Skip to main content

Analysis of MHC-Peptide Binding Using Amino Acid Property-Based Decision Rules

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

Abstract

The human immune system is a highly complex machinery tuned to recognize specific molecular patterns in order to distinguish self from non-self proteins. Specialized immune cells can recognize major histocompatibility (MHC) molecules with bound protein fragments (peptides) on the surface of other cells. If these peptides originate from virus or cancer proteins, the immune cells can induce controlled cell death. In silico vaccine design typically starts with the identification of peptides that might induce an immune response as a first step. This is typically done by searching for specific amino acid patterns obtained from peptides known to be recognized by the immune system. We propose a new method for deriving decision rules based on the physiochemical properties of such peptides. The rulesets generated give insights into the underlying mechanism of MHC-peptide interaction. Furthermore, we show that these rulesets can be used for high accuracy prediction of MHC binding peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scheibenbogen, C., Schmittel, A., Keilholz, U., Allgauer, T., Hofmann, U., Max, R., Thiel, E., Schadendorf, D.: Phase 2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother 23, 275–281 (2000)

    Article  Google Scholar 

  2. Gjertsen, M.K., Buanes, T., Rosseland, A.R., Bakka, A., Gladhaug, I., Soreide, O., Eriksen, J.A., Moller, M., Baksaas, I., Lothe, R.A., Saeterdal, I., Gaudernack, G.: Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. Int. J. Cancer 92, 441–450 (2001)

    Article  Google Scholar 

  3. Ourmanov, I., Brown, C.R., Moss, B., Carroll, M., Wyatt, L., Pletneva, L., Goldstein, S., Venzon, D., Hirsch, V.M.: Comparative efficacy of recombinant modified vaccinia virus Ankara expressing simian immunodeficiency virus (SIV) Gag-Pol and/or Env in macaques challenged with pathogenic SIV. J. Virol 74, 2740–2751 (2000)

    Article  Google Scholar 

  4. De Groot, A.S., Marcon, L., Bishop, E.A., Rivera, D., Kutzler, M., Weiner, D.B., Martin, W.: HIV vaccine development by computer assisted design: the GAIA vaccine. Vaccine 23, 2136–2148 (2005)

    Article  Google Scholar 

  5. Mamitsuka, H.: MHC molecules using supervised learning of hidden markov models. Proteins: Structure, Function and Genetics 33, 460–474 (1998)

    Article  Google Scholar 

  6. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G., Hg, R.: Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Science 351, 290–296 (1991)

    Google Scholar 

  7. Rammensee, H.G., Bachman, J., Philipp, N., Emmerich, N., Bachor, O.A., Stevanovic, S.: SYFPEITHI: a database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1997)

    Article  Google Scholar 

  8. Parker, K.C., Bednarek, M.A., Coligan, J.E.: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994)

    Google Scholar 

  9. Gulukota, K., Sidney, J., Sette, A., DeLisi, C.: Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267, 1258–1267 (1997)

    Article  Google Scholar 

  10. Dönnes, P., Elofsson, A.: Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3, 25 (2002)

    Article  Google Scholar 

  11. Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., Clamp, M.: The ensembl genome database project. Nucleic Acids Res 30, 38–41 (2002)

    Article  Google Scholar 

  12. Kawashima, S., Ogata, H., Kanehisa, M.: AAindex: Amino Acid Index Database. Nucleic Acids Res 27, 368–369 (1999)

    Article  Google Scholar 

  13. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  14. Matthews, B.W.: Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta. 405, 442–451 (1975)

    Google Scholar 

  15. Takano, K., Yutani, K.: A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant proteins. Protein Eng. 14, 525–528 (2001)

    Article  Google Scholar 

  16. Fauchere, J.L., Charton, M., Kier, L.B., Verloop, A., Pliska, V.: Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res 32, 269–278 (1988)

    Article  Google Scholar 

  17. Eriksson, A.E., Baase, W.A., Zhang, X.J., Heinz, D.W., Blaber, M., Baldwin, E.P., Matthews, B.W.: Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183 (1992)

    Article  Google Scholar 

  18. Ishikawa, K., Nakamura, H., Morikawa, K., Kanaya, S.: Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core. Biochemistry 32, 6171–6178 (1993)

    Article  Google Scholar 

  19. Janin, J., Wodak, S.: Conformation of amino acid side-chains in proteins. J. Mol. Biol. 125, 357–386 (1978)

    Article  Google Scholar 

  20. DiBrino, M., Parker, K.C., Shiloach, J., Turner, R.V., Tsuchida, T., Garfield, M., Biddison, W.E., Coligan, J.E.: Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J. Immunol. 152, 620–631 (1994)

    Google Scholar 

  21. Kohlbacher, O., Lenhof, H.P.: BALL–rapid software prototyping in computational molecular biology. Biochemicals Algorithms Library. Bioinformatics 16, 815–824 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Supper, J., Dönnes, P., Kohlbacher, O. (2005). Analysis of MHC-Peptide Binding Using Amino Acid Property-Based Decision Rules. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_48

Download citation

  • DOI: https://doi.org/10.1007/11551188_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics