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Abstract. This contribution presents a statistical method for sedatem and
tracking of moving regions from the compressed videos. Téghnique is par-
ticularly efficient to analyse and track motion segmentsnftbhe compression-
oriented motion fields by using the Bayesian estimation &a&ork. For each
motion field, the algorithm initialises a partition that ighgect to comparisons
and associations with its tracking counterpart. Due tomqgatehypothesis incom-
patibility, the algorithm applies a conflict resolution idque to ensure that the
partition inherits relevant characteristics from both tiyyeses as far as possible.
Each tracked region is further classified as a backgroundf@reground object
based on an approximation of the logical mass, momentumjrapdise. The
experiment has demonstrated promising results based mfesthtest sequences.

1 Introduction

Video analysis for meaningful moving clusters or regionarisimportant process in

numerous scenarios addressing visual motion content. igndisance of such cues
was indicated by recent investigationd[1,2] that humand te perceive visual mo-

tion in terms of syntactic and semantic objects. Based anrtiativation, this paper

proposes a statistical method to analyse and track motgmeseats that correspond to
the background or the foreground objects. The target agpic is in a heterogeneous
communication scenario, e.g. video messading [3], whexdiiture provider requires

intelligent video adaptation to scale with an increasinmhbar of terminal classes, con-
figurations, and usage contexts given a limited resource.slizcess of this process,
however, depends on the comprehensibility of the adapteseptations. This require-
ment can be fulfilled by pre-processing the adaptation witldao content analysis.

In this context, the paper addresses the problem in segtitentnd tracking of
moving regions. The novelties of this contribution lie intatistical modelling and an
algorithm for motion segmentation and tracking from the-@neoded motion fields
of the compressed videos. The prime challenge lies in diffica analyse meaningful
motion semantics and the corresponding spatiotemporab\sttucture from the coded
visual information only. This technique applies the Gilldarkov random field the-
ory [4] and the Bayesian estimation framewdrk [5] by extagdhestochastic motion
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coherency model [6]. The paper focusses on the case that there exisnttia parti-
tion hypotheses, i.e., an initial local partition versusejgction-based tracking predic-
tor. As such, the final result shall inherit relevant chaggstics from both hypotheses
through the guide of the proposed model. For each observédmiild, the algorithm
estimates a reliability measure array using an initial sssent of the local motion co-
herencyll[7]. The two competing partition hypotheses are@pmated through the use
of the individual field optimisation 6] and the predictiosing results from the pre-
ceding fields|l]. The algorithm detects potential conflfctsn the two configuration
sets and resolves them by applying a model-based recdimiltachnique. In this pro-
cess, the algorithm evaluates the Bayesian analysis mmdakure that the partition is
characterised by the designed likelihood, the local/megioherencyil6], and the con-
tour smoothnes§|[8]. Upon this result, the method classtiesletected spatiotemporal
regions in terms of the background or the foreground ohjects

Related techniques were presentin the literature. A cossprkvideo segmentation
typically requires a pre-processing step to analyse thédmnce indicators 9], where
a number of techniques applies a statistical analysisBayes estimatiorn [8,10], to ad-
dress uncertainty of the acquired video data. On the trggsant, most techniques apply
contour [11] or edg€e[12] features to correspond visualrmiztion between frames. A
hybrid approach applying the human computer interactiothotehas been demon-
strated as a promising technique to leverage high-levehatiminformation|[1B].

The paper is organised as follows. S€¢t. 2 discusses thesBayanalysis model
that is characterised by the likelihood, the regularisatiensity, and tha priori region
border density. Sedil 3 presents the algorithm for movegjen segmentation, tracking,
and classification. Se¢il 4 reports the experimental iesséictib concludes the paper.

2 Bayesian Analysis Model

The segmentation and tracking are considered in this papan @stimation problem.
It employs themaximum a posteriori probability (MAP) estimation technique and the
Gibbs-Markov random field theor{Zl[4]. For an observed (knpmotion fieldV, the
analysis model characterises the solicited partitibim terms of a probability density
Pr(Q, @', V), provided an initial partitior and its predictoQ’ that is derived from a
partition projection schemgl[7]. Using the Bayes mi€¢Q, Q’, V) can be written as:

Pr(Q, Q. V) x Pr(Q'|V, Q) - Pr(V|Q) - Pr(Q), Q)

which specifies the constituents of this model. The first iplidand denotes the likeli-
hood of the predicted partitio@’ given the motion field’ and the initial configuration
of partition Q (cf. Sect[Z1). The second multiplicand regularises thediiood using
the stochastic motion coherency analysis (cf. Ject. 212 [&st term evaluates tle
priori probability density of the partition (cf. SeEiP.3).

