
Appears in Secure Data Management: Second VLDB Workshop—SDM 2005, Lecture Notes in Computer Science 3674 (2005) 33–46. Springer-Verlag.

Experiments With Queries Over Encrypted
Data Using Secret Sharing

Richard Brinkman1,3, Berry Schoenmakers2,3, Jeroen Doumen1, and Willem
Jonker1,3

1 University of Twente, The Netherlands,
{brinkman,doumen,jonker}@cs.utwente.nl

2 Technical University of Eindhoven, The Netherlands,
berry@win.tue.nl

3 Philips Research, The Netherlands

Abstract. To avoid insider attacks one cannot rely on access control to
protect a database scheme. Encrypting the database is a better option.
This paper describes a working prototype of an encrypted database sys-
tem that allows remote querying over the encrypted data. Experiments
with the system show the practical impact of our encoding scheme on
storage space and CPU time. Two algorithms, each with two different
matching rules, are compared to each other.

1 Introduction

Enterprises often rely on access control to protect their assets. However, a study
of the Computer Science Institute and the FBI [1] shows that most successful
attacks are conducted by insiders. A possible solution is to replace access control
with database encryption where the user keeps the encryption key secret. This
shift opens up a new research area of query evaluation over encrypted data.

In this paper we present an extension of our encrypted database system of
[2]. We summarise this scheme in section 3. See [2] for further information on
the background of searching in encrypted databases. In this paper we present
an augmented version of the database system. The former solution lacks the
ability to search in the data itself, it only allows searching the XML tags. In the
new solution the textual data of an XML document is represented as a trie [3],
enabling searching tags as well as data. In section 4 we show how to represent
the text as a trie.

To investigate the practical impact of our database scheme, we have built an
implementation. In section 5 we describe some of the implementation issues. In
section 6 we use the implementation together with a test database to do several
experiments in order to measure the storage space and the influence of the search
algorithm and the configuration settings on the CPU time.

2 Related Work

Traditionally, databases are protected against malicious use by means of an
access control mechanism. However, the database management system itself is

trusted. When the data is outsourced the database system cannot be trusted
anymore to keep the query and the answer secret. Private Information Retrieval
[4] aims at letting a user query the database system without leaking to the
database which data was queried. The idea behind PIR is to replicate the data
among several non-communicating servers. A client can hide his query by asking
all servers for a part of the data in such a way that no server will learn the
whole query by itself. Chor et al [4] prove that PIR with a single server can only
be done by sending all data to the client for each query. In practice database
replication is not preferable.

PIR aims at hiding the query from the database leaving the data in the
clear. Song, Wagner and Perrig [5] suggest a different technique that supports
encrypting the data itself. An encrypted keyword can be found in an encrypted
text without the server learning either the keyword or the plaintext. We adapted
this work to exploit the tree structure in XML documents in [6].

3 Overview Of Our Approach

In our database scheme a plaintext XML document is transformed into an en-
crypted database by following the steps below. See figure 1 for the encoding of
a concrete example.

1. Define a function map : node → Fpe , which maps the tag names of the nodes
to values of the finite field Fpe , where pe is a prime power (p prime and e a
positive integer) which is larger than the total number of different tag names
(figure 1(b)).

2. Transform the tree of tag names (figure 1(a)) into a tree of polynomials
(figure 1(d)) of the same structure where each node is transformed to f(node)
where function f : node → Fpe [x]/(xp−1 − 1) is defined recursively:

f(node) =
{

x−map(node) if node is a leaf node
(x−map(node))

∏
d∈child(node) f(d) otherwise

Here child(node) returns all children of a node.
3. Split the resulting tree into a client (figure 1(e)) and a server tree (fig-

ure 1(f)). Both trees have the same structure as the original one. The poly-
nomials in the client tree are generated by a pseudorandom generator. The
polynomials of the server tree are chosen such that the sum of a client node
and the corresponding server node equals the original polynomial.

4. Since the client tree is generated by a pseudorandom generator it suffices to
store the seed on the client. The client tree can be discarded. When necessary,
it can be regenerated using the pseudorandom generator and the seed value.

It is simple to check whether a node N is stored somewhere in a subtree by
evaluating the polynomials of both the server and the client at map(N). If the
sum of these evaluations equals zero, this means that N can be found somewhere
in the subtree N . To find out whether N is the root node of this subtree, you
have to divide the unshared polynomial by the product of all its direct children.
The result will be a monomial (x− t) where t is the mapped value of the node.

2

c

b

a b

c

a

(a) XML
Example

name value

a 2
b 1
c 3

(b) Mapping
Function x− 3

(x− 1)(x− 3)

x− 2 x− 1

(x− 3)(x− 2)(x− 1)

(x− 1)2(x− 2)2(x− 3)2

(c) Unshared/unreduced Encoding

x + 2

x2 + x + 3

x + 3 x + 4

x3 + 4x2 + x + 4

2x3 + 3x2 + 2x + 3

(d) Unshared/reduced Encoding

=

3x2 + 2x + 1

x3 + 2x2 + 2

3x3 + 2x2 + x 2x3 + x2 + 3x + 1

2x3 + x + 2

2x3 + x2 + 1

(e) Client Encoding

+

2x3 + 3x2 + 4x + 1

x3 + 3x2 + x + 1

2x3 + 3x2 + 3 3x3 + 3x2 + 3x + 3

4x3 + 4x2 + 2

2x2 + 2x + 2

(f) Server Encoding

Fig. 1. The mapping function (1(b)) maps each name of an input document
(1(a)) to an integer. The XML document is first encoded to a tree of polynomials
(1(c)) before it is reduced to the finite field F5[x]/(x4 − 1) (1(d)) and split into
a client (1(e)) and a server (1(f)) part.

3

4 Trie Enhancement

The approach sketched in section 3 is only efficient when pe is small. This is
no problem for tag names that are chosen from a fixed sized set (described in
a DTD), but cannot be used for the data because the number of different data
nodes is unbounded. And since each polynomial takes (pe − 1) log2 pe bits of
storage space, it is important to keep pe as small as possible.

In this paper we propose a representation of XML documents allowing for
efficient searching in data nodes. Basically, all data nodes are transformed to
their trie representation [3].

A data string in the original XML document is translated to a path of nodes
where each node is chosen from a small set. Assume this set contains a, b, . . . , z.
With this set we can translate the tree shown in figure 2(a) to an equivalent
trie 2(b) or an uncompressed trie 2(c). An uncompressed trie stores exactly the
same information as the original data string, whereas the compressed trie loses
the order and cardinality of the words. If this is a problem an encryption of the
data string may be added to the node. In this example we first split a string into
words, represented by paths, and then each path is split into several characters.
Other ways of splitting the string into nodes are possible.

On average removing duplicate words from a text reduces the size by 50%.
Reducing a text into a compressed trie reduces the size by 75-80%. However each
node is converted into a polynomial of size (pe − 1) log2 pe bits. In case p = 29
a polynomial costs 17 bytes. Due to the trie compression the ‘encryption’ of a
single letter will cost approximately 3 1

2 − 41
2 bytes.

Having translated the original XML tree into a (compressed) trie, the same
strategy of [2] can be used to encode the document. Like the document, also the
queries should be pre-tuned to the new scheme. A query like

/name[contains(text(), "Joan")]

is first translated to

/name[//J/o/a/n]

before it is translated to

/map(name)[//map(J)/map(o)/map(a)/map(n)].

Simple regular expressions like . and .* can be mapped to their trie-equivalents
* and //.

5 Implementation

In the previous sections we described our theory of searching in encrypted data
by using secret sharing and a special kind of encoding/encryption. To demon-
strate that searching in encrypted data is not only possible in theory, but also
in practice, we have built a prototype implementing the encoding and search
strategy described in section 3.

4

”Joan Johnson”

name

(a) Original

⊥

n

a

⊥

n

o

s

n

h

o

J

name

(b) Trie

⊥

n

a

o

J

⊥

n

o

s

n

h

o

J

name

(c) Uncompressed trie

Fig. 2. Transformation of an XML document tree into either a compressed or
an uncompressed trie

The implementation is written in Java and set up using a client/server model.
Figure 3 shows the architecture. We will elaborate on each component in the
following sections.

The server stores all the polynomials in a database. The database is not
protected and can be considered publicly readable. However, the client encodes
the original plaintext XML document into encoded polynomials by using the
MySQLEncode class. The encoder needs a private seed and a private map file
which will be re-used by the query engines. The map file is just a text file which
stores the mapping between tag names and corresponding values from Fpe .

