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Abstract. Software watermarking has been proposed as a way to prove
ownership of software intellectual property in order to contain software
piracy. In this paper, we propose a novel watermarking technique based
on Zero Knowledge Proofs. The advantages are multi-fold. The water-
mark recognizer can now be distributed publicly. This helps in watermark
being used as a proof for both authorship and authentication of the soft-
ware. The watermark is shown as a mathematical proof which varies
with every run instead of the watermark string as in the previous tech-
niques. This watermarking scheme not only has a high degree of tamper
resistance but also allows the protocol to point out the tampered subset
of the embedded secret data. We present potential attacks on the pro-
tocol and discuss the strength of the watermarking scheme. We present
empirical results based on our implementation.

1 Introduction

Software can be easily copied without permission. Protecting software against
misuse and illegal copying is an important problem. The actual creator of the
software can established his authorship by software watermarking. Software wa-
termarking refers to the process of embedding secret data called watermark in a
software application by the creator of the software so that the authorship of the
software can be proven where the presence of the secret data is demonstrated
by a watermark recognizer. Since the watermark is secret, only the true author
knows its value.

An important consideration in watermarking is protecting the watermark
from the adversary. The adversary might tamper with the program and modify
or completely remove the watermark so that the watermark recognition would
fail; in the existing watermarking schemes, by modifying even one bit of the wa-
termark key, the recognizer would fail to recognize the correct secret data. The
knowledge of the secret key to the adversary will render the whole scheme inef-
fective. These reasons constrain the watermark recognizer from being available
in public.

In this paper, we propose a solution based on Zero Knowledge Proofs (ZKPs)
that allows the watermark recognizer to be available publicly. In the ZKP based
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watermarking scheme, the presence of the watermark is conveyed to the end user
or the adversary without revealing the actual keys by means of a protocol. In
other words, the end-user (or an adversary) is convinced about the authenticity
of the software but has gained zero knowledge about the secret keys.

Zero Knowledge Proofs introduced by Goldwasser, Micali, Rackoff [18], pro-
vide a solution in a situation where a prover wants to prove its knowledge of the
truth of a statement to another party, called the verifier. However, the prover
wants to convey the its knowledge of the proof without conveying the actual
proof. The proof is provided by the interaction between the two parties, at the
end of which the verifier is convinced of the prover’s knowledge of the proof.
However, the verifier has not gained any knowledge in the interaction. In our
case, we show the watermark by a zero knowledge proof.

Let C be the actual creator of the software s. Let A be a malicious adversary
who steals (claims authorship) s. C should prove its true authorship of s. If A sells
a fake software s′ as s to the end-user B, B would like to verify the authenticity
of s. s can be a large program (for e.g., a text editor) or a smaller software
component (for e.g., a spell checker for a text editor). For authentication, the end-
users require a recognizer. Existing watermarking techniques provide proof of
authorship only. We show the application of zero knowledge based watermarking
system to solve both these problems.

We propose two different zero knowledge protocols to achieve these goals and
discuss their relative merits and demerits.

Contributions: The main thesis of this paper is that zero knowledge based
software watermarking has a number of advantages over the existing water-
marking systems including novel applications to the problems of authentication
and authorship. The novelty in this paper is the application of ZKP to software
watermarking. Since the proof of the watermark is given in zero knowledge the
software watermark recognizer can be made public, which is not possible in the
existing models of software watermarking.

The goal of the paper is to show the natural connections between ZKPs
and software watermarking. We show that the proof is independent of water-
marking scheme used. We describe software watermarking using the ZKP of the
“quadratic residue problem”. We use this ZKP here for its ease of exposition.
ZKPs of other languages and other cryptographic protocols can be applied to
software watermarking (see discussion in section 8).

This scheme builds robustness to the authorship problem by tamper-proofing
and detecting the exact bits that were tampered. In addition, it also provides
a solution to the new problem of software authentication, due to the public
distribution of the recognizer.

This paper is the first paper in applying cryptographic protocols to soft-
ware watermarking to the best of our knowledge. This claim needs some clari-
fication. There has been work to apply zero knowledge proofs to media water-
marking and steganography [3,13,1]. However, the issues of media watermarking
are different from software watermarking (for e.g. statistical profiling of static
media objects, dynamic nature of software etc.). The current work was done
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independently of these results; with the initial goal to improve robustness of
the software watermarking schemes. The results we achieve (the computational
difficulty for the adversary, public recognizer etc.) are different from the results
of the media watermarking papers (more details in section 2).

Roadmap: Section 2 discusses existing watermarking schemes. In section 3, we
describe the model and the terminology. We also discuss the problems of author-
ship and authenticity, and the attacks against these problems. Section 4 provides
a specific zero knowledge protocol that we use for software watermarking. The
application of ZKP to software watermarking – the two protocols and the related
issues are described in sections 5 We discuss the advantages of our scheme in
section 6. We describe the experimental results in section 7.2. Section 8 has a
discussion on extensions to the scheme described.

2 Related Work

Watermarking media objects has been an active area of research since the 1990s,
with a large amount of literature [12,20,6] and many different techniques for wa-
termarking audio, video and images. Software watermarking [10] is a relatively
recent research topic. Existing software watermarking schemes can be classified
on the basis of watermark embedding and recognition techniques. Static water-
marking [14,22] refers to embedding the watermark in the executable text or data
segments of the software application such that it does not change the application
semantically. In dynamic watermarking schemes [9], the watermark exploits the
dynamic change of state of the software program. The instructions that gener-
ate the watermark are embedded in the software application. The watermark is
generated at run time.

For example, in dynamic graph-based watermarking [9] the watermark string
is represented as a graph. The instructions to generate this graph are embedded
at various locations in the software application. At run time the embedded in-
structions execute along with the application code and generates the watermark
graph on the heap. The encoding of the graph and the location of embedding
are unknown to the adversary. During program execution, the time of water-
mark creation and heap structure vary in every run. The added stealth makes
it difficult for the adversary to detect and tamper the watermark.

Sandmark [11] is a Java-based watermarking software that implements many
static and dynamic watermarking schemes. Palsberg et al. [21] describe an im-
plementation of the dynamic watermarking scheme [9] to show its practicality.

Media data is static, as opposed to, the dynamic change of state of software.
The issues that arise in the software watermarking systems are different from
the issues in media watermarking systems [10]. For example, statistical tests
on media objects can detect some possible watermarking structures, whereas
detecting software watermarks involve analyzing the heap space which is a hard
problem [9]. Various papers [3,13,1,2] discuss the application of various zero
knowledge proofs to watermark media. These papers deal with the statistical
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distinction of an actual proof from a spurious proof, which is a natural problem
in media watermarking. However, in the current paper, we are concerned with
knowing the secret data and we discuss the computational difficulty to break the
ZKP based watermarking system and its practical implications.

3 Models and Notation

In security systems it is essential that the threat model, the trust and power
assumptions about the various agents, be made explicit to test the limitations of
the system [19]. In this section, we will describe the model and definitions used
in this paper.

A watermark can be viewed as secret data stored in an application. The
secret data could be a string, a number, or other secret data that is hidden
in some format in the application. We will call the secret data the watermark
value and the secret format of the watermark representation its encoding. The
creator of the software embeds the watermark into the software to obtain the
watermarked software.

For example, in graph encoding of a dynamic watermark the secret data or
the watermark value is a number, which is encoded in the form of a graph.
The structure of the graph represents the watermark value in some radix. This
method of representing the watermark string as a graph is called graph-based
watermark encoding. The instructions that generate this watermark graph are
embedded in the application program in an appropriate way to obtain a water-
marked software.

The existence of the watermark is demonstrated by a watermark recognizer.
When the watermark is dynamic, the recognizer executes the watermarked ap-
plication; it observes the program execution trace to identify or recognize the
embedded watermark. In this paper we propose to enhance the recognizer to
facilitate an interactive session for the ZKP.

