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Abstract. Radial basis function (RBF) kernels are widely used for sup-
port vector machines. But for model selection, we need to optimize the
kernel parameter and the margin parameter by time-consuming cross
validation. To solve this problem, in this paper we propose using Ma-
halanobis kernels, which are generalized RBF kernels. We determine the
covariance matrix for the Mahalanobis kernel using the training data
corresponding to the associated classes. Model selection is done by line
search. Namely, first the margin parameter is optimized and then the
Mahalanobis kernel parameter is optimized. According to the computer
experiments for two-class problems, a Mahalanobis kernel with a diago-
nal covariance matrix shows better generalization ability than a Maha-
lanobis kernel with a full covariance matrix, and a Mahalanobis kernel
optimized by line search shows comparable performance with that with
an RBF kernel optimized by grid search.

1 Introduction

Support vector machines have been used for various applications as a powerful
tool for pattern classification. One of the advantages of support vector machines
is that we can improve generalization ability by proper selection of kernels. In
most cases polynomial kernels and radial basis function network (RBF) kernels
are used. Mahalanobis kernels [1], which exploit the data distribution information
more than RBF kernels do, are expected to ease model selection but how to
set the covariance matrix is a difficult problem. Friedrichs and Igel [2] used
evolution strategies to tune the parameters obtained by grid search but it is
time consuming.

In this paper, we propose model selection for Mahalanobis kernels. Namely,
using the data belonging to the two classes, we calculate the covariance matrix for
the Mahalanobis kernel. We then optimize the margin parameter and the kernel
parameter that scales the Mahalanobis distance by line search: after optimizing
the margin parameter by cross validation, we optimize the kernel parameter. We
show the usefulness of Mahalanobis kernels over RBF kernels using two-class
data sets.



In Section 2, we discuss Mahalanobis kernels, and in Section 3 we discuss
model selection. Finally in Section 4, we compare performance of Mahalanobis
kernels with RBF kernels.

2 Mahalanobis Kernels

First we explain the Mahalanobis distance between a datum and the center
vector of a cluster. Let the set of M m-dimensional data be {x1, . . . ,xM} for the
cluster. Then the center vector and the covariance matrix of the data are given,
respectively, by

c =
1
M

M∑
i=1

xi, (1)

Q =
1
M

M∑
i=1

(xi − c) (xi − c)T . (2)

The Mahalanobis distance of x is given by

d(x) =
√
(x− c)T Q−1 (x− c). (3)

Because the Mahalanobis distance is normalized by the covariance matrix, it
is linear translation invariant [3]. This is especially important because we need
not worry about the scales of input variables.

Another interesting characteristic is that the average of the square of Maha-
lanobis distances is m [3]:

1
M

M∑
i=1

(xi − c)T Q−1 (xi − c) = m. (4)

Based on the definition of the Mahalanobis distance, we define the Maha-
lanobis kernel by

H(x,x′) = exp
(−(x − x′)T A (x− x′)

)
, (5)

where A is a positive definite matrix. Here, the Mahalanobis distance is calcu-
lated between x and x′, not between x and c. The Mahalanobis kernel is an
extension of the RBF kernel. Namely, by setting

A = γ I, (6)

where γ(> 0) is a parameter for slope control and I is the m × m unit matrix,
we obtain the RBF kernel:

exp(−γ‖x− x′‖2). (7)



For a two-class problem, the Mahalanobis kernel is used for the data belong-
ing to one of the two classes. Assuming that X = {x1, . . . ,xM} is the set of data
belonging to one of the two classes, we calculate the center and the covariance
matrix by (1) and (2), respectively.

Then we approximate the Mahalanobis kernel by

H(x,x′) = exp
(
− δ

m
(x− x′)T Q−1 (x− x′)

)
, (8)

where δ (> 0) is the scaling factor to control the Mahalanobis distance.
From (4), by dividing the square of the Mahalanobis distance by m, it is

normalized to 1 irrespective of the number of input variables. Although (8) is an
approximation of the Mahalanobis kernel, this may enable to limit the search of
the optimal δ value in a small range.

