalised
dataflow-oriented systems, and showed how to accommodate stateful-
ness, optional inputs and non-determinism in semantics such a scheme.
In particular, automata allow us to easily mix statefulness and non-
determinism, by representing the internal behaviour with an explicit
silent action 7 or choice between these. To these transition labels for
inputs and outputs (we overline outputs as is usual in CCS) we add
‘scheduling signals’ that allow us to be explicit about ‘readiness’ for ex-
ecution. The signal r signifies readiness (and can be non-deterministically
offered alongside further inputs to show that these are optional), and is
followed by signal e, which signifies permission to execute.

All of these features are widely claimed necessary in the composition
of semantic web services, where the notion of service is as much based
on work in agents as on SOAP/WSDL web services. The Any-Order
composite process is given informal semantics as interleaving execution of
the components explicitly according to their readiness to execute (based
on inputs as well as non-data preconditions, from which we abstract).
The guiding principle for our semantics will therefore be drawn from
our existing model scheme [8], where the prototypical level (here called
processes, there components) are described in terms of such automata,
and where compositions at the instance level (here called performances,
there component instances) will be given a compositional semantics by
means of a ‘token passing game’, synchronised by clocks. The ability
to turn such clocks into silent actions, away from which we can abstract
away in our equivalence theory in temporal observation congruence, gives
us a means to form such an interface automaton (with no explicit clocks)
for a composite process. As shown, the inputs and outputs for such are
based on the Produces and Consumes contained, the other inputs and
outputs of the composite CProcess being restricted away. At the same
time, the clocks that coordinate the outputs, as described later, are hid-
den according to maximal progress.

[Consume a n b j]]éa} = pX.a.b?. X
[Produce ¢ n d]]q{)c} =pX.d'eX

Table 10. Produce and Consume Semantics

Table 10 shows the semantics that are given to Consume and Produce
declarations. In basic terms, these cyclically convert from process inputs
to performance inputs, and from performance outputs to process outputs,
respectively. The underlining in the syntax, as defined in the derived
syntax, represents the timing of the two communications involved: the
initial input is ‘patient’, meaning that an unspecified amount of time can
pass on all clocks (cf. rule Patient) while the agent waits for the input;
the subsequent output is ‘“insistent’ meaning that this communication
is instantaneous, i.e. can be measured on no clock. This is represented
in transition diagrams for these two agents shown in Figures 2 and 3
respectively. The double circle means that any clock not explicitly shown
‘idles’, i.e. has a self-transition at the state; the single circle means that
any clock not explicitly shown cannot tick, i.e. has no transitions.

® ® ®

Fig. 2. Consume Semantics Fig. 3. Produce Semantics

These agents are composed, to make a ConsumeList and ProduceList
respectively, according to the general composition semantics shown in
Table 11 (where z can stand for any symbol, including the absence of any
such, and K and L any non-bracketed list, i.e. any list in the CASheW-
S syntax except the PerformanceList). This is based directly on parallel
composition and the accumulation of inputs and outputs.

L K K L
z[[KQL]]éKUJ?;L = I[[K]]ék | z[[L]]éL

Table 11. General Composition Semantics
This composition is also used in forming ValueDataLists and ValueCol-
lectorLists from the individual semantics shown in Table 12.
[ValueData a],, =pXaX
"[ValueCollector a k]]l{la? <k pX.(aj | j < k)ra.X
Table 12. Data Aggregation Semantics

Using this we are able to form semantics for performances as shown in
Table 13.

n m U \%4 \%4
(m,n) [Perform n p U V]]KS “ :eegm}/\aec AagCTjuA

v m
= ([Ulco | VIgv | "[plém{a — af |a€ A" Na ¢ CY na g CVY]
| HeeompX.coon . [pY.C? m Yo (X)) \CYUCY UC™

Table 13. Performance Semantics

This composes the semantics of the ValueDatalist and ValueCollec-
torList with the process being performed, having renamed those inputs
not removed by a ValueData or componentised by a ValueCollector to
form a single-component performance input (ap), with one agent per
process output (II represents distributed parallel composition) that turns
these into broadcast outputs. This broadcast agent is illustrated with the
transition diagram in Figure 4. While waiting for a value this is patient
in all clocks but is instantaneous in the unique associated clock o,
Once the process output c¢ is received, it will be broadcast as ¢" until
the associated clock ticks. As we know from the semantics for composite
processes, each such clock will be hidden under the conditions of maximal
progress. This means that whenever there is an agent that can receive
the broadcast, the subsequent silent action will prevent the clock. In this
way the instant measured by the clock will necessarily contain each such
communication.

We arrange for this communication by giving connections the semantics
detailed in Table 14 and illustrated in Figure 5.

