
Ten Theses on Logic Languages for the Semantic
Web

François Bry1 and Massimo Marchiori2

1 University of Munich, Germany
http://pms.ifi.lmu.de/

2 University of Venice, Italy, and W3C
http://www.w3.org/People/Massimo/

Abstract. This articles discusses the logic, or logic-based, languages
required for a full deployment of the Semantic Web. It presents ten theses
addressing
1. the kinds of logic languages needed,
2. data and data processing,
3. semantics, and
4. engineering and rendering issues.

The views reported about in this article have been presented at the W3C
Workshop on Rule Languages for Interoperability (27-28 April 2005, Wash-
ington, D.C., USA, http://www.w3.org/2004/12/rules-ws/).

1 Languages

Thesis 1 (Diversity) The Semantic Web requires logic languages of different
kinds:

1. three kinds of reasoning, or deductive, languages, viz.
(a) constructive rules (or views),
(b) normative rules (or integrity constraints),
(c) descriptive specifications (or ontologies),

2. and reactive rules.

Constructive rules,3 called ‘views’ in databases, specify how to derive new
data from data already available. Constructive rules typically involve data se-
lection and grouping. Constructive rules are often, but not always, expressed as
implications of the form new-data ⇐ query. Examples of constructive rules are
SQL views, Datalog or pure Prolog clauses,4 and XSLT templates. Queries after
XQuery can be seen as constructive rules with intertwined query and new-data
parts. CSS rules can also be seen as constructive rules: CSS selectors are a kind
of queries, declaration-blocks (or {}-blocks) specify how new, styled, data are
constructed. RDFS semantic rules are further examples of constructive rules.
3 The name stresses that consequences from such rules can be drawn in constructive

logic, i.e. without relying on excluded middle or refutation.
4 I.e. Prolog clauses without imperative predicates.



2

Inference rules5 used in specifying proof systems, are also constructive rules (cf.
infra Thesis 8).

Normative rules, called ‘integrity constraints’ in databases, express condi-
tions that data must fulfill, e.g. ISBN numbers uniquely characterize books, and
that must be checked when data are updated. Data schemas, especially tree
grammars in their various disguises, e.g. DTD, XML Schema, RelaxNG, etc.,
express normative rules.6 Normative rules can be expressed as denials and eval-
uated like constructive rules. A denial is a rule of the form false ⇐ query
where the head false, or error(...), etc., denotes a violation of a requirement
req and the denial’s body queryexpresses a negation of this requirement, i.e.
query ≡ ¬req. E.g. the following denial expresses that ISBN numbers uniquely
characterize book titles: error(ISBN)⇐ book(Title1, ISBN) ∧ book(Title2,
ISBN) ∧ Title1 6= Title2.

Descriptive specifications specify data types and relationships between data
types without necessarily referring to actual data. They are used in software
specifications, data schemas, and ontologies. They are often expressed in logics7

corresponding to classical logic fragments with restricted quantifications of the
forms ∀x : s F [x] and ∃x : s F [x] restricting the variable x to some sort, class,
entity, etc. s. Such quantifications can be expressed in classical logic as ∀x s(x) ⇒
F [x] and ∃x s(x) ∧ F [x], resp. using a conveniently defined unary predicate
symbol s.

It is worth noting that, in many cases, the distinction between normative
rules (integrity constraints) and descriptive specifications (ontologies) subtly de-
pends on the use. Consider a system of rules expressing some regulation, e.g.
under which conditions students are allowed to register for courses. In drawing
conclusions from the regulation, or in verifying that it is consistent or non-
redundant, the regulation is used as a descriptive specification – certain forms
of reasoning such as excluded middle and refutation make sense and might even
be indispensable. In verifying that student registrations to courses enforce the
regulation, the regulation is used as integrity constraint – excluded middle and
refutation do not make sense.8

Reactive rules specify how a data store can be modified depending on the
current state of the store and, in some languages, on events. Reactive rules com-
monly have one of the forms if condition then action and on event if
condition then action. Rules of the first kind are called production rules,[3]
rules of the second, ECA (short for Event-Condition-Action) rules. In produc-
tion and ECA rules, condition is an (atomic or compound) query to the data

5 E.g. modus ponens: If both A and A⇒ B are provable, then B is provable.
6 However, variables in grammars differ from logic variables, since different occurrences

of a same grammar variable represent different data instances.
7 E.g. sorted logics and description logics.
8 One might object that Prolog, or a Prolog-like proof-system, can used for integrity

checking, integrity constraints been expressed as denials, and that the proof method
of Prolog, SLD resolution, is a refutation method. In fact, as opposed to general
resolution, SLD resolution can be re-expressed in constructive logic [8], i.e., without
referring to refutation.



3

store similar to a body of a constructive or normative rule, and action is an
atomic (i.e. single) or compound update of the data store (typically consisting
of insertions, removal, and/or changes in a data item). In an ECA rule, event
denotes an event query, i.e. a query to events received so far. An event query can
be atomic, i.e. refer to a single event, or compound, i.e. refer to composite events.
In the following, the condition of a production or ECA rule is called standard
query so as to stress its similarity with the body of a constructive or normative
rule.9

Thesis 2 (Negation) Non-monotonic negation10 is the negation of choice for
constructive rules (views), normative rules (integrity constraints), and reactive
rules. Monotonic negation may, but must not, be offered in constructive, nor-
mative, and reactive rules. Monotonic negation is the negation of choice for
descriptive specifications (ontologies).

Non-monotonic negation, cf. [7] for selected articles, is the negation of choice
for constructive rules (views) because data constructions depends on both, avail-
able and non-available data. Since normative rules can be expressed as construc-
tive rules (cf. supra Thesis 1), non-monotonic negation is also the negation of
choice for normative rules. Non-monotonic negation is the negation of choice for
reactive rules, too, for both ‘event queries’ (i.e. the event parts of ECA rules)
and ‘standard queries’ (i.e. the condition parts of production or ECA rules)
refer to the presence or absence of data, events resp.

Monotonic negation is the negation of choice for descriptive specifications
because descriptive specifications do not refer to actual data, e.g. the flights
listed in a time table, but instead to meta-level specifications, e.g. conditions
flights must fulfill, the negation needed in descriptive specifications does not
have to refer to the absence or non-availability of such data.

Recall (cf. supra Thesis 1) that the same rule can be used as a normative
specification (integrity constraint) or descriptive specification (ontologie). As a
consequence, the choice of a negation semantics, monotonic or non-monotonic,
does not necessarily depend on the syntax of negation.

Thesis 3 (Coherency and Inter-Operability) Inter-operable logic languages
of the various kinds should be striven for. Inter-operability is sustained by the
following forms of coherency: syntax coherency, rendering coherency, reasoning
coherency, and explanation coherency.

Syntax coherency means that expressions from different languages with sim-
ilar meanings are expressed similarly. Rendering coherency means that expres-
sions from different languages are (visually or verbally) rendered (cf. infra Thesis
10) similarly, possibly using the same rendering methods or tools. Reasoning co-
herency means that similar forms of reasoning applied on different languages,

9 [13] further discusses how constructive and reactive rules, called ‘passive’ and ‘active’
resp., relate.

10 The negation used in concluding that flights not mentioned in a time table do not
exist.



4

e.g. for deriving new data using constructive rules, for computing the closure of
RDF specifications, or for checking normative rules, are performed using simi-
lar reasoners. Reasoning coherency is desirable both for programmers and lan-
guage design, and implementation. An important aspect of reasoning coherency
is to have a common semantics for non-monotonic negation in constructive, nor-
mative, and reactive rule languages. Explanation coherency means that similar
forms of reasoning are explained, by explanation tools, relaying on similar ex-
planation paradigms.

