N
N

N

HAL

open science

Experiments in Neo-computation Based on Emergent
Programming

Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize

» To cite this version:

Jean-Pierre Georgé, Marie-Pierre Gleizes, Pierre Glize. Experiments in Neo-computation Based on
Emergent Programming. 3rd German Conference on Multi-Agent System Technologies (MATES

2005), Sep 2005, Koblenz, Germany. pp.237-239, 10.1007/11550648_24 . hal-03812462

HAL Id: hal-03812462
https://hal.science/hal-03812462
Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03812462
https://hal.archives-ouvertes.fr

Experiments in Neo-computation Based on Emergent
Programming

Jean-Pierre Georgé, Marie-Pierre Gleizes, and Pierre Glize

IRIT, Université Paul Sabatier, 118 route de Narbonne,
31062 Toulouse cedex, France
{george, gleizes, glize}@irit.fr

1 Emergent Programming

The general objective of this work is to develop a complete programming language
in which each instruction is an autonomous agent trying to be in a cooperative state
with the other agents of the system, as well as with the environment of the system.
By endowing these instruction-agents with self-organizing mechanisms[2], we obtain
a system able to continuously adapt to the task required by the programmer (i.e. to
program and re-program itself depending on the needs). The work presented here aims
at showing the feasibility of such a concept by specifying, and experimenting with, a
core of instruction-agents needed for a subset of mathematical calculus. In its most
abstract view, Emergent Programming is the automated assembling of instructions of
a programming language using mechanisms which are not explicitly informed of the
program to be created. We chose to rely on an adaptive multi-agent system using self-
organizing mechanisms based on cooperation as it is described in the AMAS theory[1].
An important part of our work on Emergent Programming has been the exploration of
the self-organization mechanisms which enable the agents to progress toward the ade-
quate function, depending on the constraints of the environment but without knowing
the organization to reach or how to do it.

2 The Elementary Example

The elementary example we choose is constituted of 6 agents: 3 "constant" agents, an
"addition" agent, a "multiplication" agent and an "output" agent. A "constant" agent is
able to provide the value which has been fixed at his creation (cf. Figure 1). The values
produced by the system are results from organizations like (A + B) x C. AgentOut
transmits the value he receives to the environment and is in charge of retrieving the
feedback from the environment and forward it into the system. It is important to note
that this information is not in any way an explicit description about the goal and how to
reach it (it only informs that the value has to be higher or lower).

The size of the complete search space is 6°, that is 7776 theoretically possible or-
ganizations, counting all the incomplete ones (i.e. where not every agent has all his
partners). Among them, we have 6 types of different functional organization (they can
actually calculate a value) (cf. Figure 1). The aim is to start without any partnerships
between agents and to request that the system produces the highest value for example.



@ C® 1200yT
el
©) B " |+ 2our
ol

® At #out
.
® oo
el
® oo
ol

2
@ A R L
B 1000
*
C o -

Fig. 1. The 6 different possible types of functional organizations for the elementary example

2.1 Reorganization Mechanisms

The agent’s self-organizing capacity is induced by their capacity to detect NCS (Non-
Cooperative Situations), react so as to resorb them and continuously act as coopera-
tively as possible. This last point implies in fact that the agent also has to try to resorb
NCS of other agents if he is aware of them. We will illustrate this with the description
of a simple NCS and how it is resorbed.

NCSNeedIn detection: the agent is missing a partner on one of his inputs. Since to
be cooperative in the system he has to be useful, and to be useful he has to be able to
compute his function, he has to find partners able to send values toward his input. Most
NCS lead the agent to communicate so as to find a suitable (new) partner. These calls,
because the agents have to take them into account, also take the shape of NCS.

NCSNeedlIn resorption: this is one of the easiest NCS so resorb because the agent
only has to find any agent for his missing input. The agent has simply to be able to con-
tact some agent providing values corresponding to his own type (there could be agents
handling values of different types in a system). So he generates an NCSNeedInMessage
describing his situation and send it to his acquaintances.

NCSNeedInMessage detection: the agent receives a message informing him that
another agent is in a NCSNeedIn situation (the sender is missing a partner on one of his
inputs).

NCSNeedInMessage resorption: the agent is informed of the needs of the sender of
the NCS and his cooperative attitude dictates him to act. First, he has to judge if he
is relevant for the needs of the sender, and if it is the case, he has to propose himself
as a potential partner. Second, even if he is not himself relevant, one of its acquain-
tances may be: he tries to counter this NCS by propagating the initial message to some
acquaintances he thinks may be the most relevant.

It is important to note that the information which is given as a feedback is not in any
way an explicit description about the goal and how to reach it. Indeed, this information
does not exist: given a handful of values and mathematical operators, there is no explicit
method to reach a specific value even for a human. They can only try and guess, and
this is also what the agents do. That is why we believe the resolution we implemented
to be in the frame of emergence.



3 Results

First, the internal constraints of the system are solved very quickly: in only a few re-
organization moves (among the 7776 possible organizations), all the agents find their
partners and a functional organization is reached. Then, because of the feedback from
the environment, other NCS are produced and the system starts reorganizing toward
its goal. Since the search space if of 7776 possible organizations, a blind exploration
would need an average of 3888 checked organizations to reach a specific one. Since a
functional organization possesses 4 identical instances for a given value (by input per-
mutations), we would need 972 tries to get the right value. Experimentation shows that
the system needs to explore less than a hundred organizations among the 7776 to reach
one of the 4 producing the highest value. We consider that this self-organization strat-
egy allows a relevant exploration of the search space. A noteworthy result is also that
whatever organization receives the feedback for a better value, the next organization
will indeed produce a better value.

4 Discussion

If we define all the agents needed to represent a complete programming language (with
agents representing variables, allocation, control structures, ...) and if this language is
extensive enough, we obtain maximal expressiveness: every program we can produce
with current programming languages can be coded as an organization of instruction-
agents. In its absolute concept, Emergent programming could then solve any problem,
given that the problem can be solved by a computer system. Of course, this seems quite
unrealistic, at least for the moment.

But if we possess some higher-level knowledges about a problem, or if the problem
can be structured at a higher level than the instruction level, then it is more efficient and
easier to conceive the system at a higher level. This is the case for example when we
can identify entities of bigger granularity which therefore have richer competences and
behaviors, maybe adapted specifically for the problem. Consequently, we will certainly
be able to apply the self-organizing mechanisms developed for Emergent Programming
to other ways to tackle a problem. Indeed, instruction-agents are very particular by
the fact that they represent the most generic type of entities. The exploration of the
search space, for entities possessing more information or more competences for a given
problem can only be easier. For example, we think that problems like Ambient Intelli-
gence or Autonomic Computing are ideal candidate for a problem solving by emergence
approach.

References

1. M.-P. Gleizes, V. Camps, and P. Glize. A theory of emergent computation based on coopera-
tive self-oganization for adaptive artificial systems. In Fourth European Congress of Systems
Science, Valencia, Spain, 1999.

2. E Heylighen. Encyclopedia of Life Support Systems, chapter The Science of Self-organization
and Adaptivity. EOLSS Publishers Co. Ltd, 2001.