"[Connect n c o a j] = pX. c”.a_;?.crcn.X

Table 14. Connection Semantics

This agent patiently waits for the broadcast but then insistently relays
this to the recipient performance. Only the value has been passed on will
the agent synchronise on the associated clock to signal the end of the
broadcast instant. It must wait for this clock before picking up a new
value to avoid duplicates.

O

Fig. 4. Broadcast Semantics Fig. 5. Connection Semantics

Having shown the semantics for performances we are now able to continue
the semantics for composite processes. At the top level the semantics for
CProcess are as shown in Table 15.

"[AnyOrder QJ¢ = 7, [Q]& \t /o™
" [Sequence QA = QLA \ ¢/ o™
m[Split Q]& = (B[Q]E | uX.c™ Fec™a™.X) o™
m[SplitJoin Q)& = (Z[Q]& | uX.o™ F.e.c™ 0™ X) J o™
™[ChooseOne Q]& = ([Q]& | uX.r'F.eei m.c™X)\ {e',r'} /o™
" [IfThenElse Perform n p" U" V" Perform o p° U’ V"]]éztﬂ‘g;
= (™™ [Perform n p™ U™ V"]&n[e — e, — "] |
(m-o) [Perform o p° U° V°]&cle — €, 1 — 7°] |
puX.(rrr.ee” .o X +T1.r’°F.ee’ ,.0°.X))
\{e",e?,r™",r°} /o™ [o°
m[RepeatWhile Perform n p U V]2
= ((mm™[Perform n p U V]ale s e',r — 7] |
pX.(rr'Fee .o uY.(r.X +1riel_,.0mY)
+rre X))\ {e,r'} /o"
™ [RepeatUntil Perform n p U V]2
= (MM [Perform n p U V]&le — e',r — ri] |
pX.riT.eel . .omuY.(r.X+
rrtel .o Y))\ {e, r'}/o"
Table 15. CProcess Semantics

The first five types of composite process — Any-Order, Sequence, Split,
Split-Join and ChooseOne — are defined over a list of performances and
connections and we should therefore like to form a semantics for the
list which is open to further composition under the clock ¢™. Since the
exact form of composition depends on the process context, we define a
family of semantic functions where this is a parameter. These functions
are detailed in Table 17. Since the list may also include connections, we
include a generic rule for composing these in Table 16.

"[(Q); Connect n ¢ 0 a j]& = ™[Connect n ¢ o a jJ& | T [Q]&
Table 16. Connection Composition Semantics
The other types of composition are expressed directly in terms of their

components and we similarly give them direct semantics, using silent
transitions to encode the non-deterministic choice that is implicit.

» [Perform n p U V]]é
= ((mm)[[Perform npU V]]é[e N 6i77' . Ti] |
:U’X-T_i{am,an}~(@{am’an}-g_nam . _z'ﬂgn XJ O'm(X) +
L [E™ X o™ () \ (€'} /0"
o (Q); Perform n p U V]]égb)g:
= th[Perform n p U VIE! | 21Q05%
v [Perform n p U V]]é
— ((m,n) [Perform n p U V]]éz e — e, r 7] |
,U‘X-M{Gmygn}.a_"gm LzﬂanJam(X))/o'n \ {T’i, ei}
" 1(Q); Perform n p U V]2Aa 4 Q
= ("[Perform n p U V]]éz [e— e r— 7] Zé[[Q]]éQ [t t] |
:U‘X-t_ig-n-ﬁ{gm’a.n}.ia_m Lzﬂg—nxj O-m(X))/O_n \ {T‘i7 ei}

p[Perform n p U V]]é
= (m™[Perform n p U V]Ale — €', r — 1] |
HX.T_i{JM,gn}.MUn.E{Umygn}.ﬂgn.x) \ {ei, ri}/a_n
S(Q); Perform n p U VﬂégBéZ
= g’;[[Perform npU V]]éz | Z;[[Q]]ég

" [Perform n p U V]&
= ((m,n)[[Perform npUV]ae— e, r— r]|
I’LX-T_,L.{UTILYU”}‘MJTL.E{am,gn}-ﬁam ‘ﬂgn-X) \ {ei’ Ti}/an
" 1(Q); Perform n p U VAo 4")
= si[Perform n p U V]én | Z;[[Q]]éQ
™ [Perform n p U V]4
— (" [Perform n p U VIdle - ¢, 1] /o”
co[(Q); Perform n p U Vﬂégbéi
= & [Perform n p U Vﬂéz | Z’é[[Q]]éZ

Table 17. Performance Composition Semantics

5 Related Work

The original semantics for DAML-S were provided via translation to
Petri Nets [7]. As well as problems with providing compositionality for
a mathematical semantics for these, the translation was fundamentally
non-compositional. Synchronisations were built for the fixed number of
performances involved, for each form of composite behaviour, that are
not open to the composition of further performances. Furthermore, the
semantics was provided for a very early version of DAML-S, the fore-
runner to OWL-S, where only control flow and no data flow was de-
scribed. The question of the effect of data on control flow, which we have
modelled as an explicit ‘readiness to execute’ signal, was therefore not
considered at all. This would very much restrict the ability to use that
model for analysis.

