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Abstract. This contribution presents a statistical method for segmentation and
tracking of moving regions from the compressed videos. Thistechnique is par-
ticularly efficient to analyse and track motion segments from the compression-
oriented motion fields by using the Bayesian estimation framework. For each
motion field, the algorithm initialises a partition that is subject to comparisons
and associations with its tracking counterpart. Due to potential hypothesis incom-
patibility, the algorithm applies a conflict resolution technique to ensure that the
partition inherits relevant characteristics from both hypotheses as far as possible.
Each tracked region is further classified as a background or aforeground object
based on an approximation of the logical mass, momentum, andimpulse. The
experiment has demonstrated promising results based on standard test sequences.

1 Introduction

Video analysis for meaningful moving clusters or regions isan important process in
numerous scenarios addressing visual motion content. The significance of such cues
was indicated by recent investigations [1,2] that humans tend to perceive visual mo-
tion in terms of syntactic and semantic objects. Based on this motivation, this paper
proposes a statistical method to analyse and track motion segments that correspond to
the background or the foreground objects. The target application is in a heterogeneous
communication scenario, e.g. video messaging [3], where the future provider requires
intelligent video adaptation to scale with an increasing number of terminal classes, con-
figurations, and usage contexts given a limited resource. The success of this process,
however, depends on the comprehensibility of the adapted presentations. This require-
ment can be fulfilled by pre-processing the adaptation with avideo content analysis.

In this context, the paper addresses the problem in segmentation and tracking of
moving regions. The novelties of this contribution lie in a statistical modelling and an
algorithm for motion segmentation and tracking from the pre-encoded motion fields
of the compressed videos. The prime challenge lies in difficulty to analyse meaningful
motion semantics and the corresponding spatiotemporal video structure from the coded
visual information only. This technique applies the Gibbs-Markov random field the-
ory [4] and the Bayesian estimation framework [5] by extending thestochastic motion
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coherency model [6]. The paper focusses on the case that there exist twoinitial parti-
tion hypotheses, i.e., an initial local partition versus a projection-based tracking predic-
tor. As such, the final result shall inherit relevant characteristics from both hypotheses
through the guide of the proposed model. For each observed motion field, the algorithm
estimates a reliability measure array using an initial assessment of the local motion co-
herency [7]. The two competing partition hypotheses are approximated through the use
of the individual field optimisation [6] and the prediction using results from the pre-
ceding fields [7]. The algorithm detects potential conflictsfrom the two configuration
sets and resolves them by applying a model-based reconciliation technique. In this pro-
cess, the algorithm evaluates the Bayesian analysis model to ensure that the partition is
characterised by the designed likelihood, the local/region coherency [6], and the con-
tour smoothness [8]. Upon this result, the method classifiesthe detected spatiotemporal
regions in terms of the background or the foreground objects.

Related techniques were present in the literature. A compressed-video segmentation
typically requires a pre-processing step to analyse the confidence indicators [9], where
a number of techniques applies a statistical analysis, e.g.Bayes estimation [8,10], to ad-
dress uncertainty of the acquired video data. On the tracking part, most techniques apply
contour [11] or edge [12] features to correspond visual information between frames. A
hybrid approach applying the human computer interaction method has been demon-
strated as a promising technique to leverage high-level semantic information [13].

The paper is organised as follows. Sect. 2 discusses the Bayesian analysis model
that is characterised by the likelihood, the regularisation density, and thea priori region
border density. Sect. 3 presents the algorithm for moving-regionsegmentation, tracking,
and classification. Sect. 4 reports the experimental results. Sect. 5 concludes the paper.

2 Bayesian Analysis Model

The segmentation and tracking are considered in this paper as an estimation problem.
It employs themaximum a posteriori probability (MAP) estimation technique and the
Gibbs-Markov random field theory [4]. For an observed (known) motion fieldV , the
analysis model characterises the solicited partitionQ in terms of a probability density
Pr(Q,Q′,V), provided an initial partitionQ and its predictorQ′ that is derived from a
partition projection scheme [7]. Using the Bayes rulePr(Q,Q′,V) can be written as:

Pr(Q,Q′,V) ∝ Pr(Q′|V ,Q) · Pr(V|Q) · Pr(Q), (1)

which specifies the constituents of this model. The first multiplicand denotes the likeli-
hood of the predicted partitionQ′ given the motion fieldV and the initial configuration
of partitionQ (cf. Sect. 2.1). The second multiplicand regularises the likelihood using
the stochastic motion coherency analysis (cf. Sect. 2.2). The last term evaluates thea
priori probability density of the partition (cf. Sect. 2.3).

2.1 The Congruity-Based Momentum Likelihood

Given a motion fieldV , the likelihoodPr(Q′|V ,Q) is characterised by the momentum
magnitude of the congruity analysis from a local partitionQ [6] against an initial track-
ing result or a predictorQ′. Let partitionQ consist ofµ regionsΘr, r = 1, . . . , µ that
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is defined in the universeU of the 2-D motion vector coordinates,x = [x y]T ∈ U .
Since not every coded motion block can be analysed, the universeU contains only co-
ordinates of valid motion vectors (excluding intracoded blocks). Likewise, the predictor
Q′ is represented byΘ′

s, s = 1, . . . , µ′. The congruity analysis requires a correspon-
dence set between the two partitions. A region on the partitionQ is associated with at
most only one region on the partitionQ′, and vice versa. Ther-th region on the partition
Q is corresponded to a region counterpartΓ (r) on the predictorQ′ using

Γ (r) = argmax
s




∑

x∈Ω(r,s)

|w(x) · v(x)|



 , (2)

with Ω(r, s) being an intersection test setΩ(r, s) = Θr ∩ Θ′

s, w(x) a reliability
measure denoting a logicalmass, andv(x) an encoded motion vector representing a
logical velocity. The functionw(x) is estimated by the local motion coherency [7],
w(x) = exp [−Gµ · ∆α(x, µ)] /Zα. For the local statistical justification, an observed
local incoherence function∆α(x, µ) (cf. [6]) is scaled byGµ, the reciprocal of the
normalised standard deviation [7]. The parameterZα is a constant ensuring that each
estimate lies between 0 and 1. Upon this definition, anassociated membership setΠr

between ther-th region onQ and theΓ (r)-th region onQ′ can be derived by using (2);
as a consequence, we also obtain the incongruity setΥ :

Πr = Θr ∩ Θ′

Γ (r); Υ = U −

µ
⋃

r=1

Πr. (3)

For each regionr on the partitionQ, setΠr is defined by an intersection ofΘr andΘ′

s,
with s = Γ (r). The setΥ is computed based on the constellation ofΠr. As such, the
congruity-based momentum likelihood can be evaluated in the detected setΥ by:

Pr(Q′|V ,Q) =
1

ZΥ

exp

[

−E ·
∑

x∈Υ

|w(x) · v(x)|

]

, (4)

with E being a configurable parameter andZΥ a normalisation constant. In order to
justify the magnitude of the logicalmomentum (see more in Sect. 3),E is chosen at the
reciprocal of the entire momentum in the universeU , i.e.,(

∑

x∈U |w(x) · v(x)|)−1.
Fig. 1 demonstrates this analysis using frame 15 of the sequenceForeman. A unique

color was painted at each region. The algorithm generated a predictor hypothesis (Q′,
Fig. 1(b)) based on the segmentation result from frame 12 (Fig. 1(a)). Applying the
reliability array (w(x), Fig. 1(c)), the second hypothesis (Q, Fig. 1(d)) can be op-
timised from the current motion field in frame 15. Upon the hypothesis association
by (2) and (3), the incongruity setΥ was detected around the face borders as marked
in Fig. 1(e) (this subfigure was enlarged) with the red color.This is the basis for the
likelihood of this model. Further experimental results canbe found in Sect. 4.

2.2 The Likelihood Regularisation: Stochastic Motion Coherency

The likelihood is regularised by thea posteriori probabilityPr(V|Q) of the partition
Q. The method chooses the stochastic motion coherency analysis [6] to model this
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Fig. 1. Illustrating an experimental result from sequenceForeman frame 15

observation. Let us assume that partitionQ consists ofλ regionsΨt, t = 1, . . . , λ. The
probabilityPr(V|Q) is proportional to the multiplication of the local/region coherency:

Pr(V|Q) ∝ exp

[

−
λ∑

t=1

{

Gt ·
∑

x∈Ψt

∆α(x, t)

}]

︸ ︷︷ ︸

Local Motion Coherency

· exp

[

−
λ∑

t=1

{

Ht ·
∑

x∈Ψt

∆β(x, t)

}]

︸ ︷︷ ︸

Region Motion Coherency

(5)

This function evaluates the two-level Gibbs distribution-based motion coherency at
each vector coordinatex in the assignedt-th region. At the neighbourhood level, the
local motion smoothness is examined through the observation of the local incoherence
∆α(x, t) at the eight nearest neighbours. At the region level, the region model fit is
investigated by the region incoherence∆β(x, t) using thet-th region motion model es-
timate. This latter criterion ensures that each motion vector in the assigned region is
well described by the region model. This is an important measure to allow clustering
of distant motion vectors, especially when the object motion is undergone by zoom and
rotation significantly. Further details can be found in Ref.6,7.