The prototype consists of two different query engines: SimpleQuery and
AdvancedQuery. Both engines share the same filtering technique. The filter is
distributed over the client and the server. The filter classes perform basic oper-
ations like function evaluation and tree reconstruction.

5.1 MySQLEncode

Since the server should not learn the information it is storing, it is the client’s
responsibility to fill the database.

The MySQLEncode class acts on three files which are provided on the command-
line:

5

map seed

MySQLEncode
doc

XML

SimpleQuery

AdvancedQuery

ClientFilter
RMI

ServerFilter

DB

serverclient

encoding

querying

Fig. 3. Client/Server Architecture

1. A map file
2. A seed file
3. The original XML document

The map file is a property file where each line is of the form name = value,
where name is one of the tag-names as specified by the DTD or XML schema
and value ∈ Fpe is the value it is mapped to.

The seed file acts as the encryption key and should therefore be kept secure.
Without the seed file it is impossible to regenerate the client tree, and without
the client tree the data on the server is meaningless.

The original XML document is parsed by a SAX parser4. This means that
there is no need for a big client machine with lots of memory. This fits nicely
into our philosophy of small clients (cell phones, for example) and big servers.
The parser linearly reads the document and constructs the tree on the fly. It
only needs memory proportional to the depth of the tree. The tree structure is
stored by adding pre, post and parent values to each polynomial. The pre and
post fields are sequence number that count the open tags respectively close tags.
The parent fields refers to the pre value of its parent. This is a common way to
store a tree structure into a flat relational table [2,7]. In our prototype we use
MySQL5 as the database back-end. In order to speed up the search process the
pre, post and parent fields are indexed by a B-tree.

4 www.saxproject.org/
5 www.mysql.com

6

www.saxproject.org/�
www.mysql.com�

5.2 The Filter Implementation

Each different query engine (see section 5.3) will use the same set of basic oper-
ations. These operations are offered by ServerFilter and ClientFilter. Both
classes implement a common interface Filter but are adapted to work on the
server site respectively the client site. The two objects communicate with each
other using Java’s Remote Method Invocation (RMI). The operations consist
of functions to query the tree structure as well as to evaluate the polynomi-
als. ServerFilter will evaluate the polynomials stored in the database for the
given values. ClientFilter first regenerates the client polynomial by using the
pseudorandom generator with the secret seed and the pre location of the poly-
nomial. After the evaluation of its generated polynomial it will add the result to
the retrieved value from the server. Only when the sum equals zero, the location
is returned to the invoking query engine, otherwise the next candidate node is
generated/retrieved, evaluated and added together.

With the evaluation method only the containment of a node in a subtree
is tested. To be sure that the node is equal to the root of the subtree there
is an option to check the first factor of a node. To retrieve the factor (x − t)
in f(x) = (x − t)

∏
c(x)c∈children(f) it is necessary to reconstruct the node’s

polynomial and all its child polynomials. Because the equality test is expensive
it should only be invoked when absolutely necessary.

The operator nextNode() acts as a pipeline. The thin client only needs to
have one node in memory at a time. The big server will do the buffering of the
intermediate results.

5.3 Query Engines

Since it was not a priori clear which search strategy is the best, we have decided
to implement two query engines, called SimpleQuery and AdvancedQuery, each
using a different search strategy, as explained below.

SimpleQuery The most simple search strategy parses the XPath6 query into
steps where each step consists of a direction (child (/) or descendant (//)) and
a tag name. Two special tag names exist: .. matches the parent and * matches
every child.

In this example we make use of the containment test only. In section 6
we will also use the equality test. There we will compare the two tests to see
whether one is preferable to the other. We will sketch the algorithm by using an
XML document generated by the XMark benchmark [8] and the example query
/site/*/person//city. See appendix A for the DTD. This query is parsed into
the following steps:

/site The first slash instructs the search engine to locate the root node (i.e. the
only node without a parent (parent=0)). Since the parent field is indexed

6 www.w3.org/TR/xpath

7

www.w3.org/TR/xpath�

this is done in constant time. After the root node has been located both the
stored polynomial on the server and the generated polynomial on the client
are being evaluated at map(site). Only when the sum equals zero the next
steps are carried out.