Prover and Verifier: To describe ZKPs, we need the notion of a prover and
a verifier. The prover is an agent or entity who claims the knowledge of the
proof of a statement and tries to prove it. The verifier is an agent or entity who
tries to learn the proof from the verifier. At the end of the interaction, called a
protocol, a prover convinces the verifier about his knowledge of the proof (but
not any additional knowledge). If the prover does not know the proof, he is called
a cheating prover. The protocol is designed so that the verifier would not accept
the proof of a cheating prover. A cheating verifier, is the one who tries to gain
knowledge from the prover through the protocol executions.

3.1 Threat Model

The end user of the software is the potential adversary in the software piracy
world. In many cases, the end user/adversary also has supervisory privileges on
the host machine where the software is executed. That is, we consider an all
powerful adversary who can observe and modify the software that is available.
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The adversary has access only to the watermarked application but does
not know the encoding scheme or the location of the watermark within the
application. As mentioned before, decoding a dynamic watermark is hard for
an adversary. The adversary tampers with the application for two reasons –
to learn the watermark value, or to modify or completely remove the water-
mark so that the watermark recognition would fail. Availability of the
watermark recognizer publicly brings in extra difficulty of hiding the water-
mark, because it allows the adversary to observe the execution and tamper the
recognizer. This helps the adversary to gain significant knowledge about the
watermark.

The adversary tampering and removing the watermark are called distortive
and subtractive attacks. The adversary can also add an additional watermark,
which is called an additive attack. Adding an extra watermark does not interfere
with the recognizer in recognizing the existing watermark. Therefore we do not
consider additive attacks in this paper. Dispute resolving which arise due to
additive attacks are not considered in this work.

3.2 Watermarking Problems and Their Attacks

In this subsection, we describe the main problems of software copy protection
addressed in this paper and the attacks on those watermarking systems. Sep-
arating the concerns of the problems and the corresponding attacks is helpful,
because the attacks on one system (say, authentication) are completely ineffec-
tive on the other watermarking system (say, authorship, and vice versa). For the
rest of this subsection, let C be the actual creator of the software s, let A be the
malicious adversary, and B the end user.

Proof of Authenticity: C creates a software s. The malicious adversary A
sells a fake product s′ as the original software s. B on buying a software from A,
would like to ensure its authenticity – the creator of the software is indeed A. If
the watermark recognizer of s is available publicly, B can use C ’s recognizer to
test the authenticity. A fake software s′ should not be able to cheat and should
fail the protocol.

Proof of Authorship: The malicious adversary A sells the original software
of C as his own. Now C claims the true authorship, and proves this by showing
the presence of his secret data. If A is to prevent the proof of C ’s claims, he
should remove the secret data in s.

In the authentication problem, we need a public recognizer. The authorship
problem does not need a public recognizer but the watermark recognition is done
in the presence of a trusted third party. The attack for the proof of authorship
is the removal of watermark in the original software, which was not relevant in
the authentication problem. The adversary needs to replicate the watermark in
s′ to provide a proof of authenticity.
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4 ZKP of Quadratic Residue Problem

The ZKP of quadratic residue problem [18,15] is described as follows. Consider
a number n that is a product of 2 large primes. The size of n, |n| = b bits, is a
security parameter. Initially, the prover chooses k-random numbers, s1, s2, . . . , sk

in Z∗
n (Z∗

n is the multiplicative field relative to n, that is, Z∗
n = {x|1 ≤ x ≤

n ∧ gcd(x, n) = 1}). The numbers v1, v2, . . . , vk are chosen such that vi = 1
s2

i

(That is, vi is the inverse of the square of si in the field Z∗
n).

At the start of the protocol, the modulus, n,the number of residues k, and
the inverses, v1, . . . , vk, are known to both the parties. However, s1, . . . , sk are
known only to the prover. This protocol is pictorially represented in Figure 1.
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Fig. 1. Pictorial representation of Protocol 1 with a dynamic graph based encoding

Protocol:

1. Prover picks a random number r ∈ [0, n) and sends x = r2(mod n) to verifier
2. Verifier sends a random bit vector (e1, e2, . . . , ek) to prover, (that is ei ∈

{0, 1})
3. Prover sends to verifier

y = r
∏

ei=1

si(mod n)

4. Verifier computes that
z = y2

∏

ei=1

vi(mod n)

and checks that z = x.
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Note that, the proof varies in every run based on the values of r and ei.
The verifier does not know the value of r in an execution and the prover does
not have control over the random bits, ei. It is hard for the verifier to compute
the values of r and the residues. The computation needed for the verifier – the
multiplication in step 4 – is easy.