A more developed operational semantics have been provided in process
calculus-like style derived from Concurrent Haskell/Erlang semantics [1].
In this work an intermediate language called ‘Core DAML-S’ is treated
to structured operational semantics like shown here for CaSHew-NUtS.
Unfortunately no compositionality result is provided, or provable, for
the Core DAML-S semantics since no equivalence theory is nominated.
Furthermore, again the translation from the full process model is non-
compositional since fixed size ‘spawn’ processes are created, as are agents
which wait for fixed numbers of synchronisations signalling completion,
not open to further composition once formed. Finally, since the dataflow
for loop-type processes were not fixed, no semantics were given for these.
In our formalism it is feasible nevertheless to offer semantics for the
control-flow part of these processes.

6 Conclusions and Future Work

Our intention in establishing compositional operational semantics for
OWL-S is twofold. First we should like to implement the semantics to
provide an orchestration engine, which we are developing as an open
source project in Haskell. The previous semantics have inspired the so-
called DAML-S Virtual Machine [10], though this has not been made
widely available. An informal argument about correctness of the DAML-
S Virtual Machine is indirect, based on re-interpretation of the semantics
as logical predicates. Our implementation will be more direct, with an
inductive datatype directly representing the CaSHew-NUtS syntax and
a step function directly representing its operational semantics.

Our second aim is to extend the verification results we have for our
previous model [8]. In particular we should like to check the consistency
of dataflows in an automatic fashion. In the same way as this has been
cast as a system of behavioural types in our previous work [9], we should
like to establish a formal link between orchestration and choreography.
Whereas these are seperate models in current approaches, our belief is
that application developers using service-oriented architectures should
assign choreography models at each level of composition and a formal
check that this choreography is consistent with the orchestration defined
should implicitly check the internal consistency of the orchestration.

References

10.

11.

12.

Anupriya Ankolekar, Frank Huch, and Katia Sycara. Concurrent ex-
ecution semantics of DAML-S with subtypes. In Proc. 1st Intl. Se-
mantic Web Conference (ISWC2002), volume 2342 of LNCS, pages
308-332. Springer Verlag, May 2002.

L. de Alfaro and T.A. Henzinger. Interface automata. In Proc. 8th
European Soft. Eng. Conference and 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Soft. Eng. (ESEC/FSE 2001),
volume 26, 5 of Software Engineering Notes, pages 109-120. ACM
Press, 2001.

David Martin et al. OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.1/overview/, 2004.

M. Hennessy and T. Regan. A process algebra for timed systems.
Information and Computation, 117(2):221-239, March 1995.

A. J. R. G. Milner. Communication and Concurrency. Prentice Hall,
1989.

A. J. R. G. Milner. Communicating and Mobile Systems: The Pi-
Calculus. Cambrudge University Press, 1999.

Srini Narayanan and Sheila A. Mcllraith. Simulation, verification
and automated composition of web services. In Proc. 11th Intl.
World Wide Web Conference (WWW2002), May 7-10 2002.

B. Norton, G. Liittgen, and M. Mendler. A compositional seman-
tic theory for synchronous component-based design. In 14th Intl.
Conference on Concurreny Theory (CONCUR ’03), number 2761 in
LNCS. Springer-Verlag, 2003.

Barry Norton and Matt Fairtlough. Reactive types for dataflow-
oriented software architectures. In Danielle C. Martin, editor, Pro-
ceedings of 4th IEEE/IFIP Conference on Software Architecture
(WICSA2004), volume P2172, pages 211-220. IEEE Computer So-
ciety Press, 2004.

Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, and Ka-
tia Sycara. The DAML-S virtual machine. In Proc. 2nd Intl. Se-
mantic Web Conference (ISWC2002), volume 2870 of LNCS, pages
290-305. Springer Verlag, 2003.

Dumitru Roman, Holger Lausen, and Uwe Keller. WSMO final draft.
http://www.wsmo.org/TR/d2/v1.1/, February 2005.

A. Sheth, C. Ramakrishnan, and C. Thomas. Semantics for the Se-
mantic Web: The implicit, the formal and the powerful. Intl. Journal
on Semantic Web and Information Systems, 1(1):1-18, 2005.

Acknowledgements

This work was carried out within the DIP project, an Integrated Project
(no. FP6 - 507483) supported by the European Union’s IST programme,
and the Dot.Kom project, also sponsored within the IST programme (no.
IST-2001-34038).