2.1 The Congruity-Based Momentum Likelihood

Given a motion field/, the likelihoodPr(Q’|V, Q) is characterised by the momentum
magnitude of the congruity analysis from a local partit@1f6] against an initial track-
ing result or a predicto@’. Let partitionQ consist ofu regions®,., r = 1,..., u that
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is defined in the univers& of the 2-D motion vector coordinates,= [z y]” € U.
Since not every coded motion block can be analysed, the rgailecontains only co-
ordinates of valid motion vectors (excluding intracodeatlik). Likewise, the predictor
Q' is represented b®’, s = 1,..., /. The congruity analysis requires a correspon-
dence set between the two partitions. A region on the pamt{ is associated with at
most only one region on the partiti@, and vice versa. Theth region on the partition

Q is corresponded to a region counterp@gt:) on the predicto®’ using

I'(r) = argmax [ S fw(x)- v<x>|} , ()

Xe2(r,s)

with £2(r, s) being an intersection test s€t(r,s) = 6, N O, w(x) a reliability
measure denoting a logicadass, andv(x) an encoded motion vector representing a
logical velocity. The functionw(x) is estimated by the local motion coherenCy [7],
w(X) = exp [—G,, - Aa(X, )] /Z4. For the local statistical justification, an observed
local incoherence functiom, (x, 1) (cf. [6]) is scaled byG,, the reciprocal of the
normalised standard deviatidd [7]. The paramétgris a constant ensuring that each
estimate lies between 0 and 1. Upon this definitionassociated membership sefr,.
between the-th region onQ and thel '(r)-th region onQ’ can be derived by usinfl(2);
as a consequence, we also obtain the incongruity'set

I
o, =6,NO,; T=U-|]JII. (3)
r=1
For each region on the partitionQ, setlI, is defined by an intersection 6f. and©’,
with s = I'(r). The sefl” is computed based on the constellationbf. As such, the
congruity-based momentum likelihood can be evaluateddardttected sef by:

Pr(Q'|V,Q) = ZL exp [(9 Z |w(X) V(X)|1 , 4)

r Xer

with £ being a configurable parameter a#fgt a normalisation constant. In order to
justify the magnitude of the logicatomentum (see more in Sedil 3%, is chosen at the
reciprocal of the entire momentum in the univetad.e., (3 xo, [w(X) - (X))~
Fig.[l demonstrates this analysis using frame 15 of the segffereman. A unique
color was painted at each region. The algorithm generateddiqtor hypothesis@’,
Fig. (b)) based on the segmentation result from frame 1¢. [¥a)). Applying the
reliability array w(x), Fig.(c)), the second hypothesi®,(Fig. [(d)) can be op-
timised from the current motion field in frame 15. Upon the tiyyesis association
by (@) and [B), the incongruity sét was detected around the face borders as marked
in Fig.[d(e) (this subfigure was enlarged) with the red coltiis is the basis for the
likelihood of this model. Further experimental results barfound in Secfl4.

2.2 The Likelihood Regularisation: Stochastic Motion Coheency

The likelihood is regularised by thee posteriori probability Pr(V|Q) of the partition
Q. The method chooses the stochastic motion coherency &{ifdo model this
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Fig. 1. lllustrating an experimental result from sequeroeeman frame 15

observation. Let us assume that partit@rconsists of\ regions?;, t = 1,...,\. The
probabilityPr(V|Q) is proportional to the multiplication of the local/regioolerency:

Pr(V|Q) x exp [—Z {Gt- > Aa(x,t)}] -exp {—Z {Ht~ > Aﬁ(x,t)}] (5)

t=1 Xew, t=1 Xew,

Local Motion Coherency Region Motion Coherency

This function evaluates the two-level Gibbs distributizessed motion coherency at
each vector coordinate in the assigned-th region. At the neighbourhood level, the
local motion smoothness is examined through the observafithe local incoherence
A, (X, t) at the eight nearest neighbours. At the region level, theoremodel fit is
investigated by the region incoherendg(x, t) using thet-th region motion model es-
timate. This latter criterion ensures that each motionaoreict the assigned region is
well described by the region model. This is an important meato allow clustering
of distant motion vectors, especially when the object moisoundergone by zoom and
rotation significantly. Further details can be found in Rg¥.