2 Data and Data Processing

Thesis 4 (Data Distribution and Versatility, and Meta-Level Reason-
ing) A logic language for the Semantic Web must access data everywhere on
the Web; be ‘data versatile’, i.e. capable of accessing data and meta-data in any
common Web Semantic Web format – especially XML, RDF, Topic Maps, and
OWL, as well as the formats of Semantic Web logic languages –, and capable of
some forms of meta-level reasoning

There has already been a number of pleas in favour of data versatile query
languages, e.g. [19].

Meta-level reasoning poses interesting, but not impossible, challenges. Meta-
level reasoning has bad reputation among Computational Logicians, however,
conveniently, e.g. constructively, restricted, cf. [6] meta-level reasoning is seman-
tically as safe, and practically as useful as higher-order functions in Functional
Programming. Note that meta-level reasoning is already present, though in a
limited form, on the Semantic Web: RDF Schema, the “RDF Vocabulary De-
scription Language”, is itself an RDF Vocabulary for describing terms in an RDF
vocabulary.

Thesis 5 (Reasoning Paradigms) Constructive and normative rules (views
and integrity constraints) should be evaluable by both forward chaining11 and
backward chaining12, backward chaining being the reasoning paradigm of choice.
Descriptive specifications (ontologies) call for (non-constructive) reasoning, in-
cluding excluded middle13, non-contradiction14 and refutation15. The reasoning
paradigms of Semantic Web logic languages should support grouping, aggrega-
tion, theory reasoning, and non-monotonic negation.16

On the Web, forward chaining is well-suited only for well-defined and closed
sets of Web sites. Queries referring directly, or indirectly (through sub-queries
triggered by constructive rules at queried Web sites) to a set of Web sites that

11 Also called bottom-up reasoning.
12 Also called top-down reasoning.
13 At least one of A and ¬A is true.
14 At most one of A and ¬A is true.
15 If under the assumption A, a contradiction, i.e. B and ¬B for some B, can be derived,

then ¬A is proven.
16 Preferably with a semantics understandable without PhD in Logic!



5

cannot be statically17 recognized, cannot be evaluated by forward chaining. In-
deed, with such queries, forward chaining would require to compute intermediate
results from all possible Web sites.Thus, on the web, backward chaining is the
reasoning paradigm of choice for constructive and normative rules.

Theory reasoning, a term coined after Mark Stickel’s ‘theory resolution’ [20],
denotes enhancing a general purpose reasoning method with special reasoners
where convenient, e.g., reasoning on bank accounts with a basic arithmetic ‘the-
ory reasoner’ instead of the Peano axioms of Arithmetic.

Thesis 6 (Event Processing) Event broadcasting is undesirable on the Web.
Events can be exchanged between Web sites using a push, or a pull model. Pushed
events can be sent as data streams, calling for streamed query evaluation methods.
Evaluating event queries, e.g. the event parts of ECA rules, calls for event driven
query evaluation methods.

On the Web, events can not be broadcasted, i.e. indiscriminately sent to all
sites, because this would result in too high a traffic. Events can be exchanged
on the Web sites via either push, i.e. events are sent by the emitters to specific
recipients, or pull methods, i.e. each site publishes the events it emits, together
with the event’s recipients, on a ‘blackboard’ which is repeatedly queried by
the potential recipient sites. Such queries are called continuous. With the push
model, event can be sent as ‘data streams’ [4]. Continuous queries [22, 1, 17,
18], data streams [4], and event queries [5, 2] require specific query evaluation
methods.

3 Semantics

Thesis 7 (Declarative Semantics) Logic languages for the Semantic Web, ex-
cept reactive rule languages, should have declarative semantics defined as ‘Tarski-
style model theories’.