5 ZKP for Watermarking

In this section, we present two zero knowledge protocols to show the application
of ZKPs to software watermarking. The first protocol is based on the natural
connection between software authentication and smart card authentication. This
protocol is expository and helps in understanding the modeling issues and the
threat model better. This also helps us to understand the advantages of ZKP
over traditional watermarking systems. Protocol 2 intends to resolve the issues
of Protocol 1. While these are not the most optimal protocol or the best solution
for all software applications, but this ZKP was chosen for the ease of exposition.

Fiat and Shamir [15] show the application of ZKPs to smart card authentica-
tion. The smart-card is the prover which proves its authenticity to the end-user,
who is the verifier, and the smart-card reader supports the interaction. Analo-
gously, for software watermarking, the software is the prover (who has access to
secret data), the watermark recognizer helps in the interaction, and the end-user
is the verifier. This correspondence leads to Protocol 1.

5.1 Protocol 1:

The quadratic residues s1, . . . , sk are stored in the software application as the
secret key (watermark). The creator of the software embeds these in the appli-
cation using any of the dynamic watermarking schemes. The numbers n and
v1, . . . , vk are embedded in the public recognizer. (They can be generated by a
random function [15]). The recognizer provides the interface between the prover
(the application) and the verifier (the user). During the watermark recognition
phase, the recognizer performs the computation needed for the protocol. The
recognizer performs the following operations for each of the steps of the protocol
– it receives the random bits ei from the user, it reads si and computes y etc.

Advantages: It is easy to see that Protocol 1 solves the authorship problem
(when the recognizer is not available in public). The relative merits of this scheme
over the existing watermarking techniques are discussed in the next section.
When the recognizer is distributed publicly to solve the authentication problem
we have the following issues.

Attacks on Protocol 1: The adversary can fix the random string in round 1
and observe the change of state of the recognizer. These attacks are considered in
the context of smart-cards – Reseting attack and Concurrent Reset – CR1, CR2
attacks [8] respectively. The solutions proposed in Bellare et al. [8] to overcome
these attacks can be used in the context of watermarking. In general, any attack
on the protocol is similar to attack on a general ZKP and the solutions to those
attacks apply to watermarking too.
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Drawback of Protocol 1: Although Protocol 1 provides the most natu-
ral mapping for a prover and verifier among the candidate set of software
creator, application software, and the end user, as we discussed before, the rec-
ognizer being available publicly helps the adversary. In addition to the attacks
on the protocol the adversary can observe changes and tamper with the rec-
ognizer. The adversary can potentially learn the si values when there will be
no other secrets left. To prevent these attacks on the recognizer, we can use an
obfuscator [10,5].

Barak, Goldreich et al. [7] show the impossibility of obfuscating programs.
However, their impossibility result is for a generic obfuscator which obfuscates all
programs and does not leak even one bit of information. Obfuscation of a smaller
program (the recognizer) is more difficult (than a very large program) owing to
the smaller space of combinatorial richness. On the other hand, there is some
recent work towards efficient [5] and hardware-based obfuscators [4] which are
very hard to crack. Obfuscation will be easier on a platform like Palladium. We
do not know the practicality of “breaking” an obfuscator or the use of obfuscation
to protect the recognizer.

5.2 Protocol 2

We now present an alternate protocol, to address the drawback of Protocol
1. The basic premise in the design of Protocol 2 is that a compromise of the
inverses (vi), is less harmful than a compromise of the residues (si). The following
protocol allows for the authentication to happen over the Internet. The end user
authenticates the software using the (server of the) creator of the software.

The creator picks numbers, n, s1, . . . , sk and v1, . . . , vk as before. The creator
embeds the vi values in the application (instead of the si as before), and the
protocol is run with the creator of the software as the prover and the software as
the verifier and the recognizer helping in the interaction between the prover and
verifier. The public recognizer, which can be obtained from the creator, neither
contains the residues nor the inverses. The protocol is as before – the software
creator sends x, the recognizer receives the random vector from the end-user etc.

Advantages: Protocol 2 augments the existing watermarking schemes. Hence
it is easy to see that Protocol 2 solves the authorship problem. Protocol 2 also
solves the authentication problem as the user can verify z which changes with
every run. Since r is chosen by the creator and the adversary cannot control
the random source, the Resettable, CR1 & CR2 attacks are not possible. The
adversary can observe the data in the network stream between the recognizer
and the creator. But this provides only x and y which do not help the adversary
to learn the secrets.

If the recognizer is not obfuscated, the adversary can see the change of state
of the recognizer and the location in the application where the watermark is
stored. (Recall that removal of watermark is not a solution for the authentication
problem.) At best, the adversary will only learn the values of vis from all this
information. For the adversary computing the si values is hard.
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If an adversary sells a fake software s′ as the original software s, the end-user
can verify the authenticity of s′ by using the software creator’s publicly available
recognizer. Therefore s′ not only needs to know all the data-structures but it
should also replicate them in s′ (also ensuring that, the data-structures of s′ are
not (mis)recognized as a watermark).

The creator of the software can pick different values (v1, . . . , vk, s1, . . . , sk)
for different copies of the software. We assume that the watermark recognizer
which is available from the creator’s web-page through a secure channel, is pa-
rameterized for every copy (say, using the registration key). Since the creator
of the software is involved in the watermarking protocol, it can detect any sus-
picious protocol requests, (for e.g. too many requests from the same client, too
many requests with the same vi values etc.) and detect an attack.

6 Advantages

In this section, we discuss the advantages of using Protocol 2 for software water-
marking. It is easy to see that most of the advantages for the proof of authorship
hold for Protocol 1 too.

Proof of Authorship: When the recognizer is not distributed publicly using
ZKPs for watermarking has a few advantages to solve the problem of authorship.
In the current watermarking schemes, there is only one query for the watermark
which displays the watermark string. Tampering even one bit of the watermark
will destroy the watermark and the true creator cannot prove his claim of au-
thorship.

With the zero knowledge protocol, the claim for authorship is proved (and
substantiated) in multiple ways (1) When one or a few bits are tampered, only
some of the residues are affected, and the watermarking protocol would work for
the queries involving other residues. Suppose the residue vi is tampered, vi is
used (in Step 4) only when ei = 1. Therefore, the tampering does not affect the
correctness of the proof for all random vectors generated in Step 2 where ei = 0.
There are 2k possible distinct vectors that can be generated in Step 2. When
f bits are tampered, in the worst case, f different residues vi are tampered.
These tampered residues do not affect the validity of the proof for all vectors for
which the corresponding bit ei = 0. The remaining (k − f) bits can take on any
values. We have 2(k−f) vectors in which the tampered residues would be unused.
The fraction of valid proof vectors as a fraction of all the 2k vectors then is
2k−f

2k which is 1/2f . Note that, we are counting only the number of queries and
not the number of different proofs shown (which are larger due to the choice of
random numbers). (2) Based on the successful queries, the creator can exactly
point to the bits that are tampered and the other bits that are tampered. (3)
The creator has knowledge of the numbers si which are not easily computable
by the adversary. The knowledge of the secret keys, hardness of computing the
values and the mathematical proof for the bits tampered strongly support the
claim for authorship.
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Collberg and Thomborson watermarking scheme [9,21], is not resilient to
tampering. Even when one bit of the string is tampered, the watermark recog-
nizer will fail to retrieve the correct watermark. When the same key is replicated
k times, there is only one query that returns same the watermark string. Once
the secret value is known the scheme becomes ineffective [19]. Moreover, there
is no (mathematical) proof for the third-party to believe the claim.

In terms of hardness of learning the secret watermark values, we achieve the
best of both worlds – the stealth of the dynamic watermarks (difficulty of locating
and decoding the watermark) and the computational difficulty of learning the
secret values from the proof.

Proof of Authentication: One of the main advantages of using zero knowledge
proofs for watermarking is the public distribution of the recognizer. In the ex-
isting watermarking schemes, the embedded key is shown during the watermark
recognition process. This is because the watermarking process is symmetric. This
hinders the distribution of watermark recognizer. Knowledge of the embedded
key allows the adversary to create a “dummy recognizer”, which always outputs
the same key during all runs for watermark recognition. The adversary can also
claim the knowledge of the key to the arbitrator and therefore claim to be the
actual creator of the software. The original creator cannot prove his authorship
as the creator does not have extra knowledge over the adversary.

With the ZKP watermarking scheme, however, the creator of the software can
safely distribute/share the watermark recognizer to/with the end users. This is
possible since the recognition protocol does not reveal the values s1, . . . , sk. The
information revealed are x and y (which change in every run). This still makes it
computationally difficult to derive sis. This is similar to the case of smart-cards
where both smart-card and the smart-card verifier are publicly available. The
computational difficulty of reversing the proof makes it hard for the adversary
to break this scheme. As mentioned in the previous section, since the creator is
involved in the verification process it is difficult for the adversary to cheat. As
the watermark recognizer is available to the user, the watermark can be used as
a proof of authenticity of the software.

Computation and Storage costs: We now show that the computation and
the extra storage space needed for the protocol are not very high. The total num-
ber of bits that need to be encoded depends on the number of stored values, k,
and the size of each value, b. We cab choose these values to exceed an acceptable
vale of robustness for the watermarking scheme.

Let us consider k = 20, and n and the residues to be 512−bit numbers. The
total embedded key size is about 20× 512− bits ≈ 1.3KB. The average number
of multiplications needed per recognition is 10. The communication complexity
(the number of bits used during the interaction) is about 1000−bits per proof –
512 bits for each of x and y and the random vector (e1, . . . , e20). This protocol
computation is much cheaper than RSA where many more multiplications need
to be performed by each party[15].

If the watermark string is about 50 characters long, the number of stored
bits in a traditional dynamic watermarking method such as Sandmark is about
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400 bytes. The space overhead compared to Sandmark is a factor of about 2-3
times. If only one 512-bit number (9-character string) is embedded, the space
overhead is about 10 times. The computation overhead is about 10 extra mul-
tiplications. Note that even for a medium sized application, the 1.3KB water-
mark storage space and the computation is dwarfed by the application’s own
requirements.

7 Experimental Evaluation

7.1 Design and Implementation

The security parameters, n – the product of two large primes, k – and the number
of quadratic residues can be chosen according to the degree of security needed
for the protocol. In the Collberg-Thomborson model, only one number is stored,
and it is stored as a graph. However, we need to encode and embed the residues
of numbers. In ZKP based watermarking scheme, in addition to recognizing the
watermark (as done in the earlier schemes), the recognizer acts as the interface
between the prover and the verifier.

We extend Sandmark [11] class hierarchy and methods. We reuse the graph-
based encoding methods and represent each quadratic residue as a separate
graph (each with a different encoding radix). Since each residue is stored as
a different graph knowing one graph to obtain one residue does not yield any
information about the encoding of the other graphs. Each of these graphs is split
into a number of parts so that, even if some subgraph of one of the graphs is
identified, the entire watermark is not revealed. In fact even the graph to which
this particular subgraph belongs to, is not known.

7.2 Empirical Results

In this section, we show that the experimental results follow the theoretical
expectations. We find that the amount of heap space used and byte-codes size of
the program increase linearly with the number of bits of the quadratic residue.

Building a recognizer and the time to embed the residues in the program
does not impact the normal program execution in this model, because it is a one
time cost (similar to compilation) incurred by the creator of the software.

The time to recognize the watermark depends on the program flow and the
watermark data structure identification instructions. We observe that, once all
the watermark data structures are recognized, the time to compute the product
(for Step 3 of the protocol) is negligible. The degree of tamper resistance would
also be as expected theoretically. The two factors that would affect in a program
and which could possibly provide clues to an adversary are the heap space usage
and the increase in the static program size.

To benchmark the results, we ran the watermarking process on a simple
test program that does not allocate any memory for any object other than the
watermark on the heap. We calculate the increase in the amount of heap space as
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Fig. 2. Experimental Results: (a) Heap Space Overhead (b) Program Size Overhead

the number of bits of the quadratic residues increases. To obtain the worst case
usage, we set all bits (ei) to 1, and the resulting heap space sizes are averaged
over experiments. This would give us the exact memory requirements of the
watermark. This is a reasonable assumption because the amount of heap space
used by the program is only for the watermark. The increase in memory usage
due to the watermark is additive and independent of the program, and therefore
we should observe similar heap overhead for other programs as well. Using larger
programs for benchmarking would not give us consistent values across runs as
the heap usage may vary due to program flow, garbage collection (by the virtual
machine) and other program idiosyncrasies. Similarly we measure the increase
in program size.

We embedded 10 residues. We repeat the experiment for residues of various
sizes as shown in the graphs in Figures 2. (a) and 2. (b). We observe that the
increase in program size is linear in the number of bits used to represent the
residues (Figure 2. (a)). The heap space overhead also grows linearly with the
number of bits in the residues as seen in Figure 2. (b).

Since we are using existing watermark encoding techniques, it is a reasonable
conclusion that the overhead of space and heap usage are linear in the number
of residues.

8 Discussion

As we mentioned before, we used ZKP of the quadratic residue problem mainly
for the ease of exposition. More robust protocols can be used for software water-
marking. For e.g. v = a

s2 +b(mod n) for some a, b ∈ Z∗
n would be harder function

to break than the one described [16]. ZKP of other languages,interactive proofs,
one-way functions and public-key schemes can also be used. For instance, the
ZKP of Graph non-Isomorphism problem [17]. This is well suited for software
watermarking as graphs are good, well-obfuscatable watermark representations.

Other watermark or birthmark encoding and embedding methods can also
be used for watermarking.

The zero knowledge proof is independent of the encoding and embedding. As
mentioned above various encoding schemes and cryptographic protocols can be
used for watermarking. The choice of encoding scheme and the cryptographic
protocol is an interesting design issue. For example, for a small application, a
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graph based representation may be a bad choice. This is since the graph based
representations are generally large, and might reveal more than they hide! An
encoding and protocol to suit the application attributes can be chosen.

As noted in section 5, any improvement in obfuscation technology will help
in securing the watermark. In the absence of obfuscation an extremely powerful
adversary (who can read, modify, and tamper the entire watermark), no water-
marking scheme is completely secure! However, our watermarking scheme has a
higher degree of tamper resistance and prevents the creation of new identities
(new pairs of values for s1, . . . , sk and the corresponding v1, . . . , vk) easily.

9 Conclusions

We have presented a new watermarking paradigm for software watermarking
based on zero knowledge proof systems (ZKPs). The proof of the watermark
is provided in zero-knowledge, and therefore the recognizer can be distributed
publicly. We show two protocols for problems of authenticity and authorship
and discuss attacks on protocols. Both the protocols work best when obfuscated.
However, when used without obfuscation, it is computationally hard to obtain
all the secrets from the values learnt in Protocol 2.

With our watermarking scheme we obtain best of both worlds – stealth of
dynamic watermarks and computational hardness of ZKPs, which makes it hard
for the adversary to learn the watermark keys. One of the main advantages
in the proof of authorship is in tamper detection and resistance. Moreover, a
mathematical proof of which bits are tampered can be provided.

This watermarking environment was implemented as an extension to Sand-
mark. The memory usage of the heap and watermarking code size overheads
are characterized experimentally. Both the heap space and byte-code size over-
head are linear in the number of bits to represent the embedded secret data as
predicted theoretically.

This is the first application of a cryptographic protocol for software water-
marking to the best of our knowledge.
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