2.3 The A-Priori Density of Region Boundary

The last term in[{ll) is tha priori density of the region shapes on the partit@nThe
model chooses the density that favours smooth boundariesathe property of most
physical regiongJ#]8]. Tha priori density is modelled by:

Pr(Q) = - exp[~H(Q)] = 7 exp[-NpB ~ NeCl. ©)
ZX ZX
with H(Q) being the energy of the partition state. This energy fumdiizearly scales
with two counts of the motion vector pairs at region bordéss,(of different region
labels). The model specifies independent weightsnd C to the counts\Vg and V¢
for the horizontal or vertical border pairs and for the diaglamnes, respectively.
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3 Algorithm for Segmentation, Tracking, and Classification

The method assesses the reliability extent of each motictovécf. SectZ]1) and en-
sures that only reliable members are utilised in the prodesseach observed motion
field, the algorithm initialises two competing partitiongotheses referred to as an ini-
tial partition @ and its predictoQ’ in Sect[Z]l. The segment optimisation of the first
frame is based on the individual field only [6]. For the sulsed frames, the algorithm
additionally initialises the second hypothesis using tadifion projection and relax-
ation [{]. This technique predicts the partitigh based on the partition results from the
preceding frames. These two hypotheses are associated{@sand [B).

As incongruities or conflicts may arise from the hypothesisoaiation, the opti-
misation process requires a conflict detection and resolugchnique. To minimise
affects of the non-representative members in the regioneimestimation, the algo-
rithm assigns a new region to every non-empty incongruagtion?’, ;. It identifies
T, s by intersecting th@on-associated set®, — II,, r = 1,..., p with thenon-used
predicted se®’, s =1,...,u',s # I'(r),i.e.T,., = (0, — II,) N O.,. Using this
technique, the partition shall consistohon-overlappedregiong, t = 1,...,\. This
set is an aggregation of the associated membershifg,set = 1,..., u and thex — u
newly-defined fraction¥;. s, corresponding to the result of the initial reconciliation

Now, the algorithm must ensure that the associated partitas the most optimal
configuration specified by the Bayesian analysis model.lisiréason, the probability
Pr(Q, @', V) is evaluated and improved by adjusting the configuratio@ of he eval-
uation is quantified by taking the negative logarithnifo {Hrough the use of14)[X5),
and [®), this operation leads to the MAP cost estimate:

A
£, V)= £ |JwX) -v(X)| + {Gt- > Aa(x,t)

Xer Xew,
Hypothesis Incongruity Local Heterogeneity
+ H,- Z Ap(X,t) ] + NB+NcC + L. (7
—_———
Xew,

Contour Roughness

Region Heterogeneity

The desired partitio® that maximise®r(Q, Q’, V) shall minimise this cost function.
L corresponds to the logarithm of the normalisation constapécified in the model.
The algorithm attempts to relax region borders using a lablestitution technique. For
every block at the region borders (i.e., at least one neighbas a different label) it
finds a set of potential substitutions that reduce the MAR based on labels of the
eight nearest neighbours. Only the configuration that léatiee highest cost reduction
shall take place. This scheme proceeds in multiple rastar-gerations until no cost
improvement is found. In the second step, the algorithmrgite to merge regions in
a pairwise manner through the guide of the MAP cost changeadth iteration, only

the merge configuration that reduces MAP cost function thstisizall take place. This
process repeats until the best merge configuration no laeggeases the MAP cost.
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Table 1.Results of the tracked region classification from sequeRoesnan andTable Tennisin
the first 15 frames (Lifespan is in frame, Mass in fraliB, and Impulse Magnitude in p&liB)

Sequence Region Lifespan Logical Mass Logical Impulse Mada Classification

Foreman 0 15 2519.40 1457.94 Background
1 15 392.39 1277.77 Significant Object

Table Tennis 0 15 3365.45 109.14 Background
1 15 396.27 590.27 Significant Object

A series of tracked partitions forms a set of spatiotempe@mgibbns. The algorithm
classifies them into background or foregrounds. Given tietdliability measure repre-
sents the logicahass at the corresponding grid of the field lattice, a total sgatigporal
massM; of the ¢-th tracked region is calculated by accumulating the rditghmea-
sures in the sek (¢) of thet-th region throughout its lifespdmy (), 7o (t)]:

Tco(t)
M; = / " > w(x) dr. (8)

Xew(t)

The tracked region having the largest mags shall be classified as the background.
This rule indicates that the background is thegest reliable region of the entire se-
guence. At eachrth tracked region, we derive the momentum magnitude by sagm
up the mass-motion amount, i.€;, = > x.y ;) [w(x) - v(x)|, and the force magnitude
by averaging the momentum magnitude in the time gap towdeseference frame,
i.e.,F; = P:/Ar. An integration of this force magnitude throughout a redifaspan
results in thdogical impulse magnitude exerted by the movement of this region:

Too (t) Too (%) w(X) - V(X
T, :/ Fi dT:/ Zxew 00 VL (9)
o (t) o (t) At

The significance from each foreground region is sorted basdde impulse magnitude
estimation. The tracked region that produces the highgstlse magnitude shall be
classified as the significant foreground object. In the satian, the algorithm chooses
the Simpson’s numerical integratian|14], as this estiorabiounds the integration error
up to the fourth derivative, while requiring a relativelyl@omputational effort.

4 Results

Sequencesoreman and Table Tennis in CIF format were experimented. The motion
fields were estimated using the 16-pixel search range an8l1Bekbps rate control
(TM5 algorithm) based on an MPEG-4 encodel [15]. Eig. 2[dne@at the results from
both sequences at frames 6, 9, 12, and 15 (cf.[Hy. 2,3(a}plefyht). The algorithm
segmented and tracked motion-semantic regions as depidtegi[A[3(b). The foreman
face in Fig[2(c) as well as the arm and the hand in Hig. 3(bpwesil extracted. The
emphasis is on the color preservation on these trackednegica sequence level.



Bayesian Method for Motion Segmentation and Tracking in Gassed Videos 283

N

(b)
Region 0: Background Region 1: Foreground

Fig. 2. Results from sequend®reman

. (b) L=
Region 0: Background Region 1: Foreground

Fig. 3. Results from sequendable Tennis

In the next step, these tracked regions were classifiedherdiackground or fore-
grounds based on the logical mass and impulse magnitudesgst. TablEl1 and Figl. 2,
B(b) show that in each sequence region with the largest mag®( 0 in both cases)
was attributed to the background. Based on an order of thelsapmagnitude esti-
mates, the significant object was chosen at region 1 in theesegForeman. This
region represents most parts of the foreman face (cf.[Fig)) 2Gince region 0 has
already been classified as the background, it was not caesidtethe foreground clas-
sification. For the second example in Hi§j. 3(b), the arm aechind were altogether
identified as a representative foreground object as aatiipp On a 500-MHz machine
this non-optimised simulation required 10.47 and 9.02 sdquer-frame to analyse the
sequenceBoreman andTable Tennis, respectively.



284 S. Treetasanatavorn et al.

5 Conclusion and Future Work

This paper presents a Bayesian model and an algorithm fonesgtgtion and track-
ing of motion fields in the compressed video sequences. Itdgasonstrated that the
motion-semantic regions can be efficiently partitioned &madked from the motion
field sequences by using the proposed technique. The methadties lie in the hy-
pothesis association and the conflict resolution basedetraleking predictor and the
local analysis hypotheses. These tracking results arsitidgs as the background or
the foreground objects by bearing analogy of the reliabititeasure and the velocity
magnitude to the logical mass and momentum concepts, tsggcUpon standard
test sequences, the experiment has demonstrated promésmigs. Future work shall
improve shapes, structures, and precision of the deteeggdrr contours. Additional
features such as inter- and intra-coded transform coeifeghould be considered.
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