If we use the full covariance matrix, it will be time-consuming for a large
number of input variables. Thus we consider two cases: Mahalanobis kernels
with diagonal covariance matrices and Mahalanobis kernels with full covariance
matrices. Hereafter we call the former diagonal Mahalanobis kernels and the
latter non-diagonal Mahalanobis kernels.

3 Model Selection

To maximize the generalization ability of the support vector machine we need
to optimize the parameters by model selection. The most reliable method is
cross validation. In the following, we discuss model selection for RBF kernels
and Mahalanobis kernels by cross validation.

3.1 RBF Kernels

For RBF kernels, we need to determine the values of γ and C by grid search. To
set the proper search range of γ, it is better to normalize the input ranges into
[0, 1]. Thus, because the maximum value of ‖x− x′‖2 is m, we use the following
RBF kernels instead of (7) [4]:

exp
(
− γ

m
‖x− x′‖2

)
. (9)

However, because RBF kernels are not scale invariant, the range of [0, 1] may
not be optimal.

3.2 Mahalanobis Kernels

For Mahalanobis kernels, we need to determine the values of δ and C. But
because Mahalanobis kernels given by (8) are determined according to the data
distribution and normalized by m, the initial value of δ = 1 is a good selection.
Thus, we can carry out model selection by line search not by grid search. Namely,
the model selection is done as follows:



1. Set δ = 1 and determine the value of C by cross validation. We call this the
first stage.

2. Setting the value of C as that determined by the first stage, determine the
value of δ by cross validation. We call this the second stage.

Because δ = 1 is a good initial value, we may search the optimal value around
1, e.g., [0.1, 2].

In addition, because Mahalanobis kernels are normalized by the covariance
matrix, it is scale invariant. Therefore, the scale transformation of input variables
does not affect the classification performance of the support vector machine.

4 Performance Evaluation

We compared the generalization ability of Mahalanobis kernels and RBF kernels
using two-class data sets used in [5].1 Each problem has 100 or 20 training data
sets and their corresponding test data sets. Because there is not much difference
of generalization abilities between L1 and L2 support vector machines, we used
L1 support vector machines. We determined the optimal values of γ and C
for RBF kernels and those of δ and C for Mahalanobis kernels by 5-fold cross
validation. Because the input ranges of the data sets were not normalized, we
normalized them to [0, 1]

For RBF kernels for a value of γ in {0.1, 0.5, 1, 5, 10, 15} we performed cross
validation of the first five training data sets changingC = [1, 10, 50, 100, 500, 1000,
2000, 3000, 5000, 8000, 10000, 50000, 100000], selected the optimal γ that showed
the minimum average error rate for the five validation data sets, and selected
the median of the best value of C for the optimal γ. Then, for the optimal values
of γ and C, we trained the support vector machine for 100 or 20 training data
sets and calculated the average recognition error and the standard deviation for
the test data sets.

Similarly for Mahalanobis kernels, at the first stage we determined the op-
timal value of C by cross validation for the first five training data sets. Then,
at the second stage we performed cross validation with the determined value of
C, changing δ = [0.1, 0.2, . . . , 1.9, 2]. As a reference we also performed the grid
search of optimum δ for δ = [0.1, 0.5, 1.0, 1.5, 2.0] and C.

If the recognition rate of the validation set took the maximum value for
different values of C, we took the smallest value as the optimal value.

Table 1 lists the parameters obtained by the preceding procedure. Here, we
do not include parameters for Mahalanobis kernels obtained by grid search. From
the table, it is seen that the values of C for the Mahalanobis kernels are equal
to or smaller than those for RBF kernels. In addition, for the image and thyroid
data sets, the values for non-diagonal Mahalanobis kernels are smaller than for
the diagonal Mahalanobis kernels. This means that the support vector machines
with RBF kernels are the most difficult to fit to the data, whereas those with
non-diagonal Mahalanobis kernels are the easiest.
1 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm



Table 1. Parameter setting

Data RBF Diagonal Non-diagonal

γ C C δ C δ

Banana 15 100 50 0.8 50 0.9

B. Cancer 1 10 1 0.6 1 0.8

Diabetes 10 1 1 0.5 1 0.2

German 5 1 1 1.7 1 0.9

Heart 0.1 50 1 0.2 1 0.1

Image 10 1000 500 0.7 100 1

Ringnorm 15 1 1 1.5 1 1.3

F. Solar 1 1 1 0.1 1 0.1

Splice 10 10 10 0.8 10 0.5

Thyroid 5 1000 50 0.4 10 0.9

Titanic 10 10 10 0.7 10 0.6

Twonorm 1 1 1 0.9 1 0.2

Waveform 5 10 1 0.6 1 0.4

Table 2 lists the average classification errors and the standard deviations
with the ± symbol. The “Diagonal-1” and “Diagonal-2” columns list the values
for the first and second stages, respectively, and the “Diagonal” column lists
the values by the grid search. Performance of RBF kernels with the input range
of [0, 1] is different from that with the original input range given in [5]. Ex-
cept for the ringnorm data set, the performance with the input range of [0, 1]
performed better. If we use the original input range for the ringnorm data set,
the performance is 1.7±0.1, which is equivalent to that of the second stage us-
ing the diagonal Mahalanobis kernel (Diagonal-2). But for Mahalanobis kernels,
performance does not change for the change of the input range.

The best performance in the row is shown in boldface. Except for the di-
abetes, heart, and f. solar data sets, the recognition performance of diagonal
Mahalanobis kernels with δ = 1 (Diagonal-1) was comparable with that of the
RBF kernels. For these data sets by optimizing the value of δ, performance of the
diagonal Mahalanobis kernels (Diagonal-2) was improved and comparable with
that of RBF kernels. There is not much difference between Diagonal-2 and Di-
agonal. But performance of non-diagonal Mahalanobis kernels was not so good.
The full covariance matrix might cause overfitting.



Table 2. Comparison of average error rates and standard deviations.

Data RBF Diagonal-1 Diagonal-2 Diagonal Non-diagonal

Banana 10.5±0.5 10.5±0.4 10.4±0.5 10.4±0.5 10.5±0.5

B. Cancer 25.6±4.4 25.9±4.2 25.6±4.4 25.9±4.2 26.1±4.4

Diabetes 23.4±1.7 24.7±1.9 23.7±1.7 23.7±1.7 23.3±1.8

German 23.8±2.1 23.4±2.1 23.9±2.1 23.7±1.7 23.7±2.2

Heart 16.1±3.1 17.2±3.2 15.7±3.2 15.6±3.4 17.2±4.0

Image 2.8±0.5 3.1±0.6 3.0±0.5 3.0±0.6 3.2±0.6

Ringnorm 2.6±0.4 1.8±0.2 1.7±0.1 1.6±0.1 1.8±0.1

F. Solar 32.3±1.8 34.1±2.0 32.5±1.7 32.8±1.7 32.5±1.7

Splice 10.8±0.7 10.7±0.7 10.8±0.6 10.8±0.7 13.0±0.6

Thyroid 4.1±2.3 4.2±2.0 4.1±2.3 4.2±2.3 6.9±2.8

Titanic 22.5±1.0 22.5±1.0 22.5±1.0 22.5±1.0 22.6±1.0

Twonorm 2.4±0.1 2.7±0.2 2.7±0.2 2.7±0.1 2.8±0.2

Waveform 10.3±0.4 9.9±0.4 9.9±0.5 10.5±0.4 15.6±1.2

5 Conclusions

We discussed how to train support vector machines with Mahalanobis kernels
for pattern classification problems. We calculate the covariance matrix using the
training data and determine the optimum values of the margin parameter and
the kernel parameter by line search. The computer experiments showed that the
performance of the Mahalanobis kernels by line search of the optimal margin
and kernel parameters was comparable to that of RBF kernels by grid search of
the optimal parameters.
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