Tarski-style models [12], i.e., the models of classical logic, are expressed in
terms of so-called ‘valuation functions’ that are defined recursively on a formula’s
structure. They make possible to evaluate a formula independently of other for-
mulas. Therefore, they are easy to understand, and they do not require complex
operational semantics.18

Production and ECA rules amount to imperative programming, hence they
are inherently not amenable to declarative semantics. However, (1) declarative
semantics are possible and desirable for the ‘standard query’ and ‘event query’
languages used in production or ECA rules languages, and (2) a formal semantics
amenable to reasoning on production and ECA rule programs is possible (and
desirable!).

17 I.e. before query evaluation.
18 Note that most declarative semantics for non-monotonic negation that do not assume

stratified, or stratifiable, rules, e.g. the stable [11] and well-founded [10] semantics,
do not have Tarski-style model theories.



6

Thesis 8 (Operational Semantics) The operational semantics of a logic lan-
guage is conveniently expressed with constructive and normative rules. Back-
tracking is useful for a fine tuning of proof construction in implementing logic
languages.19

The operational semantics of a logic language or reasoner is usually and
conveniently expressed in terms of inference rules of the form:

Premise1 . . . Premisen

Conclusion

Inference rules can be seen as constructive rules in a meta-language specifying
proofs for formulas of the object-level language. Thus, a constructive rules are
subjacent to (the procedural semantics of) every rule language and reasoners.
This observation has led to successful uses of the run-time system [21] of Prolog
or of the Prolog language itself [14] for implementing efficient theorem provers.
Normative rules, too, are convenient in specifying the procedural semantics of
rule languages and reasoners for expressing constraints on the proof, or search,
space. Reactive rule can be convenient in implementing logic languages and
reasoners.20

4 Engineering and Rendering

Thesis 9 (Language Engineering) Logic languages for the Semantic Web
should be referentially transparent, strongly closed, have Web formats, and mod-
ern type systems.21 The specification of abstract machines should be striven for.

Referential transparency, i.e. within a same declaration scope two occurrences
of a same expression have the same meaning, is desirable because it is the trait
of declarativity. Closure, i.e. the data returned by a program are like, e.g. have
formats similar to, the data accessed by programs in the same language. Strong
closure means that the data returned by a program can be further processed by
this same program. Strong closure is desirable because it eases structuring pro-
grams in sub-programs. Web formats, especially XML formats such as RuleML
formats, are desirable for rule languages because they eases inter-changing pro-
grams on the Web, e.g., for Web services applications. Abstract data types and
19 Backtracking is however undesirable as a programming concept for high-level logic

languages like the logic languages needed on the Semantic Web because it destroys
the language’s declarativity. The operational paradigm(s) desirable for a Semantic
Web logic languages can be equivalently called ‘backtracking-free logic programming’
or ‘set-oriented functional programming’. It is worth noting almost of the query
languages proposed for RDF are of this kind.

20 Since constructive and reactive rule languages can be used in specifying and imple-
menting logic languages and reasoners, some claim that a single language of such a
kind would be sufficient for the Semantic Web. This amounts to claiming that only
one single, e.g., imperative, programming language could be sufficient for developing
software.

21 I.e., type systems supporting abstract data types and offering static type checking,
parametric polymorphism, and modules.



7

static type checking are desirable for Semantic Web reasoning and reactive lan-
guages as they are for any other programming languages: “Well typed programs
do not go wrong.” [16] Abstract machines are desirable because they are essential
for wide-spreading languages.

Thesis 10 (Visual and Verbal Rendering) Logic languages for the Semantic
Web should have visual and verbal renderings.

Declarative languages are especially well-suited to visual rendering and visual
rendering is very appealing to potential users of logic languages for the Seman-
tic Web, as the many systems for graphical rendering and/or visualization of
business rules amply demonstrate.

Programs used on the Web and Semantic Web should be verbalizable, i.e. the
rules or formulas they consist of should be expressible in a controlled language
[15, 9], i.e. in a non-ambiguous language resembling natural language. Rules, e.g.
expressing policy specifications and trust, verbalized in a controlled language
would considerably help wide-spreading the (verbal as well as non-verbal forms
of the) languages they are expressed in.

Acknowledgments. The ideas expressed in this article have been significantly
influenced by the research project REWERSE (Reasoning on the Web with
Rules and Semantics, http://rewerse.net). The authors thank their colleagues
of REWERSE for many fruitful discussions on the subject of this article. This
research has been funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net).

References

1. Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams.
SIGMOD Record, 2001.

2. James Bailey, François Bry, and Paula-Lavinia Pătrânjan. Composite Event
Queries for Reactivity on the Web. In Proc. 14th Int. World Wide Web Con-
ference, 2005.

3. Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming
Expert Systems in OPS5: An Introduction to Rule-based Programming. Addison-
Wesley, 1985.

4. François Bry, Fatih Coskun, Serap Durmaz, Tim Furche, Dan Olteanu, and Markus
Spannagel. The XML Stream Query Processor SPEX. In Proc. 21st Int. Conf. on
Data Engineering (ICDE), 2005.

5. Franois Bry and Paula-Lavinia Pătrânjan. Reactivity on the Web: Paradigms and
Applications of the Language XChange. In Proc. 20th Annual ACM Symp. Applied
Computing (SAC), 2005.

6. Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A Foundation
for Higher-Order Logic Programming. Jour. of Logic Programming, 15(3):187–230,
1993.

7. Jürgen Dix, Lúıs Moniz Pereira, and Teodor C. Przymusinski., editors. Selected
Papers from the Non-Monotonic Extensions of Logic Programming. LNCS 1216.
Springer-Verlag, 1996.



8

8. K. Doets. From Logic to Logic Programming. MIT Press, 1994.
9. Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled English

– Not Just Another Logic Specification Language. In Proc. 8th Int. Workshop
(LOPSTR), LNCS 1559. Springer-Verlag, 1999.

10. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Jour. ACM, 38(3):620–650, 1991.

11. Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In Proc. Int. Conf. and Symp. Logic Programming, 1988.

12. Jerome Keisler. Handbook of Mathematical Logic, chapter Fundamentals of Model
Theory, pages 47–103. North-Holland, 1989.

13. Rainer Manthey. Active and Passive Rules in Database Systems: How do They
Relate. In Proc. 1st Workshop on Advances in Databases and Information Systems,
1994.

14. Rainer Manthey and François Bry. SATCHMO: A Theorem Prover Implemented
in Prolog,. In Proc. 9th Conf. on Automated Deduction, 1988.

15. Massimo Marchiori and Janne Saarela. Query + Metadata + Logic =
Metalog. In Proc. QL ’98, The Query Languages Workshop, 1998. http:
//www.w3.org/TandS/QL/QL98/.

16. Robin Milner. Fuly Abstract Models of Typed λ-Calculi. Theoretical Computer
Science, 4(1):1–22, 1977.

17. Benjamin Nguyen, Serge Abiteboul, Gregory Cobena, and Mihai Preda. Monitor-
ing XML Data on the Web. In Proc. ACM SIGMOD Intl. Conf. on Management
of Data, 2001.

18. Sandeep Pandey and and Soumen Chakrabarti Krithi Ramamritham. Monitoring
the Dynamic Web to Respond to Continuous Queries. In Proc. 12th Int. World
Wide Web Conference, 2003.

19. Jonathan Robie. The Syntactic Web: Syntax and Semantic on the Web. In Proc.
XML Conf. and Exposition, 2001.

20. Mark E. Stickel. Automated Deduction by Theory Resolution. Jour. of Automated
Reasoning, 1(4):333–355, 1985.

21. Mark E. Stickel. A Prolog Technology Theorem Prover: Implementation by an
Extended Prolog Computer. Jour. of Automated Reasoning, 1988.

22. Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous Queries
over Append-Only Databases. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1992.