2.3 The A-Priori Density of Region Boundary

The last term in (1) is thea priori density of the region shapes on the partitionQ. The
model chooses the density that favours smooth boundaries akin to the property of most
physical regions [4,8]. Thea priori density is modelled by:

Pr(Q) =
1

Zχ

exp [−H(Q)] =
1

Zχ

exp [−NBB −NCC] , (6)

with H(Q) being the energy of the partition state. This energy function linearly scales
with two counts of the motion vector pairs at region borders (i.e., of different region
labels). The model specifies independent weightsB andC to the countsNB andNC

for the horizontal or vertical border pairs and for the diagonal ones, respectively.
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3 Algorithm for Segmentation, Tracking, and Classification

The method assesses the reliability extent of each motion vector (cf. Sect. 2.1) and en-
sures that only reliable members are utilised in the process. For each observed motion
field, the algorithm initialises two competing partition hypotheses referred to as an ini-
tial partitionQ and its predictorQ′ in Sect. 2.1. The segment optimisation of the first
frame is based on the individual field only [6]. For the subsequent frames, the algorithm
additionally initialises the second hypothesis using the partition projection and relax-
ation [7]. This technique predicts the partitionQ′ based on the partition results from the
preceding frames. These two hypotheses are associated using (2) and (3).

As incongruities or conflicts may arise from the hypothesis association, the opti-
misation process requires a conflict detection and resolution technique. To minimise
affects of the non-representative members in the region model estimation, the algo-
rithm assigns a new region to every non-empty incongruity fractionΥr,s. It identifies
Υr,s by intersecting thenon-associated setΘr − Πr, r = 1, . . . , µ with thenon-used
predicted setΘ′

s, s = 1, . . . , µ′, s 6= Γ (r), i.e.Υr,s = (Θr − Πr) ∩ Θ′

s. Using this
technique, the partition shall consist ofλ non-overlapped regionsΨt, t = 1, . . . , λ. This
set is an aggregation of the associated membership setΠr, r = 1, . . . , µ and theλ− µ
newly-defined fractionsΥr,s, corresponding to the result of the initial reconciliation.

Now, the algorithm must ensure that the associated partition has the most optimal
configuration specified by the Bayesian analysis model. For this reason, the probability
Pr(Q,Q′,V) is evaluated and improved by adjusting the configuration ofQ. The eval-
uation is quantified by taking the negative logarithm to (1).Through the use of (4), (5),
and (6), this operation leads to the MAP cost estimate:

f(Q,Q′,V) = E ·
∑

x∈Υ

|w(x) · v(x)|

︸ ︷︷ ︸

Hypothesis Incongruity

+

λ∑

t=1

[

Gt ·
∑

x∈Ψt

∆α(x, t)

︸ ︷︷ ︸

Local Heterogeneity

+ Ht ·
∑

x∈Ψt

∆β(x, t)

︸ ︷︷ ︸

Region Heterogeneity

]

+ NBB + NCC
︸ ︷︷ ︸

Contour Roughness

+ L. (7)

The desired partitionQ that maximisesPr(Q,Q′,V) shall minimise this cost function.
L corresponds to the logarithm of the normalisation constants specified in the model.
The algorithm attempts to relax region borders using a labelsubstitution technique. For
every block at the region borders (i.e., at least one neighbour has a different label) it
finds a set of potential substitutions that reduce the MAP cost based on labels of the
eight nearest neighbours. Only the configuration that leadsto the highest cost reduction
shall take place. This scheme proceeds in multiple raster-scan iterations until no cost
improvement is found. In the second step, the algorithm attempts to merge regions in
a pairwise manner through the guide of the MAP cost change. Ineach iteration, only
the merge configuration that reduces MAP cost function the most shall take place. This
process repeats until the best merge configuration no longerdecreases the MAP cost.
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Table 1.Results of the tracked region classification from sequencesForeman andTable Tennis in
the first 15 frames (Lifespan is in frame, Mass in frame·MB, and Impulse Magnitude in pel·MB)

Sequence Region Lifespan Logical Mass Logical Impulse Magnitude Classification
Foreman 0 15 2519.40 1457.94 Background

1 15 392.39 1277.77 Significant Object
Table Tennis 0 15 3365.45 109.14 Background

1 15 396.27 590.27 Significant Object

A series of tracked partitions forms a set of spatiotemporalregions. The algorithm
classifies them into background or foregrounds. Given that the reliability measure repre-
sents the logicalmass at the corresponding grid of the field lattice, a total spatiotemporal
massMt of the t-th tracked region is calculated by accumulating the reliability mea-
sures in the setΨ(t) of thet-th region throughout its lifespan[τ0(t), τ∞(t)]:

Mt =

∫ τ∞(t)

τ0(t)

∑

x∈Ψ(t)

w(x) dτ. (8)

The tracked region having the largest massMt shall be classified as the background.
This rule indicates that the background is thelargest reliable region of the entire se-
quence. At eacht-th tracked region, we derive the momentum magnitude by summing
up the mass-motion amount, i.e.,Pt =

∑

x∈Ψ(t) |w(x) · v(x)|, and the force magnitude
by averaging the momentum magnitude in the time gap towards the reference frame,
i.e.,Ft = Pt/∆τ . An integration of this force magnitude throughout a regionlifespan
results in thelogical impulse magnitude exerted by the movement of this region:

It =

∫ τ∞(t)

τ0(t)

Ft dτ =

∫ τ∞(t)

τ0(t)

∑

x∈Ψ(t) |w(x) · v(x)|

∆τ
dτ. (9)

The significance from each foreground region is sorted basedon the impulse magnitude
estimation. The tracked region that produces the highest impulse magnitude shall be
classified as the significant foreground object. In the simulation, the algorithm chooses
the Simpson’s numerical integration [14], as this estimation bounds the integration error
up to the fourth derivative, while requiring a relatively low computational effort.

4 Results

SequencesForeman andTable Tennis in CIF format were experimented. The motion
fields were estimated using the 16-pixel search range and the512-kbps rate control
(TM5 algorithm) based on an MPEG-4 encoder [15]. Fig. 2 and 3 depict the results from
both sequences at frames 6, 9, 12, and 15 (cf. Fig. 2,3(a), left to right). The algorithm
segmented and tracked motion-semantic regions as depictedin Fig. 2,3(b). The foreman
face in Fig. 2(c) as well as the arm and the hand in Fig. 3(b) were well extracted. The
emphasis is on the color preservation on these tracked regions at a sequence level.



Bayesian Method for Motion Segmentation and Tracking in Compressed Videos 283

Fig. 2. Results from sequenceForeman

Fig. 3.Results from sequenceTable Tennis

In the next step, these tracked regions were classified to either background or fore-
grounds based on the logical mass and impulse magnitude estimates. Table 1 and Fig. 2,
3(b) show that in each sequence region with the largest mass (region 0 in both cases)
was attributed to the background. Based on an order of the impulse magnitude esti-
mates, the significant object was chosen at region 1 in the sequenceForeman. This
region represents most parts of the foreman face (cf. Fig. 2(b)). Since region 0 has
already been classified as the background, it was not considered in the foreground clas-
sification. For the second example in Fig. 3(b), the arm and the hand were altogether
identified as a representative foreground object as anticipated. On a 500-MHz machine
this non-optimised simulation required 10.47 and 9.02 second-per-frame to analyse the
sequencesForeman andTable Tennis, respectively.
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5 Conclusion and Future Work

This paper presents a Bayesian model and an algorithm for segmentation and track-
ing of motion fields in the compressed video sequences. It wasdemonstrated that the
motion-semantic regions can be efficiently partitioned andtracked from the motion
field sequences by using the proposed technique. The method novelties lie in the hy-
pothesis association and the conflict resolution based on the tracking predictor and the
local analysis hypotheses. These tracking results are classified as the background or
the foreground objects by bearing analogy of the reliability measure and the velocity
magnitude to the logical mass and momentum concepts, respectively. Upon standard
test sequences, the experiment has demonstrated promisingresults. Future work shall
improve shapes, structures, and precision of the detected region contours. Additional
features such as inter- and intra-coded transform coefficients should be considered.
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