Skip to main content

The Emergence of Visual Object Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Abstract

The model here proposed simulates the development of the object recognition capability, assuming that recognition does not imply any sort of explicit geometrical reconstruction and emerges as result of interactions between epigenetic in.uences and basic neural plasticity mechanisms. The model is a hierarchy of arti.cial neural maps, mainly based on the LISSOM architecture, achieving self-organization through simulated intercortical lateral connections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bednar, J.A.: Learning to See: Genetic and Environmental Influences on Visual Development. PhD thesis, University of Texas at Austin, Tech Report AI-TR-02-294 (2002)

    Google Scholar 

  2. Chapman, B., Stryker, M.P., Bonhoeffer, T.: Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience 16, 6443–6453 (1996)

    Google Scholar 

  3. Dannemiller, J.L.: A test of color constancy in 9- and 20-weeks-old human infants following simulated illuminant changes. Developmental Psychology 25, 171–184 (1989)

    Article  Google Scholar 

  4. Dowling, J.E.: The Retina: An Approachable Part of the Brain. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  5. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Edelman, S., Bülthoff, H.H.: Orientation dependence in the recognition of familiar and novel views of 3d objects. Vision Research 32, 2385–2400 (1992)

    Article  Google Scholar 

  7. Essen, D.C.V., Lewis, J.W., Drury, H.A., Hadjikhani, N., Tootell, R.B., Bakircioglu, M., Miller, M.I.: Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research 41, 1359–1378 (2001)

    Article  Google Scholar 

  8. Farah, M.J., Aguirre, G.K.: Imaging visual recognition: PET and fMRI studies of the functional anatomy of human visual recognition. Trends in Cognitive Sciences 3, 179–186 (1999)

    Article  Google Scholar 

  9. Grill-Spector, K., Kourtzi, Z., Kanwisher, N.: The lateral occipital complex and its role in object recognition. Vision Research 41, 1409–1422 (2001)

    Article  Google Scholar 

  10. Katz, L.C., Callaway, E.M.: Development of local circuits in mammalian visual cortex. Science 255, 209–212 (1992)

    Article  Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  12. Landisman, C.E., Ts’o, D.Y.: Color processing in macaque striate cortex: Relationships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neurophysiology 87, 3126–3137 (2002)

    Google Scholar 

  13. Logothesis, N.K., Puals, J., Poggio, T.: Shape representation in the inferior temporal cortex of monkeys. Current Biology 5, 552–563 (1995)

    Article  Google Scholar 

  14. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  15. Murase, H., Nayar, S.: Visual learning and recognition of 3-d object by appearence. International Journal of Computer Vision 14, 5–24 (1995)

    Article  Google Scholar 

  16. Quartz, S.R., Sejnowski, T.J.: The neural basis of cognitive development: a constructivist manifesto. Behavioral and Brain Science 20, 537–596 (1997)

    Google Scholar 

  17. Sirosh, J., Miikkulainen, R.: Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation 9, 577–594 (1997)

    Article  Google Scholar 

  18. Tootell, B.H., Switkes, E., Silverman, M.S., Hamilton, S.L.: Functional anatomy of the macaque striate cortex. II. retinotopic organization. Journal of Neuroscience 8, 1531–1568 (1988)

    Google Scholar 

  19. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kibernetic 14, 85–100 (1973)

    Article  Google Scholar 

  20. Zeki, S.: Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelenghts and colours. Neuroscience 9, 741–765 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plebe, A., Domenella, R.G. (2005). The Emergence of Visual Object Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_79

Download citation

  • DOI: https://doi.org/10.1007/11550822_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics