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Abstract. We present a new statistical compression method, which we
call Phrase Based Dense Code (PBDC), aimed at compressing large digi-
tal libraries. PBDC compresses the text collection to 30-32% of its origi-
nal size, permits maintaining the text compressed all the time, and offers
efficient on-line information retrieval services. The novelty of PBDC is
that it supports continuous growing of the compressed text collection, by
automatically adapting the vocabulary both to new words and to changes
in the word frequency distribution, without degrading the compression
ratio. Text compressed with PBDC can be searched directly without de-
compression, using fast Boyer-Moore algorithms. It is also possible to
decompress arbitrary portions of the collection. Alternative compression
methods oriented to information retrieval focus on static collections and
thus are less well suited to digital libraries.
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1 Introduction

Digital libraries can be thought of as a text collection plus a set of online text
search and retrieval functionalities. In many cases of interest the collection grows
over time, while in others it is static. On the other hand, text compression [2] aims
at representing text using less space. Storing the text collection of a digital library
in compressed form saves not only space, but more importantly, disk and network
transmission time. In the last decades, CPU performance has been doubling
every 18 months while disk access times have stayed basically unchanged. Thus
it is worthwhile to pay compression and decompression overheads in exchange
for reduced disk times.

There are several challenges, however, to offer digital library services over
a compressed text collection. It should be possible to carry out efficiently the
following tasks: (1) uncompress any portion of the collection; (2) accommodate
new text that is added to the collection; (3) scan text portions searching for
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keywords. Task (1) is related to the need to display text documents in plain
form to the user. Task (2) has to do with handling growing collections. Task (3)
appears when searching the text collection for words or phrases of interest. This
is usually faced by means of inverted indexes that permit locating the docu-
ments of interest without traversing the text. However, indexes take additional
space that must be maintained at a minimum [16, 1, 12]. Hence it is customary
that indexes do not have all the information necessary to solve all queries (in
particular phrase and proximity queries) without accessing the text. Therefore,
scanning text portions is usually necessary.

Two main approaches exist to text compression. Adaptive compression me-
thods, such as the well-known Ziv-Lempel family [18,19], learn the data dis-
tribution as they compress the text, continuously adapting their model of the
distribution. The same model has to be learned and updated during decompres-
sion. Semistatic methods, such as Huffman [8], make a first pass over the text
collection to build a model of the data, and compress the whole collection with
the same model in a second pass.

The need of task (1) prevents the use of adaptive compression methods, as
these require decompression to start at the beginning of the collection, which
would make impossible to carry out local decompression efficiently. It would be
possible to compress documents individually, but then compression ratios are
poor because there is not enough time for the model to converge to the data
distribution. This is unfortunate because adaptive compression methods would
deal best with task (2), by simply appending the new text to the end of the
collection and going on with the compression.

Task (3) can be faced by just decompressing the text and then searching it.
A much more attractive alternative is to search the compressed text directly,
without decompressing it. This saves CPU time because only a small fraction
of the searched text will be finally shown to the user. Albeit there exist several
techniques to search text compressed with adaptive methods (e.g. [14]), much
more efficient methods have been devised for semistatic techniques. The essential
reason is that one can compress the pattern and search the text for it, as its
compressed form does not vary across the text. Adaptive methods, on the other
hand, require keeping track of the model updates. In particular, it has been
shown [5] that variants of Huffman permit searching the text up to 8 times
faster than over the plain text (not even counting the time to decompress).

Classical Huffman is an unpopular choice for text compression because of
its poor compression ratios. However, if the source symbols are taken to be the
whole words rather than the characters [9], compression ratios (the size of the
compressed text as a fraction of the original text) improve to 25%-30%, which
is rather competitive. The reason is that the distribution of words is much more
biased than that of characters, thanks to Zipf’s Law [17]. Moreover, the source
alphabet and the collection vocabulary are the same, which simplifies integration
with inverted indexes [16, 12]. The Huffman variants that yield those good results
in search times [5] are actually word-based. Moreover, the output is a sequence
of bytes rather than bits. This worsens compression ratio a bit (it gets close to



30%), but in exchange decompression is much faster. Some variants of the format,
such as Tagged Huffman, get compression ratios closer to 35% but ensure that
the text is efficiently searchable with any text search algorithm.

The above comprises a good solution for a static digital library to maintain
the text in compressed form, by using a semistatic compression method like
word-based Huffman or a variant thereof. The compressed text takes 25%-35%
of the original size, the index adds 5%-15% to this, and the search is faster than
without compression. Hence space and time are saved simultaneously.

The situation is more complicated when growing collections are to be handled.
Semistatic methods do not work because they rely on a global model, so in prin-
ciple they need to recompress the whole text collection again. The only proposal
to handle this problem [10,11] has been to build a semistatic model on the cur-
rent text collection and then use it as is for the new text that arrives (new words
are handled somehow), with no or very sporadic global re-compressions. This
works reasonably well when the growing collection stays homogeneous, but this
is not the case of most digital libraries (see next section).

In this paper, we present a modification of a statistical semistatic method,
ETDC [4] (see next section), adapting it to deal with growing collections. The
idea is to combine statistical compression (where variable-length codewords
are assigned to fixed-length source symbols) with dictionary-based compres-
sion (where varying-length source symbols are concatenated and assigned fixed-
length codewords). The resulting new method, called Phrase Based Dense Code
(PBDC), satisfies all the requirements of growing digital libraries and main-
tains the same efficiency obtained by semistatic methods. In particular, PBDC:
1)obtains good compression ratios over natural language text; 2)uses a unique
vocabulary for the whole collection; 3)permits continuous increments of the com-
pressed collection by automatically adapting the vocabulary both to new words
and to changes in the word frequency distribution without degrading the com-
pression ratio; 4)supports direct search without decompressing the text using
any string matching algorithm; 5)is easily and efficiently decompressible at any
arbitrary section of the text without need of performing the decompression of the
whole document; and 6)uses structures easy to assemble to those of the classical
inverted indexes that any digital library needs.

We present empirical data measuring the efficiency of PBDC in compression
ratio, compression and decompression speed and direct search capabilities.

2 Related Work

2.1 Compressing Growing Collections

Some authors have proposed the use of semistatic statistical compression tech-
niques such as Plain Huffman or Tagged Huffman over a first part of the collec-
tion and use the obtained vocabulary to compress the remaining text of the
collection [10,11]. That is, they propose to use the same old codewords for that
words in the new text that already exist in the vocabulary, and compute new



codewords for the new ones. To manage the new words that can appear, diffe-
rent alternatives were proposed. For example, in [10] new words are inserted at
the end of the vocabulary, and new codewords are generated for them. However,
changes in the word frequencies are not taken into account. In [11], new words
are not inserted into the vocabulary. When one appears, it is introduced in the
compressed text and marked with a special previously defined codeword. To save
space those new words are compressed with a static character-based Huffman
code. Again, changes in the word frequencies are not taken into account.

In both cases [10,11], authors argue that the loss of compression ratio is
not significant. For example in [11], some experiments were performed over the
AP archive of the TREC collection. This archive occupies 200MB. Compressing
the whole file with Tagged Huffman a 31.16% compression ratio is achieved.
When only a 10% of the file was compressed with Tagged Huffman and then the
obtained vocabulary was used to compress the rest of the file, compressing new
words with a static character oriented Huffman, the compression ratio raised to
32%. When the initial compression was performed over the 40% of the file the
compression ratio became 31.5%.

These experiments were done over experimental corpora that, in our opinion,
do not reproduce the situation that can be found in real digital libraries. In digital
libraries, the amount of digitized text grows year after year and therefore the
initial portion of the corpus, used to compute the initial vocabulary, becomes
smaller and smaller. On the other hand, the vocabulary is expected not to be so
homogeneous as it is inside one specific collection such as AP. In real life, new
words appear and become very frequent. For example, if we think in a digital
library of journals, names of politicians, artists, etc. appear when they get a
noticeable position and later, after some years of having high frequency, they
may disappear. The same applies to other words, names of places, events, or new
technologies. For example, words such as Web or Internet have not a significant
frequency in journals some years ago. This constant appearance and/or changes
in frequency of words in real life could produce larger loss in compression ratio
than those found in [11, 10].

2.2 End Tagged Dense Code

End-Tagged Dense Code (ETDC) [4] is a semistatic compression technique, and
it is the basis of the Phrase Based Dense Code (PBDC) we present in this paper.
ETDC is an improvement upon Tagged Huffman Code [5].

Let us call Plain Huffman Code the word-based Huffman code that assigns a
sequence of bytes (rather than bits) to each word. In Tagged Huffman, the first
bit of each byte is reserved to flag whether the byte is the first of its codeword.
Hence, only 7 bits of each byte are used for the Huffman code. Note that the
use of a Huffman code over the remaining 7 bits is mandatory, as the flag bit
is not useful by itself to make the code a prefix code'. The tag bit permits

! In a prefix code, no codeword is a prefix of another, a property that ensures that
the compressed text can be decoded as it is processed.



direct searching on the compressed text by just compressing the pattern and
then running any classical string matching algorithm like Boyer-Moore [13]. On
Plain Huffman this does not work, as the pattern could occur in the text not
aligned to any codeword [5].

Instead of using a flag bit to signal the beginning of a codeword, ETDC
signals the end of the codeword. That is, the highest bit of any codeword byte
is 0 except for the last byte, where it is 1.

This change has surprising consequences. Now the flag bit is enough to ensure
that the code is a prefix code regardless of the contents of the other 7 bits of
each byte. To see this, consider two codewords X and Y, being X shorter than
Y (]X] < |Y]). X cannot be a prefix of Y because the last byte of X has its flag
bit in 1, while the |X|-th byte of ¥ has its flag bit in 0. Thanks to this change,
there is no need at all to use Huffman coding in order to maintain a prefix code.
Therefore, all possible combinations of bits can be used over the remaining 7 bits
of each byte, producing a dense encoding. This yields a better compression ratio
than Tagged Huffman while keeping all its good searching and decompression
capabilities. On the other hand, ETDC is easier to build and faster in both
compression and decompression.

In general, ETDC can be defined over symbols of b bits, although in this
paper we focus on the byte-oriented version where b = 8.

Definition 1. Given source symbols with decreasing probabilities {p;}o<i<n the
corresponding codeword using the End-Tagged Dense Code is formed by a se-
quence of symbols of b bits, all of them representing digits in base 2% (that
is, from 0 to 2b=1 — 1), except the last one which has a value between 2°~' and
20 — 1, and the assignment is done in a sequential fashion.

That is, the first word is encoded as 10000000, the second as 10000001, until
the 128" as 11111111. The 129" word is coded as 00000000:10000000, 130" as
00000000:10000001 and so on until the (1282 + 128)" word 01111111:11111111.
Note that the code depends on the rank of the words, not on their actual fre-
quency. As a result, only the sorted vocabulary must be stored with the com-
pressed text for the decompressor to rebuild the model.

It is clear that the number of words encoded with 1, 2, 3 etc, bytes is fixed
(specifically 128, 1282, 1283 and so on) and does not depend on the word fre-
quency distribution. Generalizing, being k the number of bytes in each codeword
(k > 1) words at positions i:

2b_12(b—1)(k—1) -1 - . 2b—1 2(b—1)k -1
261 1 2011
will be encoded with k bytes. These clear limits mark the change points in the
codeword lengths and will be relevant in the PBDC that we present in this paper.
But not only the sequential procedure is available to assign codewords to the
words. There are simple encode and decode procedures that can be efficiently
implemented, because the codeword corresponding to symbol in position ¢ is



o(b—1)k _gb—1

obtained as the number z written in base 2!, where x = i — and

20-1_1
b—1 b—1_q\s
k= {logQ (2 ;:_(12 Di) , and adding 2°~! to the last digit.
Function encode obtains the codeword C; = encode(i) for a word at the

i-th position in the ranked vocabulary. Function decode gets the position i =
decode(C;) in the rank for a codeword C;. Both functions take just O(l) time,
where | = O(log(i)/b) is the length in digits of codeword C;. Those functions are
efficiently implemented through just bit shifts and masking.

End-Tagged Dense Code is simpler, faster, and compresses 7% better than
Tagged Huffman codes. In fact ETDC only produces an overhead of about 2%
over Plain Huffman. On the other hand, since the last bytes of codewords are
distinguished, ETDC has all the search capabilities of Tagged Huffman code.
Empirical comparisons between ETDC and Huffman can be found in [4].

3 The Phrase Based Dense Code

PBDC is a hybrid approach that requires two phases. In the first phase, the
initial corpus is compressed using ETDC, which produces the initial vocabulary.
Then the PBDC algorithm is used to dynamically add each new document. An
important property of PBDC is that the codeword«>word mapping will never
change once it has been defined. That is, no matter what happens later, each
word in the vocabulary will be always associated with the same and original
codeword it was assigned.

From now on, we will call phrases to our input symbols. These phrases can
be either just one word (as those in the initial vocabulary) or the concatenation
of two or more words.

During the addition of new documents (second phase), we look for the longest
known phrase that starts at the current position. For instance, if we read the
word X, and X is already in the vocabulary, we will read the next word Y to
create the phrase XY and we will check if phrase XY is also in the vocabulary.
If it is, the next word Z will be read and concatenated to form phrase XY Z and
so on. On the other hand, if XY is not in the vocabulary then X will be the
longest known phrase starting at the current position.

When the longest known phrase at the current position is found, we compress
it according to three different cases. Let us call W the sequence of words starting
at the current text position, so that « is the longest known phrase we found and
W is the word that follows it (note that o might be the empty string €).

New Phrase Case (a = ¢). If the next input word W is not in the known
vocabulary, then such one-word phrase W will be inserted in the vocabulary,
its frequency will be set to one, and the next free codeword will be assigned to
the new phrase W from now on. In addition, this new codeword will be used to
compress this first occurrence of phrase W and compression will continue with
the text that follows W.

No Change Case. Phrase o # ¢ is already in the vocabulary. The algo-
rithm then increases its frequency by 1. If that new frequency corresponds to a



codeword of the same length as that already assigned to «, then phrase a will
be compressed with its usual codeword. Compression will continue from word
W, which has not yet been dealt with.

Concatenation Case. The interesting case arises when phrase o # ¢ is
already in the vocabulary, and after increasing its frequency, it turns out that the
new frequency corresponds to a codeword shorter than the one already assigned
to a. In this case, « and W are concatenated to form a new longer phrase aW.
This new phrase will be dealt with exactly as in the New Phrase Case (creating
a new codeword for it, and so on), and compression will continue with the text
that follows W.

Note that the idea is that, since we cannot assign a shorter codeword to a
word or phrase that has increased its frequency, we opt for concatenating it with
the word that follows it so that, instead of using shorter codewords, we compress
more words with the codewords. This resembles the way Ziv-Lempel compres-
sion takes advantage of frequently occurring phrases in the input. Actually the
algorithm has some similarity with LZ78 parsing [19].

3.1 Data Structures and Compression Procedure

The data structures used to compress, uncompress, and search, along with their
functionality, are sketched in Figure 1, where the three cases are illustrated. The
vocabulary array keeps each distinct word in the source text in a compact way
(marking the end of each word with a terminator character).

The Hash Table is used during the compression and search process. This table
keeps the source phrases aW by using two pointers in vector phrases. The first
points to the slot in the hash table that keeps phrase «, while the second points
to the position in the vocabulary vector where word W is stored. For instance,
in Figure 1, phrase B is represented in slot 5, therefore the first pointer in vector
phrases in the slot representing phrase BE (slot 7) points to slot 5, and the
second pointer points to word E in the vocabulary array.

The hash table keeps in freq the phrase frequency and in codeword its code-
word. It also maintains an array codewordlist, which is used only for searching
and is explained in Section 3.3.

In the Codewords Array, each slot i = decode(C;) corresponds to codeword
C;. This array is used to decompress a document. Each slot stores a pointer to
the slot in the Hash Table corresponding to the phrase encoded by C;.

Let us assume that we process the first n words in the collection with ETDC,
and then m new words that arrive using PBDC. The complexity of the first phase
(ETDC) corresponds to: computing the vocabulary frequencies (O(n)), sorting
the vocabulary of v distinct words (O(vlogv)), assigning a codeword to each
word in the vocabulary (O(v)) and finally, compressing the text (O(n)). Since,
empirically, v = O(n?) for 0 < 3 < 1 [6], all the complexities add up O(n).

The second phase (PBDC) costs O(m), as we read each word at most twice
(once to detect that it is not part of the next phrase, and once as the first word
of the following phrase). Each new phrase requires O(1) time to be dealt with.
Thus, the complexity of the whole process is O(n + m), linear in the whole text.



Initial state New case (The new word E is read)
vee[ATD[BTCc] T T T ] Vo[ ATDTBTCcLEY T T ]
1 5 9 1 1 5 9 12 15
phrases [~ [ - -5 - Te-T2-[ I-1 Phrases [~ T~ [-[5]- |- [o]-T2]- 15
freq 60 58 57 58 freq| 60 58 57 58 1
codeword | Crze Cir Ciz [ Cizs codeword | Ciz Ciar Cizo | Cize Cizo
CW list . . . . CWlist] - . . . .
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CW array ====" 11365 -] - ] CW array ===-=-| 1] 3] 658 - |-
126 127 128 129 130 131 last=129 126 127 128 129 130 131 last=130
No change case (Word B is read) Concatenation case(Phrase BE is read)
Vvo[ATD[BTCTE]T T T ] Vvoo[ATD[BTCTE]T T T ]
1 5 15 1 5 9 1 15
phrases [« [~ [-[50-T J-Te]-T2[-T [-T's Phrases [~ [1J-] [-[6]- [-[9]-[2q5]15p-T15
freq| 60 58 58 ) 58 1 freq | 60 58 58 58 | 1 | 1
Cizs Ciar Cizs | Cize Cizo codeword | Crae Crar Cizo JCizs | Cror | Cirao
cwiist]_* - . . - cwiist |- - Co || - - -
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CW array =e=== 1 3 16 1[5 R CW array ====-| 1 3 | 6 | 5 | 8 | 7 |e==
126 127 128 129 130 131 last=130 126 127 128 129 130 131 last=131

Fig. 1. Basic structures used and typical cases.

3.2 Deciding when to create a new phrase

There are different ways to know when a phrase « deserves a shorter codeword.
For example, it is possible to keep the phrases sorted by frequency as in [3]. Ho-
wever, here we followed a statistical approach based on Chebyschev’s inequality.

Let us call group ¢ to the set of phrases with i-byte codewords. For each such
group, we maintain the average (i; and standard deviation &; of the frequencies in
the group. If we take the frequencies of group ¢ as samples of a random variable
X;, then fi; and g; are the unbiased estimators of the mean p; and standard
deviation o; of X;. Chebyschev’s inequality, which holds for any probability
distribution of X;, establishes that Pr(|X; — u;| < ko;) > 1 — 1/k? for any
k > 1. We use this rule to bound the probability that a given frequency x of
a phrase a belongs to group 7. That is, we require that the bound tells that
frequency x belongs to group ¢ with probability at least p, for some p close
to 1. By setting k = 1/4/T — p, we have that Pr(|z — ji;| < 6;/v/1—p) > p.
Therefore, only when the frequency of a phrase a becomes z > fi; — ¢;/+/1 — p,
we will assume that o deserves belonging to group .

Estimators fi; and g; are easily maintained when new phrases enter group 14
or when their frequencies increase. By using p values closer to 1, we are more
conservative at the time of creating new phrases.

A possible problem with the compression method is that we could produce
too many irrelevant phrases alW because « deserves a shorter codeword at the
time aW is read, but phrase aWW will not appear again. One possible way to
address this is to ensure that the frequency of « significantly exceeds what is
necessary to deserve a shorter codeword. In particular, we can use a different p;
for each group 7. It makes sense to be more conservative for larger i, where more
useless phrases are likely to be generated.

3.3 Searching and Decompressing PBDC Compressed Text

Using ETDC, exact search of a word implies just searching for it in the voca-
bulary, getting its codeword, and then seeking the codeword in the compressed



text using any Boyer-Moore family algorithm. However, using PBDC, a word
can correspond to more that one slot of the hash table, because it can appear in
one slot alone but there may also be slots storing phrases containing that word.

For this sake we maintain vector codewordlist. This is maintained only for
slots that correspond to one-word phrases. For word X, the vector contains the
list of codewords of all those phrases that include word X, for example phrases
XY, YX,YXZ, etc. This list is easily updated during the compression process
because each time a new phrase aWW is added to the vocabulary, each of its words
has just been individually read. Then, using the same hash function, the slots for
all those words are efficiently found in order to update their codewordlist vector.
The new codeword for aW is added to each of those codewordlists. This could
be easily extended to keep track of all phrases that contain each existing pair of
words, and so on.

To search the compressed corpus for a word X, a trie structure is built
from the codewordlist vector of the slot of X. Then we apply a Boyer-Moore
family algorithm such as Set Horspool [7,13]. More complex searches such as
approximate or regular expression searching can be easily carried out by scanning
the vocabulary and building the trie with all the codewordlists of all the matching
vocabulary words.

Decompressing a PBDC is a very efficient and straightforward process. Each
codeword is easily parsed due to the flag bit of each byte marking the end of
each codeword. Then the codeword is transformed to a position by the decode
procedure (i = decode(C;)). This position is used to index the codewords array,
and then the slot where the encoded phrase is kept in the hash table is retrieved.
Finally, the phrases pointers are used to retrieve the phrase words one by one
(right to left). Notice that the fact that a word can be encoded with different
codewords in different (composed) phrases does not affect this process at all.

4 Empirical Results

We used some large text collections from TREC-2, namely AP Newswire 1988
(AP) and Ziff Data 1989-1990 (ZIFF), as well as from TREC-4, namely Congres-
sional Record 1993 and Financial Times 1991 to 1994. We also concatenated
them all, creating a corpus we called ALL, with more than one gigabyte and
885,630 different words. We used the spaceless word model [15] to create the
vocabulary; that is, if a word was followed by a space, we just encoded the word,
otherwise both the word and the separator were encoded.

Our first experiment has to do with the number of phrases generated de-
pending on parameter p of Section 3.2. We used AP corpus, of 238 megabytes
and 269, 141 words. The two sets of results were obtained using 10% and 5% of
AP for the first phase (ETDC), respectively. The number of phrases produced
in groups 2, 3, and 4, depends on the probabilities p; we use. Table 1 shows
the results. Group 4 does not have concatenations because there are no phrases
encoded with 4-byte codewords except in the least conservative case. Notice how
the compression ratio improves as the number of concatenations grows when we



[ Phase 1 uses 10% of AP I Phase 1 uses 5% of AP I
prob.|[group 2] group 3[group 4] tot.JRatio%|[[group 2] group 3[group 4] tot. conc[Ratio% ]|
0.995 2 14,592 0 14,594| 32.229 67 26,457 0 26,524 32.226
0.990 3,803 117,079 0| 120,882 31.603 2,441| 135,812 0| 138,253 31.584
0.950||138,745( 1,497,842 0[1,636,587| 27.974|| 97,502|1,668,667 0[1,766,169| 27.617
0.900||276,858|2,118,248| 76,616(2,471,722| 26.862||211,888|2,284,394| 94,001|2,590,283| 26.489

Table 1. Trade-off among compression ratio and number of concatenations.

are less conservative and use p = 0.9 instead of p = 0.99. Of course this must be
weighted against the larger vocabulary of phrases we must store.

We focus now on comparing PBDC against alternative approaches, where
small portions of the ALL corpus are used to initialize the model and then all
the rest of the corpus is added. In our case, we compress the first small part
with ETDC and the rest with PBDC. We test the latter with two groups of
p; parameters: po = 0.9, p3 = 0.99 and py = 0.999, and the more conservative
p2 = 0.99, ps = 0.999 and py = 0.9999.

We also use ETDC in a No-Concatenating mode. This is exactly what is pro-
posed in previous work [10,11] to handle growing collections, just using ETDC
instead of Huffman. That is, during the second phase, new words are added to the
vocabulary, but changes in the word frequency distribution are not considered.

Table 2 presents the results. Each row shows the portion (1%, 5% and 10%)
of the corpus compressed during the first phase. The last row is a special case.
It shows the resulting data when the semi-static ETDC approach was used over
the whole corpus.

Columns 2 and 3 give the size in kilobytes and the number of words of the ini-
tial text. The fourth column shows the compression ratio achieved with ETDC
using the No-Concatenating mode (previous work). Columns 5 to 7 and 8 to
10 show compression ratio, number of concatenations and number of phrases,
respectively, with the two settings for p;. The number of phrases is that of con-
catenations plus the number of single words. This latter number can be smaller
than the vocabulary size because in PBDC some words may appear only as part
of phrases.

The table shows that the compression ratio is always better using PBDC.
We must notice immediately, however, that this result is misleading as it is not
considering the size of the vocabulary, which is much larger with PBDC. Al-
though vocabularies are usually kept in main memory, a version of them (maybe
compressed in some form) must be stored in secondary memory and accounted
for in the final space requirement of the method.

A possible storage method for vocabularies is as follows. The No-Concatenating
mode using ETDC only needs to store a vocabulary array where words must be

I phase 1 [[No conct.]| Phs 2 (0.9;0.99;0.999) [[ Phs 2 (0.99;0.999;0.9999) ]
[[% ALL] K bytes[#vocab|| ratio|[PBDC %[ #concat[#phrases[[PBDC % [#concat[#phrases]|
T%| 10,807] 67,559] 34.831%]| 28.577%2,016,577|3,752,456]| 30.057%] 941,131|1,303,325
5% 54,036(130,585|| 34.636%|| 28.949%|2,844,572|3,684,929(| 31.033%| 916,273|1,782,660
10%| 108,072|178,050|| 34.607%|| 29.117%|2,717,952(3,558,747|| 31.020%| 878,028(1,740,197
100%]1,080,720(885,630(] 32.877%][| 32.877% 0] 885,630]| 32.877% 0| 885,630
Table 2. Compression of ALL Corpus (1,080,720,304 bytes). We do not count the vocabulary sizes.




I phase 1 [[No conct.]| Phs 2 (0.9;0.99;0.999) [[ Phs 2 (0.99;0.999;0.9999) ]
[[% ALL] K bytes[#vocab|| ratio|[PBDC %[ #concat[#phrases[[PBDC % [#concat[#phrases]|

1% 10,807] 67,559]] 35.611%]|| 31.246%]2,916,577(3,752,456] 32.346%] 941,131[1,803,325
5% 54,036(130,585|| 35.416%|| 31.571%2,844,572|3,684,929(| 32.406%| 916,273|1,782,660
10%| 108,072|178,050|| 35.387%|| 31.657%|2,717,952|3,558,747| 32.369%| 878,028(1,740,197
100%]1,080,720[885,630[] 33.657%|| 33.657% 0] 885,630[] 33.657% 0| 885,630
Table 3. Compression of ALL Corpus (1,080,720,304 bytes). We count the size of the vocabularies.

sorted in codeword order. The vocabulary needs 8,428,001 bytes (a 0.780% of
the text). In the PBDC approach, an array with as many entries as phrases
must be stored. The entries must be sorted in codeword order. The first byte of
each entry is used to encode whether the entry is a single word or a multi-word
phrase. If it is a word entry, the byte will give its length, but if it is a phrase entry
that first byte will be 0. In the phrase type, after this first byte, the entry has 2
pointers using 3 bytes each, corresponding to the phrases entries. Therefore an
overhead of 7 bytes for each concatenation must be paid for the PBDC approach
in addition to the vocabulary of the ETDC.

The space needed to store frequency information can be reduced by using
an appropriate compressor, as most phrases with long codewords will share low
frequencies. Just applying classic Huffman entails an overhead of less than 1 byte
per phrase. A more sophisticated approach, encoding frequencies (as if they were
word ranks) with ETDC and then applying classic Huffman to the output bytes
reduces the overhead to 0.25 bytes per phrase.

If the vocabulary is stored with the compressed text and we want to restart
the system for the digital library, all the structures shown in Figure 1 will need
to be rebuilt. Notice that the codeword list of each slot can be easily obtained
because each phrase is linked with all the former ones in a way that all the single
words can be reached.

Table 3 shows the same results, now considering the vocabulary sizes. It
can be seen that PBDC significantly outperforms previous approaches (the No-
Concatenating mode) by around 12%. It can also be seen that the least conser-
vative approach works better even when it has to pay for the larger vocabulary
generated. Finally, we note that PBDC works better when it uses a smaller initial
ETDC phase, which suggests that it could be used as a replacement of ETDC
in general, not only with the aim of updating the text collection.

5 Conclusions and future work

We have presented Phrase Based Dense Code (PBDC), a new compression
method that is useful for digital libraries because it reaches good compression
ratios that do not degrade when the text collection grows. On the other hand,
PBDC allows direct search over the text and efficient decompression of arbitrary
portions of the collection.

PBDC is a hybrid method because it takes advantage not only of the word
frequency distribution but also of the co-occurrence of words. Although more
tuning and experiments have to be performed in real digital library scenarios, and
better implementations of PBDC have to be developed, the promising empirical
results show that this hybrid approach can lead to new compression methods.



We emphasize that the idea of inserting phrases as source symbols of a statistical
encoder has independent interest and can be used in broader scenarios.

It is clear that more experimentation is necessary to optimize the probability
parameters that obtain the best compression keeping a relatively low number of
concatenations, and more research must be done to have better criteria about
when a new concatenation is going to be useful. One possibility is to look for
the probability of the following word, because if that is not a common word, the
new phrase will probably not appear ever again. It would also be interesting to
explore the use of linguistic techniques to choose phrases with higher probability
of future occurrence.
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