Skip to main content

On Spectral Basis Selection for Single Channel Polyphonic Music Separation

  • Conference paper
Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

Abstract

In this paper we present a method of separating musical instrument sound sources from their monaural mixture, where we take the harmonic structure of music into account and use the sparseness and the overlapping NMF to select representative spectral basis vectors which are used to reconstruct unmixed sound. A method of spectral basis selection is illustrated and experimental results with monaural instantaneous mixtures of voice/cello and saxophone/viola, are shown to confirm the validity of our proposed method.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Smaragdis, P.: Non-negative matrix factor deconvolution: Extraction of multiple sound sources from monophonic inputs. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic music transcription. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, pp. 177–180 (2003)

    Google Scholar 

  4. Cho, Y.C., Choi, S.: Nonnegative features of spectro-temporal sounds for classfication. Pattern Recognition Letters 26, 1327–1336 (2005)

    Article  Google Scholar 

  5. Plumbley, M.D., Abdallah, S.A., Bello, J.P., Davies, M.E., Monti, G., Sandler, M.B.: Automatic transcription and audio source separation. Cybernetics and Systems, 603–627 (2002)

    Google Scholar 

  6. Eggert, J., Wersing, H., Körner, E.: Transformation-invariant representation and NMF. In: Proc. Int’l Joint Conf. Neural Networks (2004)

    Google Scholar 

  7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, MIT Press, Cambridge (2001)

    Google Scholar 

  8. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, M., Choi, S. (2005). On Spectral Basis Selection for Single Channel Polyphonic Music Separation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_26

Download citation

  • DOI: https://doi.org/10.1007/11550907_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics