
Completely Self-referential Optimal

Reinforcement Learners

Jürgen Schmidhuber

IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland
TU Munich, Boltzmannstr. 3, 85748 Garching, München, Germany

juergen@idsia.ch

http://www.idsia.ch/~juergen

Abstract. We present the first class of mathematically rigorous, gen-
eral, fully self-referential, self-improving, optimal reinforcement learn-
ing systems. Such a system rewrites any part of its own code as soon
as it has found a proof that the rewrite is useful, where the problem-
dependent utility function and the hardware and the entire initial code
are described by axioms encoded in an initial proof searcher which is also
part of the initial code. The searcher systematically and efficiently tests
computable proof techniques (programs whose outputs are proofs) until
it finds a provably useful, computable self-rewrite. We show that such a
self-rewrite is globally optimal—no local maxima!—since the code first
had to prove that it is not useful to continue the proof search for alter-
native self-rewrites. Unlike previous non-self-referential methods based
on hardwired proof searchers, ours not only boasts an optimal order of
complexity but can optimally reduce any slowdowns hidden by the O()-
notation, provided the utility of such speed-ups is provable at all.

1 Introduction and Outline

Traditional reinforcement learning (RL) algorithms [6] are hardwired. They are
designed to improve some limited type of policy through experience, but are
not part of the modifiable policy, and cannot improve themselves. Humans are
needed to create new / better RL algorithms and to prove their usefulness under
appropriate assumptions.

Let us eliminate the restrictive need for human effort in the most general way
possible, leaving all the work including the proof search to a system that can
rewrite and improve itself in arbitrary computable ways and in a most efficient
fashion. To attack this “Grand Problem of Artificial Intelligence,” we introduce
a novel class of optimal, fully self-referential [3] general problem solvers called
Gödel machines [11,10]. They are universal RL systems that interact with some
(partially observable) environment and can in principle modify themselves with-
out essential limits besides the limits of computability. Their initial RL algorithm
is not hardwired; it can completely rewrite itself, but only if a proof searcher
embedded within the initial algorithm can first prove that the rewrite is useful,
given a formalized utility function reflecting expected rewards and computation

W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 223–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 J. Schmidhuber

time. We will see that self-rewrites due to this approach are actually globally
optimal (Theorem 1, Section 4), relative to Gödel’s well-known fundamental re-
strictions of provability [3]. These restrictions should not worry us; if there is no
proof of some self-rewrite’s utility, then humans cannot do much either.

The initial proof searcher is O()-optimal (has an optimal order of complexity)
in the sense of Theorem 2, Section 5. Unlike Hutter’s hardwired systems [5]
(Section 2), however, a Gödel machine can further speed up its proof searcher
to meet arbitrary formalizable notions of optimality beyond those expressible in
the O()-notation. Our approach yields the first theoretically sound, fully self-
referential, optimal, general reinforcement learners.
Outline. Section 2 presents basic concepts, relation to previous work, and lim-
itations, Section 3 the essential details of a self-referential axiomatic system,
Section 4 the Global Optimality Theorem 1, and Section 5 the O()-optimal
(Theorem 2) initial proof searcher.

2 Basic Overview and Relation to Previous Work and
Limitations

Notation and Set-Up. Unless stated otherwise or obvious, throughout the
paper newly introduced variables and functions are assumed to cover the range
implicit in the context. B denotes the binary alphabet {0, 1}, B∗ the set of
possible bitstrings over B, l(q) denotes the number of bits in a bitstring q; qn

the n-th bit of q; λ the empty string (where l(λ) = 0); qm:n = λ if m > n and
qmqm+1 . . . qn otherwise (where q0 := q0:0 := λ).

Our hardware (e.g., a universal or space-bounded Turing machine or the
abstract model of a personal computer) has a single life which consists of discrete
cycles or time steps t = 1, 2, Its total lifetime T may or may not be known
in advance. In what follows, the value of any time-varying variable Q at time t
will be denoted by Q(t).

During each cycle our hardware executes an elementary operation which
affects its variable state s ∈ S ⊂ B∗ and possibly also the variable environmental
state Env ∈ E . (Here we need not yet specify the problem-dependent set E).
There is a hardwired state transition function F : S × E → S. For t > 1,
s(t) = F (s(t−1), Env(t−1)) is the state at a point where the hardware operation
of cycle t−1 is finished, but the one of t has not started yet. Env(t) may depend
on past output actions encoded in s(t − 1) and is simultaneously updated or
(probabilistically) computed by the possibly reactive environment.

At any given time t (1 ≤ t ≤ T) the goal is to maximize future success or
utility. A typical “value to go” utility function (to be maximized) is of the form
u(s, Env) : S × E → R, where R is the set of real numbers:

u(s, Env) = Eµ

[
T∑

τ=time

r(τ)

∣∣∣∣∣ s, Env

]
, (1)

where r(t) is a real-valued reward input (encoded within s(t)) at time t, Eµ(· | ·)
denotes the conditional expectation operator with respect to some possibly un-

Completely Self-referential Optimal Reinforcement Learners 225

known distribution µ from a set M of possible distributions (M reflects whatever
is known about the possibly probabilistic reactions of the environment), and the
above-mentioned time = time(s) is a function of state s which uniquely identi-
fies the current cycle. Note that we take into account the possibility of extending
the expected lifespan through appropriate actions.

Basic Idea. Our machine becomes a self-referential [3] Gödel machine by load-
ing it with a machine-dependent, particular form of self-modifying code p. The
initial code p(1) at time step 1 includes a (typically sub-optimal) problem solv-
ing subroutine for interacting with the environment, such as Q-learning [6], and
a general proof searcher subroutine (Section 5) that systematically makes pairs
(switchprog, proof) until it finds a proof of a target theorem which essentially
states: ‘the immediate rewrite of p through current program switchprog on the
given machine implies higher utility than leaving p as is’. Then it executes switch-
prog, which may completely rewrite p, including the proof searcher. Section 3
will explain details of the necessary initial axiomatic system A encoded in p(1).

The Global Optimality Theorem (Theorem 1, Section 4) shows this self-
improvement strategy is not greedy: since the utility of ‘leaving p as is’ implicitly
evaluates all possible alternative switchprogs which an unmodified p might find
later, we obtain a globally optimal self-change—the current switchprog repre-
sents the best of all possible relevant self-changes, relative to the given resource
limitations and initial proof search strategy.

Proof Techniques and an O()-optimal Initial Proof Searcher. Section 5
will present an O()-optimal initialization of the proof searcher, that is, one with
an optimal order of complexity (Theorem 2). Still, there will remain a lot of room
for self-improvement hidden by the O()-notation. The searcher uses an online
extension of Universal Search [7] to systematically test online proof techniques,
which are proof-generating programs that may read parts of state s (similarly,
mathematicians are often more interested in proof techniques than in theorems).
To prove target theorems as above, proof techniques may invoke special instruc-
tions for generating axioms and applying inference rules to prolong the current
proof by theorems. Here an axiomatic system A encoded in p(1) includes ax-
ioms describing (a) how any instruction invoked by a program running on the
given hardware will change the machine’s state s (including instruction pointers
etc.) from one step to the next (such that proof techniques can reason about
the effects of any program including the proof searcher), (b) the initial program
p(1) itself (Section 3 will show that this is possible without introducing circu-
larity), (c) stochastic environmental properties, (d) the formal utility function
u, e.g., equation (1). The evaluation of utility automatically takes into account
computational costs of all actions including proof search.

Hutter’s Previous Work. Hutter’s non-self-referential but still O()-optimal
‘fastest’ algorithm for all well-defined problems Hsearch [4] uses a hardwired
brute force proof searcher. Assume discrete input/output domains X/Y , a formal
problem specification f : X → Y (say, a functional description of how integers
are decomposed into their prime factors), and a particular x ∈ X (say, an integer

226 J. Schmidhuber

to be factorized). Hsearch orders all proofs of an appropriate axiomatic system
by size to find programs q that for all z ∈ X provably compute f(z) within time
bound tq(z). Simultaneously it spends most of its time on executing the q with
the best currently proven time bound tq(x). It turns out that Hsearch is as
fast as the fastest algorithm that provably computes f(z) for all z ∈ X , save
for a constant factor smaller than 1 + ε (arbitrary ε > 0) and an f -specific but
x-independent additive constant [4]. This constant may be enormous though.

Hutter’s Aixi(t,l) [5] is related. In discrete cycle k = 1, 2, 3, . . . of Aixi(t,l)’s
lifetime, action y(k) results in perception x(k) and reward r(k), where all quan-
tities may depend on the complete history. Using a universal computer such as
a Turing machine, Aixi(t,l) needs an initial offline setup phase (prior to interac-
tion with the environment) to examine all proofs of length at most L, filtering
out those that identify programs (of maximal size l and maximal runtime t per
cycle) which not only could interact with the environment but which for all
possible interaction histories also correctly predict a lower bound of their own
expected future reward. In cycle k, Aixi(t,l) then runs all programs identified in
the setup phase (at most 2l), finds the one with highest self-rating, and executes
its corresponding action. The problem-independent setup time (where almost all
of the work is done) is O(L · 2L). The online time per cycle is O(t · 2l). Both are
constant but typically huge.

Advantages and Novelty of the Gödel Machine. There are major differ-
ences between the Gödel machine and Hutter’s Hsearch [4] and Aixi(t,l) [5],
including:

1. The theorem provers of Hsearch and Aixi(t,l) are hardwired, non-self-
referential, unmodifiable meta-algorithms that cannot improve themselves.
That is, they will always suffer from the same huge constant slowdowns
(typically � 101000) buried in the O()-notation. But there is nothing in
principle that prevents our truly self-referential code from proving and ex-
ploiting drastic reductions of such constants, in the best possible way that
provably constitutes an improvement, if there is any.

2. The demonstration of the O()-optimality of Hsearch and Aixi(t,l) depends
on a clever allocation of computation time to some of their unmodifiable
meta- algorithms. Our Global Optimality Theorem (Theorem 1, Section 4),
however, is justified through a quite different type of reasoning which indeed
exploits and crucially depends on the fact that there is no unmodifiable
software at all, and that the proof searcher itself is readable and modifiable
and can be improved. This is also the reason why its self-improvements can
be more than merely O()-optimal.

3. Hsearch uses a “trick” of proving more than is necessary which also dis-
appears in the sometimes quite misleading O()-notation: it wastes time on
finding programs that provably compute f(z) for all z ∈ X even when the
current f(x)(x ∈ X) is the only object of interest. A Gödel machine, how-
ever, needs to prove only what is relevant to its goal formalized by u. For
example, the general u of eq. (1) completely ignores the limited concept

Completely Self-referential Optimal Reinforcement Learners 227

of O()-optimality, but instead formalizes a stronger type of optimality that
does not ignore huge constants just because they are constant.

4. Both the Gödel machine and Aixi(t,l) can maximize expected reward
(Hsearch cannot). But the Gödel machine is more flexible as we may plug in
any type of formalizable utility function (e.g., worst case reward), and unlike
Aixi(t,l) it does not require an enumerable environmental distribution.

Limitations. The fundamental limitations are closely related to those first iden-
tified by Gödel’s celebrated paper on self-referential formulae [3]. Any formal
system that encompasses arithmetics (or ZFC etc) is either flawed or allows
for unprovable but true statements. Hence even a Gödel machine with unlimited
computational resources must ignore those self-improvements whose effectiveness
it cannot prove, e.g., for lack of sufficiently powerful axioms in A. In particular,
one can construct pathological examples of environments and utility functions
that make it impossible for the machine to ever prove a target theorem. Com-
pare Blum’s speed-up theorem [1] based on certain incomputable predicates.
Similarly, a realistic Gödel machine with limited resources cannot profit from
self-improvements whose usefulness it cannot prove within its time and space
constraints. Nevertheless, unlike previous methods, it can in principle exploit
at least the provably good speed-ups of any part of its initial software, includ-
ing those parts responsible for huge (but problem class-independent) slowdowns
ignored by the earlier approaches [5].

3 Essential Details of One Representative Gödel Machine

Theorem proving requires an axiom scheme yielding an enumerable set of ax-
ioms of a formal logic system A whose formulas and theorems are symbol strings
over some finite alphabet that may include traditional symbols of logic (such
as →,∧, =, (,), ∀, ∃, . . ., c1, c2, . . . , f1, f2, . . .), probability theory (such as E(·),
the expectation operator), arithmetics (+,−, /, =,

∑
, <, . . .), string manipula-

tion (in particular, symbols for representing any part of state s at any time,
such as s7:88(5555)). A proof is a sequence of theorems, each either an axiom or
inferred from previous theorems by applying one of the inference rules such as
modus ponens combined with unification, e.g., [2].

The remainder of this paper will omit standard knowledge to be found in
any proof theory textbook. Instead of listing all axioms of a particular A, we
will focus on the novel and critical details: how to overcome problems with self-
reference and how to deal with the potentially delicate online generation of proofs
that talk about and affect the currently running proof generator itself.

Proof Techniques. Brute force proof searchers (used in Hutter’s Aixi(t,l) and
Hsearch) systematically generate all proofs in order of their sizes. To produce a
certain proof, this takes time exponential in proof size. Instead our O()-optimal
p(1) will produce many proofs with low algorithmic complexity [7] much more
quickly. It systematically tests (see Section 5) proof techniques written in uni-
versal language L implemented within p(1). A proof technique is composed of

228 J. Schmidhuber

instructions that allow any part of s to be read, such as inputs x, or the code of
p(1). It may write on sp, a part of s reserved for temporary results. It also may
rewrite switchprog, and produce an incrementally growing proof placed in the
string variable proof stored somewhere in s. proof and sp are reset to the empty
string at the beginning of each new proof technique test. Apart from standard
arithmetic and function-defining instructions [9] that modify sp, the program-
ming language L includes special instructions for prolonging the current proof
by correct theorems, for setting switchprog, and for checking whether a provably
optimal p-modifying program was found and should be executed now. Certain
long proofs can be produced by short proof techniques.

The nature of the five proof-modifying instructions below (there are no oth-
ers) makes it impossible to insert an incorrect theorem into proof, thus trivializing
proof verification:

1. get-axiom(n) takes as argument an integer n computed by a prefix of the
currently tested proof technique with the help of arithmetic instructions
such as those used in previous work [9]. Then it appends the n-th axiom (if
it exists, according to the axiom scheme below) as a theorem to the current
theorem sequence in proof. The initial axiom scheme encodes:

(a) Hardware axioms describing the hardware, formally specifying how
certain components of s (other than environmental inputs) may change
from one cycle to the next. For example, the following axiom could de-
scribe how some 64-bit hardware’s instruction pointer stored in s1:64 is
continually increased by 64 as long as there is no overflow and the value
of s65 does not indicate that a jump to some other address should take
place:

(∀t∀n : [(n < 264−1)∧(n > 0)∧(t > 1)∧(t < T)∧(string2num(s1:64(t)) = n)

∧(s65(t) = ‘0’)] → (string2num(s1:64(t + 1)) = n + 1))

Here the semantics of used symbols such as ‘(’ and ‘>’ and ‘→’ (im-
plies) are the traditional ones, while ‘string2num’ symbolizes a function
translating bitstrings into numbers. It is clear that any abstract hardware
model can be fully axiomatized in a similar way.

(b) Reward axioms defining the computational costs of any hardware
instruction, and physical costs of output actions (e.g., control signals
encoded in s(t)). Related axioms assign values to certain input events
(encoded in s) representing reward or punishment (e.g., when a Gödel
machine-controlled robot bumps into an obstacle). Additional axioms
define the total value of the Gödel machine’s life as a scalar-valued func-
tion of all rewards (e.g., their sum) and costs experienced between cycles
1 and T , etc.

(c) Environment axioms restricting the way the environment will pro-
duce new inputs (encoded within certain substrings of s) in reaction
to sequences of outputs encoded in s. For example, it may be known

Completely Self-referential Optimal Reinforcement Learners 229

in advance that the environment is sampled from an unknown proba-
bility distribution that is computable, given the previous history [12,5].
Or, more restrictively, the environment may be some unknown but de-
terministic computer program sampled from the Speed Prior [8] which
assigns low probability to environments that are hard to compute by
any method. Or the interface to the environment is Markovian, that
is, the current input always uniquely identifies the environmental state
[6]. Even more restrictively, the environment may evolve in completely
predictable fashion known in advance. All such prior assumptions are
perfectly formalizable in an appropriate A (otherwise we could not write
scientific papers about them).

(d) Uncertainty axioms; string manipulation axioms: Standard ax-
ioms for arithmetics and calculus and probability theory and statistics
and string manipulation that (in conjunction with the environment ax-
ioms) allow for constructing proofs concerning (possibly uncertain) prop-
erties of future values of s(t) as well as bounds on expected remaining
lifetime / costs / rewards, given some time τ and certain hypothetical
values for components of s(τ) etc.

(e) Initial state axioms: Information about how to reconstruct the initial
state s(1) or parts thereof, such that the proof searcher can build proofs
including axioms of the type

(sm:n(1) = z), e.g. : (s7:9(1) = ‘010’).

Here and in the remainder of the paper we use bold font in formulas
to indicate syntactic place holders (such as m,n,z) for symbol strings
representing variables (such as m,n,z) whose semantics are explained in
the text (in the present context z is the bitstring sm:n(1)).

Note that it is no fundamental problem to fully encode both
the hardware description and the initial hardware-describing p within p
itself. To see this, observe that some software may include a program
that can print the software.

(f) Utility axioms describing the overall goal in the form of utility function
u; e.g., equation (1).

2. apply-rule(k, m, n) takes as arguments the index k (if it exists) of an
inference rule such as modus ponens (stored in a list of possible inference rules
encoded within p(1)) and the indices m, n of two previously proven theorems
(numbered in order of their creation) in the current proof. If applicable, the
corresponding inference rule is applied to the addressed theorems and the
resulting theorem appended to proof. Otherwise the currently tested proof
technique is interrupted. This ensures that proof is never fed with invalid
proofs.

3. set-switchprog(m,n) replaces switchprog by sp
m:n, provided that sp

m:n is
indeed a non-empty substring of sp, the storage writable by proof techniques.

4. ♠ state2theorem(m, n) takes two integer arguments m, n and tries to
transform the current contents of sm:n into a theorem of the form

(sm:n(t1) = z), e.g. : (s6:9(7775555) = ‘1001’),

230 J. Schmidhuber

where t1 represents a time measured (by checking time) shortly after
state2theorem was invoked, and z the bistring sm:n(t1) (recall the special
case t1 = 1 of Item 1e). So we accept the time-labeled current observable
contents of any part of s as a theorem that does not have to be proven in an
alternative way from, say, the initial state s(1), because the computation so
far has already demonstrated that the theorem is true.

We must avoid inconsistent results through parts of s that change while be-

ing read. For example, the present value of a quickly changing instruction pointer

IP (continually updated by the hardware) may not be directly observable without

changing the observable itself: the execution of the reading subroutine itself will

already modify IP many times. So state2theorem first uses some fixed protocol to

check whether the current sm:n is readable at all or whether it might change if it

were read by the remaining code of state2theorem. If so, or if m, n, are not in the

proper range, then the instruction has no further effect.

5. ♠ check() verifies whether the goal of the proof search has been reached.
First it tests whether the last theorem (if any) in proof has the form of a
target theorem. A target theorem states that given the current axioma-
tized utility function u (Item 1f), the utility of a switch from p to the current
switchprog would be higher than the utility of continuing the execution of
p (which would keep searching for alternative switchprogs). Target theorems
are symbol strings (encoded in s) of the (decoded) form

(u[s(t1) ⊕ (switchbit(t1) = ‘1’), Env(t1)] >

u[s(t1) ⊕ (switchbit(t1) = ‘0’), Env(t1)]) (2)

where the variable t1 (represented by syntactic place holder t1) stands for
a time step, while all other symbols belong to the alphabet of the theorem-
proving calculus, that is, the set of possible target theorems is parame-
terized only by t1. Here the calculus should permit the notation s(t1) ⊕
(switchbit(t1) = ‘b’) as a shortcut for the state obtained when we replace
switchbit(t1), the true value of the variable bit switchbit (encoded in s) at
time t1, by b ∈ {0, 1}. This will facilitate the formulation of theorems that
compare values conditioned on various alternative hypothetical properties
of s(t1). (Note that s(t1) may be only partially known by the current proof
technique even in environments where s(t1) and switchbit(t1) are fully pre-
determined for all valid t1.)

The purpose of introducing t1 is to deal with hardware-specific temporal
delays that may be involved in checking and switching—it may take a signif-
icant amount of time to match abstract symbol strings found during proof
search to the Gödel machine’s real current state. If a target theorem has been
found, check() uses a simple prewired subroutine to check whether there is
enough time left to set variable switchbit (originally 0) to 1 before the con-
tinually increasing time will equal t1. If this subroutine returns a negative
result, check() exits. Otherwise it sets switchbit := 1 (there is no other way of
changing switchbit). Then it repeatedly tests time until time > t1, to make
sure the condition of formula (2) was fulfilled at t1. Then it transfers control

Completely Self-referential Optimal Reinforcement Learners 231

to switchprog (there is no other way of calling switchprog). The switchprog
may subsequently rewrite all parts of s, excluding hardware-reserved parts
such as time and x, but including p.

Note that a proof technique does not necessarily have to compute the true
expected utilities of switching and not switching—it just needs to determine
which is higher. For example, it may be easy to prove that speeding up a
subroutine of the proof searcher by a factor of 2 will certainly be worth the
negligible (compared to lifetime T) time needed to execute the subroutine-
changing algorithm, no matter what is the precise utility of the switch.

The axiomatic system A is a defining parameter of a given Gödel machine.
Clearly, A must be strong enough to permit proofs of target theorems. In
particular, the theory of uncertainty axioms (Item 1d) must be sufficiently
rich. This is no fundamental problem: we simply insert all traditional axioms
of probability theory.

4 Global Optimality Theorem

Intuitively, at any given time p should execute some self-modification algorithm
only if it is the ‘best’ of all possible self-modifications, given the utility function,
which typically depends on available resources, such as storage size and remain-
ing lifetime. At first glance, however, target theorem (2) seems to implicitly talk
about just one single modification algorithm, namely, switchprog(t1) as set by
the systematic proof searcher at time t1. Isn’t this type of local search greedy?
Couldn’t it lead to a local optimum instead of a global one? No, it cannot,
according to the global optimality theorem:

Theorem 1 (Globally Optimal Self-Changes, given u and A encoded
in p). Given any formalizable utility function u (Item 1f), and assuming consis-
tency of the underlying formal system A, any self-change of p obtained through
execution of some program switchprog identified through the proof of a target
theorem (2) is globally optimal in the following sense: the utility of starting the
execution of the present switchprog is higher than the utility of waiting for the
proof searcher to produce an alternative switchprog later.

Proof. Target theorem (2) implicitly talks about all the other switchprogs that
the proof searcher could produce in the future. To see this, consider the two
alternatives of the binary decision: (1) either execute the current switchprog (set
switchbit = 1), or (2) keep searching for proofs and switchprogs (set switchbit
= 0) until the systematic searcher comes up with an even better switchprog. Ob-
viously the second alternative concerns all (possibly infinitely many) potential
switchprogs to be considered later. That is, if the current switchprog were not the
‘best’, then the proof searcher would not be able to prove that setting switch-
bit and executing switchprog will cause higher expected reward than discarding
switchprog, assuming consistency of A. Q.E.D.

232 J. Schmidhuber

5 Bias-Optimal Proof Search (BIOPS)

Here we construct a p(1) that is O()-optimal in a certain limited sense to be
described below, but still might be improved as it is not necessarily optimal in
the sense of the given u (for example, the u of equation (1) neither mentions nor
cares for O()-optimality). Our Bias-Optimal Proof Search (BIOPS) is essentially
an application of Universal Search [7] to proof search. Practical extensions [9]
of Universal Search have been applied to offline program search tasks where the
program inputs are fixed such that the same program always produces the same
results. In our online setting, however, BIOPS has to take into account that the
same proof technique started at different times may yield different proofs, as it
may read parts of s (e.g., inputs) that change as the machine’s life proceeds.

BIOPS starts with a probability distribution P (the initial bias) on the proof
techniques w that one can write in L, e.g., P (w) = K−l(w) for programs com-
posed from K possible instructions [7]. BIOPS is near-bias-optimal [9] in the
sense that it will not spend much more time on any proof technique than it
deserves, according to its probabilistic bias, namely, not much more than its
probability times the total search time:

Method 51 (BIOPS). In phase (i = 1, 2, 3, . . .) Do:

For all self-delimiting [7] proof techniques w ∈ L satisfying P (w) ≥ 2−i

Do:
1. Run w until halt or error (such as division by zero) or 2iP (w) steps

consumed.
2. Undo the effects of w on sp (does not cost significantly more time

than executing w).

A proof technique w can interrupt Method 51 only by invoking instruction
check() (Item 5), which may transfer control to switchprog (which possibly even
will delete or rewrite Method 51). Since the initial p runs on the formalized hard-
ware, and since proof techniques tested by p can read p and other parts of s,
they can produce proofs concerning the (expected) performance of p and BIOPS
itself. Method 51 at least has the optimal order of computational complexity in
the following sense.

Theorem 2. If independently of variable time(s) some unknown fast proof tech-
nique w would require at most f(k) steps to produce a proof of difficulty measure
k (an integer depending on the nature of the task to be solved), then Method 51
will need at most O(f(k)) steps.

Proof. It is easy to see that Method 51 will need at most O(f(k)/P (w)) =
O(f(k)) steps—the constant factor 1/P (w) does not depend on k. Q.E.D.

Note again, however, that the proofs themselves may concern quite different,
arbitrary formalizable notions of optimality (stronger than those expressible in
the O()-notation) embodied by the given, problem-specific, formalized utility
function u. This may provoke useful, constant-affecting rewrites of the initial
proof searcher despite its limited (yet popular and widely used) notion of O()-
optimality.

Completely Self-referential Optimal Reinforcement Learners 233

6 Conclusion

The initial software p(1) of our machine runs an initial problem solver (e.g., one
of Hutter’s approaches [5] which have at least an optimal order of complexity).
Simultaneously, it runs an O()-optimal initial proof searcher using an online
variant of Universal Search to test proof techniques, which are programs able to
compute proofs concerning the system’s own future performance, based on an
axiomatic system A encoded in p(1), describing a formal utility function u, the
hardware and p(1) itself. If there is no provably good, globally optimal way of
rewriting p(1) at all, then humans will not find one either. But if there is one,
then p(1) itself can find and exploit it. This approach yields the first class of
theoretically sound, fully self-referential, optimal, general RL machines.

After the theoretical analysis above, one practical question remains: to build
a particular, especially practical Gödel machine with small initial constant over-
head, which generally useful theorems should one add as axioms to A (as initial
bias) such that the initial searcher does not have to prove them from scratch?

References

1. M. Blum. On effective procedures for speeding up algorithms. Journal of the ACM,
18(2):290–305, 1971.

2. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Graduate Texts
in Computer Science. Springer-Verlag, Berlin, 2nd edition, 1996.

3. K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

4. M. Hutter. The fastest and shortest algorithm for all well-defined problems. Inter-
national Journal of Foundations of Computer Science, 13(3):431–443, 2002. (On
J. Schmidhuber’s SNF grant 20-61847).

5. M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Al-
gorithmic Probability. Springer, Berlin, 2004. (On J. Schmidhuber’s SNF grant
20-61847).

6. L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a
survey. Journal of AI research, 4:237–285, 1996.

7. L. A. Levin. Randomness conservation inequalities: Information and independence
in mathematical theories. Information and Control, 61:15–37, 1984.

8. J. Schmidhuber. The Speed Prior: a new simplicity measure yielding near-optimal
computable predictions. In J. Kivinen and R. H. Sloan, editors, Proceedings of the
15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture
Notes in Artificial Intelligence, pages 216–228. Springer, Sydney, Australia, 2002.

9. J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211–254,
2004.

10. J. Schmidhuber. Gödel machines: fully self-referential optimal universal problem
solvers. In B. Goertzel and C. Pennachin, editors, Artificial General Intelligence.
Springer Verlag, in press, 2005.

11. J. Schmidhuber. Gödel machines: Towards a technical justification of consciousness.
In D. Kudenko, D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-
Agent Systems III (LNCS 3394), pages 1–23. Springer Verlag, 2005.

12. R. J. Solomonoff. Complexity-based induction systems. IEEE Transactions on
Information Theory, IT-24(5):422–432, 1978.

	Introduction and Outline
	Basic Overview and Relation to Previous Work and Limitations
	Essential Details of One Representative Gödel Machine
	Global Optimality Theorem
	Bias-Optimal Proof Search (BIOPS)
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

