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Abstract. In this paper, we extend the Hopfield Associative Memory for
storing multiple sequences of varying duration. We apply the model for
learning, recognizing and encoding a set of human gestures. We measure
systematically the performance of the model against noise.

1 Introduction

The work we present here is part of a research agenda, that aims at modeling the
neural correlates of human ability to learn new motions through the observation
and replication of other’s motions [1, 2]. In this paper, we investigate the use of
a biologically plausible mechanism for recognizing, classifying and reproducing
gestures.

Associative memories based on Hebbian learning, such as the Hopfield net-
work, are interesting candidates to model the propensy of biological systems
to encode and learn complex sequences of motion [3]. The Hopfield network is
known predominantly for its ability to code static patterns. However, recent
work extended the Hopfield model to encode a time series of patterns [4]. In
the present work, we extend this model to encode several sequences of patterns
in the same model. While the capacity of such RNN models have been studied
at length in simulation [5, 6], there has been yet little work demonstrating their
application to the storage of real data sequences. Here, we validate the model
for encoding human gestures and measure the performance of the model in the
face of a large amount of noise.

Fundamental features of human ability to imitate new motions are a) the
ability to robustly recognize gestures from partially occluded demonstrations
(this is tightly linked to our ability to predict the dynamics of the motion from
observing only the onset of the motion); and b) to store and reproduce a general-
ized version of the motion, that encapsulates only the key features of the motion.
We show that the model can successfully reproduce these two key features.

2 Experimental Set-up and Model

Figure 1 shows a schematic of the data flow across the complete architecture.
Input to the system consists of the kinematic data of human motion. The data is
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Fig. 1. Schematic of the data flow across the complete architecture.

first preprocessed to smooth and normalize the trajectories, as well as to reduce
the dimensionality of the dataset to a subset of keypoints. The time series of
keypoints is encoded and classified in a set of Artificial Neural Networks (ANNs).
Training of the ANNs results in the storage of a generalized form of each of the
demonstrated gestures. The system outputs either the class of the gesture g or
the generalized form of the gesture corresponding to the class g.

Data acquisition and preprocessing: Data consist of 45 gestures, composed
of the 4 angular trajectories of the arm (shoulder abduction-adduction, flexion-
extension and humeral rotation, and elbow flexion-extension) of 8 demonstrators
during 5 repetitions of drawing the stylized letters A, B, C, D, E, (see figure 2).

Fig. 2. The demonstrator’s motions are recorded by a set of Xsens motion captors,
attached to the torso, upper and lower arms (left). The information is then used to
reconstruct the trajectories of 4 joint angles of the arm (middle). (Right) Each subplot
corresponds to the trajectory of one of the 4 joint angles. Circles represent the key-
points used for training the model .

Each trajectory is smoothed using a 1D local Gaussian filter of size 7. From
those trajectories, we extract a set of P key-points {θa

p , tap} (a=1..4, p=1..P).
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A key-point is either the first or last element of the trajectory or an inflexion
point (zero velocity). Such a segmentation aims at extracting the correlations
between the different joint trajectories. The duration of the whole trajectory is
normalized so that two gestures belonging to the same class but performed at
different speed are encoded into similar sequences.

Pattern encoding: Each element of the input sequence {tap, θa
p} (a = 1..4,

p = 1..P ; P being the length of the sequence) is encoded in a 2D matrix x̃ of
real values, as follows:

(tã
ĩ
, θã

ĩ
) → (x̃u,v)

where u=1..M and v = 1..N . In order to preserve the notion of neigbourhood
across inputs we encode a pair (tãp̃, θã

p̃) using a 2D gaussian distribution function
f, centered on µ = (µt, µθ)T with standard deviation σ = (σt, σθ)T :
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2.1 ANN module

The general topology of the network is presented in Figure 3. Inputs to the net-
work are sequences of key-points. The sequences are stored in a series of Hopfield
networks linked to one another through the matrix of weights W . Each sequence
is then classified according to a set of classes c = 1, .., C and C, represented by
a set of neurons yc.

The activity of each neuron, for each angle a, and for each time step t=1..P,
xa

u,v(t), as well as the weights wa
u,v,u′,v′(t) storing the correlation between the

neuronal activities xa
u,v(t) and xa

u,v(t + 1) are normalized and bounded in [0..1].

Learning process The learning rule for updating elements of W is a modifica-
tion of the one presented in [4], to allow storage of several sequences rather than
a single one, as well as to allow a non-overlapping encoding with xa

u,v ∈ [0..1],
as opposed to xa

u,v = ±1.

wa
u,v,u′,v′(t) =

∑
s

xs,a
u,v(t)xs,a

u′,v′(t + 1), t = 1, .., P − 1 (1)

where s indicates the training sequence.
When learning a gesture s belonging to a class c̃, we set the output neurons

yc = 0 ∀c 6= c̃ and yc̃ = 1. Updating the elements of the recognition matrix J is
done according to:

∆Ja
u,v,c(t) = xs,a

u,v(t)ys,a
c (t) (2)
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Fig. 3. Network topology. The weight matrix W (generation module) connects all neu-
rons from one layer to all neurons in the next layer. Each output neuron yc corresponds
to a class c of gestures. The weights of the matrix J (recognition module) are set so
that the output neuron yc̃ is maximal when a sequence of class c̃ is generated. Each
angular trajectory a (a=1..4) is encoded in a separate network.

Retrieval process: In order to retrieve the generalized form of the sequence
associated with a given class, we activate one of the yc neurons and then reacti-
vate the neurons in each layer of the extended Hopfield in sequence for P-1 time
steps. That is, we update each neuron xa

u,v(t + 1) according to:

xa
u,v(t + 1) =

∑
u′

∑
v′

wa
u,v,u′,v′(t) · xa

u′,v′(t), t = 1, .., P − 1 (3)

Figure 4 shows the history of the network state after the retrieval of a se-
quence of four elements.

Fig. 4. State of a 4-layer extended Hopfield network while retrieving a sequence of four
elements.
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During recognition of a gesture, we proceed conversely by activating a subset
of the first layers of the extended Hopfield network. Recognition of the class to
which the gesture belongs is done by reactivating the output neurons yc according
to:

yc(t + 1) = yc(t) +
∑

a

∑
u

∑
v

Ja
u,v,c(t) (4)

3 Results

We evaluated the performance of the network to classify and regenerate our set of
45 gestures (stylized drawings of the letters A to E). Further, in order to evaluate
the network’s capacity against a large amount of noise, we generated a synthetic
dataset of 250 gestures, by adding gaussian noise on one of the gestures belonging
to the real dataset. Each dataset was divided equally into a training set and a
testing set. Synthetic data were generated by displacing each key-point according
to a gaussian distribution function, centered on the original key-point and with
a given standard deviation σD = (σD

t , σD
θ )T , see Figure 5. For each value of σD,

we generated 10 different gestures. We measured a standard deviation (noise)
on the real dataset of σD = (0.88, 22.23)T .

Fig. 5. Sequence of key-points (t, θ) when the noise is generated with σD
t = 0.1 and

σD
θ = 3.6. Clusters do not overlap. Middle: key-points (t, θ) with σD

t = 1.5 and σD
θ =

54.0. The overlap between clusters is large.

During the learning phase, the system is trained on a set of gestures. During
the testing phase, the system is evaluated on its ability to both recognize and
regenerate the data.

Recognition Performance: Figure 7, right, shows the recognition rate on the
synthetic testing set as an effect of the temporal noise (average over 10 different
gestures for each value of σ) with σD

t = 3.6σθ
D. The recognition rate τ is given

by the proportion of correctly recognized patterns relative to the total number of
patterns.

We observe that the recognition is perfect for all gestures when the noise
is low (σD

t ≤ 0.25). However, for high noise (σD
t >= 1.0), the recognition rate

decreases importantly.



6

Fig. 6. Distortion of the original gestures with a noise level of σD
t = 0.1, 1.0 and 2

respectively. Sole the gestures on the left are easily recognizable by the human eye.

Data Regeneration: Figure 7, left, shows 3 examples of regenerated ges-
tures, superimposed to a set of 4 training gestures generated with a noise value
σD = (0.1, 3.6). The network generates a generalized form of the gestures that
encapsulates the major qualitative features (point of curvature) of the demon-
strations.

Fig. 7. (Left:) Regenerated gestures (bold line) against a set of 4 examples of demon-
strated gestures (thin line) with a noise of σD = (0.1, 3.6)T . (Right:) Recognition rate
as an effect of the noise.

References

1. Arbib, M., Billard, A., Iacoboni, M., Oztop, E.: Mirror neurons, imitation and
(synthetic) brain imaging. In: Neural Networks. Volume 13 (8/9). (2000) 975–997

2. Billard, A.: Imitation. In: Handbook of Brain Theory and Neural Networks. Vol-
ume 2. MIT Press (2002) 566–569

3. Wang, D.: Temporal pattern processing. The Handbook of Brain Theory and Neural
Network 2 (2003) 1163–1167

4. Miyoshi, S., Yanai, H., Okada, M.: Associative memory by recurrent neural networks
with delay elements. Neural Networks 17 (2004) 55–63

5. Miyoshi, S., Nakayama, K.: A recurrent neural network with serial delay elements
for memorizing limit cycles. In: Proc. of ICANN’95. (1995) 1955–1960

6. Mueller, K.R., Ibens, O.: Sequence storage of asymmetric hopfield networks with
delay. In: ICANN’91. (1991) 163–168