/* At this point the preliminary result set (implemented as a Queue on the
server) will consist of only a single element. This step will change the result
set into all children of the root node (i.e. regions, categories, catgraph, people,
open auctions and closed auctions). The * reduces the workload because no
additional filtering is needed.

/person All children of the 6 nodes in the result set are being examined in this
step. Evaluation at map(person) is done for all the polynomials found. Only
those nodes for which the sum of the server and client evaluations equals
zero remain in the result set.

//city This step is quite expensive in terms of execution time. The result of
the previous step is already quite large and this step even increases the
number of possible nodes that have to be checked. All the descendants of
the person-nodes (i.e. name, emailaddress, phone, address, homepage, credit-
card, profile, watches, street, city, country, province, zipcode, interest, edu-
cation, gender, business, age, watch, category, open auction and description)
have to be checked against map(city).

AdvancedQuery In contrast to the SimpleQuery the AdvancedQuery takes
the tree as the starting point and parses it from root to leaf nodes. At each step
the whole remaining query is taken into account. We take advantage of the fact
that nodes have knowledge of all descendants. This way it is possible to identify
dead branches early in the search process at the cost of more evaluations for
each node.

For easy comparison we use the same query and the same test (containment)
as before.

/site/*/person//city The AdvancedQuery engine always starts at the root
node. This node is checked against map(site), map(person) and map(city).
Only when all three sums are zero the next steps are carried out. Note that
we can only check for the existence of a node. The structure of the query
cannot be taken into account since the nodes don’t store the structure of the
subtree.

/*/person//city The engine proceeds by consuming the /site part of the
query and traversing the tree one step down to find the root’s children. This
unfiltered set of nodes are regions, categories, catgraph, people, open auctions
and closed auctions. After filtering only the people, open auctions and closed -
auctions remain; all the other nodes do not contain person or city nodes.
Thus we may skip these branches.

/person//city In this step the /* has been removed. This means we tra-
versed the tree one step downwards. The children of people, open auctions
and closed auctions are person, open auction and closed auction. Because
open auction and closed auction contain person and city nodes they remain

8

in the result set even after filtering. The implementation does not check if
the node is a person but if it contains it. This is done because we chose to use
the containment test instead of the equality test. In section 6 we investigate
whether this was a good choice or not.

//city From the person, open auction and closed auction nodes we interac-
tively walk downwards in the tree evaluating the polynomials at map(city)
until this results in a non-zero sum. The result set now contains all nodes
having a city inside. If we had chosen the equality test only the city nodes
would have been in the result set.

6 Experiments

The prototype is an ideal instrument to perform experiments with. With the
experiments described in this section we would like to find out what the prac-
tical impact of our encrypted database scheme is. We investigated the storage
space overhead (section 6.1), the influence of the different search engine algo-
rithms (section 6.2) and the difference between the equality and containment
tests (section 6.3). All experiments act on an auction database synthesized by
the XMark benchmark [8]. The DTD (see appendix A) contains 77 elements. We
chose p = 83 and e = 1 throughout this section.

6.1 Encoding

Encoding an XML document as polynomials requires extra storage space. This
is due to the fact that each polynomial not only stores the information of its own
node but also of all its descendants. Figure 4 plots the encoded database size
against the input XML size. Approximately 17% of the output size is caused by
the pre, post and parent values (not plotted in the figure). The remainder is thus
approximately 1.5 times the size of the input. To speed up the search process we
added indices to the pre, post and parent fields using B-trees. The size of these
indices is added on top of the output size. As expected both the storage space
and the encoding time are strictly linear in the input size.

6.2 Query Engines

One of the main reasons for building the prototype was because it was not
a priori clear what the most efficient query engine algorithm is. Is it best to
evaluate a polynomial at as many points as possible at each node to find an
early dead branch or should you evaluate at a single point at a time? To answer
this question we performed two tests: one with the simplest of all queries at
increasing length and one with more advanced queries containing // and *.

The first test is the worst case scenario for the advanced query engine. The
queries in table 1 are chosen in such a way that there is no gain for the advanced
algorithm. For instance it is a waste of effort to check whether a europe node

9

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
ti

m
e

(s
)

o
u
tp

u
t

si
ze

(M
B

)

input size (MB)

Encoding

output size index size time

Fig. 4. Encoding

contains an item, description, parlist, listitem, text and keyword node, because
the DTD (see appendix A) dictates it to be always the case.

As can be seen in figure 5, where the number of evaluations is plotted against
the queries of increasing length shown in table 1, the two search algorithms are
comparable. They differ by at most a constant factor.

The second test with queries containing // and * was performed in conjunc-
tion with the strictness test. The test result are given in the next section.

1 /site

2 /site/regions

3 /site/regions/europe

4 /site/regions/europe/item

5 /site/regions/europe/item/description

6 /site/regions/europe/item/description/parlist

7 /site/regions/europe/item/description/parlist/listitem

8 /site/regions/europe/item/description/parlist/listitem/text

9 /site/regions/europe/item/description/parlist/listitem/text/keyword

Table 1. Queries with increasing length. The numbers correspond to figure 5.

6.3 Strictness

Another aspect that is hard to predict is the difference between the equality
test and the containment test. On the one hand, it can be argued that, since

10

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

query length

Varying the query length

output size
number of evaluations simple

number of evaluations advanced

Fig. 5. Several queries with increasing query length. The query numbers refer
to the queries summed up in table 1

the reconstruction of the first factor of a polynomial is computationally more
expensive than a simple function evaluation, it is preferable to use the contain-
ment test. On the other hand, the reduced accuracy causes more nodes to be
examined. Therefore we used our prototype to compare the two tests using both
search algorithms.

For each query in table 2 four experiments were performed. Each algorithm
(simple and advanced) was run twice: once with the equality test (strict check-
ing) and once with the containment test (non-strict checking). The results are
plotted in figure 6. For all queries the advanced algorithm outperforms the sim-
ple algorithm. Furthermore, it can be noticed that sometimes the strict checking
pays off and sometimes it does not. In general, the equality test may cause a
slight overhead or a major improvement.

Of course it is unfair to compare the equality test, which always gives the
exact answer, with the containment test without considering the accuracy. Fig-
ure 7 shows the accuracy of the containment test. It plots the percentage of the
nodes in the containment test’s result that also pass the equality test. Notice
that the accuracy drops for each // in the query. For absolute queries which do
not contain //, the accuracy of the containment test reaches 100%.

7 Conclusions and Future Work

In our previous paper [2] we introduced a new search strategy over encrypted
data. All XML nodes are encoded as polynomials. Each polynomial contains

11

1 /site//europe/item

2 /site//europe//item

3 /site/*/person//city

4 /*/*/open auction/bidder/date

5 //bidder/date

Table 2. Queries for the strictness checks. The numbers correspond to figure 6.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

ex
ec

u
ti

o
n

ti
m

e
(s

)

query

Strictness

non-strict/simple
strict/simple

non-strict/advanced
strict/advanced

Fig. 6. Equality test versus containment test

12

0

20

40

60

80

100

1 2 3 4 5

co
rr

ec
tn

es
s

(%
)

query

Accuracy

Fig. 7. Accuracy of the containment test as defined by the quotient E
C , where

E is the size of the result set using the equality test and C is the size of the
result set using the containment test.

knowledge of its own node as well as all its decendants. Due to a smart reduction
the storage overhead is reduced to 50% as measured by our prototype (using
p = 83 and e = 1). The encoding time is linear in the size of the input.

The prototype can choose between two different search algorithms. The sim-
ple algorithm reads a query from left to right carrying out a single evaluation
at each node. The more advanced algorithm uses a look-ahead strategy where
the whole remaining query is taken into account. Experiments show that the
advanced algorithm outperforms the simple algorithm in the majority of cases.
Only for the most simple queries it is slightly slower.

The search algorithms can use two comparison tests: the equality test and
the containment test. The containment test is just a cheap evaluation whereas
the equality test is more expensive because a node’s own polynomial should be
divided by all its child polynomials. The cost of a single equality test depends
on the number of children, whereas the costs of a containment test is always
constant. All the child nodes should be retrieved from the server and added to the
pseudorandomly generated client polynomials. The accuracy of the containment
test is reasonable but it does not result in a major improvement in the running
time. On the contrary, it is often better to use the equality test to reduce the
number of nodes to check, especially for the simple algorithm.

Using a trie to represent data content enables querying of the data inside the
XML tags. The trie-representation is not yet part of the current prototype but
we expect a major improvement especially in the advanced algorithm. Queries
over the data are more precise than those over the tag labels and thus the number

13

of nodes to be examined is being reduced. Since knowledge of the data is present
at high level nodes, the query engine can find the path to the answer almost
immediately.

References

1. Computer Science Institute. CSI/FBI computer crime and security survey. http:

//i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf.
2. R. Brinkman, J.M. Doumen, P.H. Hartel, and W. Jonker. Using secret sharing

for searching in encrypted data. In W. Jonker and M. Petković, editors, Se-
cure Data Management VLDB 2004 workshop, volume LNCS 3178, pages 18–27,
Toronto, Canada, August 2004. Springer-Verlag, Berlin. http://www.ub.utwente.

nl/webdocs/ctit/1/00000106.pdf.
3. Edward Fredkin, Bolt Beranek, and Newman. Trie memory. Communications of

the ACM, 3(9):490–499, September 1960.
4. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.

In FOCS, pages 41–50, 1995.
5. Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for

searches on encrypted data. In IEEE Symposium on Security and Privacy, pages
44–55, 2000. http://citeseer.nj.nec.com/song00practical.html.

6. R. Brinkman, L. Feng, J.M. Doumen, P.H. Hartel, and W. Jonker. Efficient tree
search in encrypted data. Information Systems Security Journal, 13(3):14–21, July
2004. http://www.ub.utwente.nl/webdocs/ctit/1/000000f3.pdf.

7. Torsten Grust. Accelerating xpath location steps. In Proceedings of the 21st ACM
International Conference on Management of Data (SIGMOD 2002), pages 109–
120. ACM Press, Madison, Wisconsin, USA, June 2002. http://www.informatik.

uni-konstanz.de/~grust/files/xpath-accel.pdf.
8. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,

and R. Busse. The XML Benchmark Project. Technical Report INS-R0103, CWI,
Amsterdam, The Netherlands, April 2001. http://monetdb.cwi.nl/xml/index.

html.

14

http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf�
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf�
http://www.ub.utwente.nl/webdocs/ctit/1/00000106.pdf�
http://www.ub.utwente.nl/webdocs/ctit/1/00000106.pdf�
http://citeseer.nj.nec.com/song00practical.html�
http://www.ub.utwente.nl/webdocs/ctit/1/000000f3.pdf�
http://www.informatik.uni-konstanz.de/~grust/files/xpath-accel.pdf�
http://www.informatik.uni-konstanz.de/~grust/files/xpath-accel.pdf�
http://monetdb.cwi.nl/xml/index.html�
http://monetdb.cwi.nl/xml/index.html�

A Appendix: XMark’s Auction DTD

<!ELEMENT site (regions, categories, catgraph, people, open_auctions, closed_auctions)>

<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

<!ELEMENT catgraph (edge*)>

<!ELEMENT edge EMPTY>

<!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT item (location, quantity, name, payment, description, shipping, incategory+, mailbox)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT reserve (#PCDATA)>

<!ELEMENT incategory EMPTY>

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from, to, date, text)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT itemref EMPTY>

<!ELEMENT personref EMPTY>

<!ELEMENT people (person*)>

<!ELEMENT person (name, emailaddress, phone?, address?, homepage?, creditcard?, profile?, watches?)>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT address (street, city, country, province?, zipcode)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT province (#PCDATA)>

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT homepage (#PCDATA)>

<!ELEMENT creditcard (#PCDATA)>

<!ELEMENT profile (interest*, education?, gender?, business, age?)>

<!ELEMENT interest EMPTY>

<!ELEMENT education (#PCDATA)>

<!ELEMENT income (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT business (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY>

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial, reserve?, bidder*, current, privacy?, itemref, seller, annotation, quantity, type, interval)>

<!ELEMENT privacy (#PCDATA)>

<!ELEMENT initial (#PCDATA)>

<!ELEMENT bidder (date, time, personref, increase)>

<!ELEMENT seller EMPTY>

<!ELEMENT current (#PCDATA)>

<!ELEMENT increase (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT interval (start, end)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller, buyer, itemref, price, date, quantity, type, annotation?)>

<!ELEMENT buyer EMPTY>

<!ELEMENT price (#PCDATA)>

<!ELEMENT annotation (author, description?, happiness)>

<!ELEMENT author EMPTY>

<!ELEMENT happiness (#PCDATA)>

15

