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1. Introduction
  

The Self-Organizing Map (SOM:  Kohonen (1984, 2001)) is a neuro-computational algorithm 
to map high-dimensional data to a two-dimensional space through a competitive and 
unsupervised learning process. Self-Organizing Maps differ from other artificial neural 
networks in the sense that they use a neighborhood function to preserve the topological 
properties of the input space. This unsupervised learning algorithm is a popular nonlinear 
technique for dimensionality reduction and data visualization. 
The SOM is often used as a first phase for unsupervised classification (i.e. clustering). 
Clustering methods are able to perform an automatic detection of relevant sub-groups or 
clusters in unlabeled data sets, when one does not have prior knowledge about the hidden 
structure of these data. Patterns in the same cluster should be similar to each other, while 
patterns in different clusters should not (internal homogeneity and the external separation). 
Clustering plays an indispensable role for understanding various phenomena described by 
data sets. A clustering problem can be defined as the task of partitioning a set of objects into 
a collection of mutually disjoint subsets. Clustering is a segmentation problem which is 
considered as one of the most challenging problems in unsupervised learning. Various 
approaches have been proposed to solve the problem (Jain & Dubes, 1988). 
An efficient method to grouping problems is based on the learning of a Self-Organizing 
Map. In the first phase of the process, the standard SOM approach is used to compute a set 
of reference vectors (prototypes) representing local means of the data. In the second phase, 
the obtained prototypes are grouped to form the final partitioning using a traditional 
clustering method (e.g. K-means or hierarchical methods). Such an approach is called a two-
level clustering method. In this work, we focus particular attention on two-level clustering 
algorithms. One of the most crucial questions in many real-world cluster applications is how 
to determine a suitable number of clusters K, also known as the model selection problem. 
Without a priori knowledge there is no simple way of knowing that number. The purpose of 
our work is to provide a simultaneous two-level clustering approach using SOM, by 
learning at the same time the structure of the data and its segmentation, using both distance 
and density information. This new clustering algorithm assumes that a cluster is a dense 
region of objects surrounded by a region of low density (Yue et al., 2004; Ultsch, 2005; Ocsa 
et al., 2007; Pamudurthy et al., 2007). This approach is very effective when the clusters are 
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irregular or intertwined, and when noise and outliers are present. The proposed clustering 
algorithm divides automatically a given dataset into a collection of subsets (clusters), i.e., the 
number of clusters is determined automatically during the learning process, i.e., no a priori 
hypothesis for the number of clusters is required. This approach has been tested on a set of 
critical clustering problems and shows excellent results compared to usual approaches. 
The remainder of this chapter is organized as follows. Section 2 presents the DS2L-SOM 
algorithm (Density-based Simultaneous Two-Level - SOM). Section 3 describes the 
validation databases and experimental protocol. In section 4 we show validation results and 
their evaluation. Conclusion and future work perspectives are given in Section 5. 

  
2. Local Density-based Simultaneous Two-Level Clustering
  

High dimension data may be sparse (the curse of dimensionality), making it difficult for a 
clustering algorithm to find any structure in the data. Indeed, when dimensionality 
increases, data become increasingly sparse. Definitions of density and distance between 
objects, which is critical for clustering and outliers detection, become less meaningful. To 
improve the solution for this problem, a large number of dimension reduction approaches 
have been developed and tested in different application domains and research communities. 
The main idea behind these techniques is to map each pattern into a lower dimensional 
space that preserves the topology of data. The reduced data present at the lower 
dimensional representation can be used to perform clustering more efficiently. Various 
approaches have been proposed for the two-level clustering problem (Aupetit, 2005; Bohez, 
1998; Hussin et al., 2004; Ultsch, 2005; Korkmaz, 2006).  The key idea of the two-level 
clustering approach based on SOM is to combine the dimensionality reduction and the fast 
learning capabilities of SOM in the first level to construct a new reduced vector space. Then 
another clustering method is applied in this new space to produce a final set of clusters at 
the second level (Hussin et al., 2004; Ultsch, 2005). Although the two-level methods are more 
interesting than the traditional approaches, the data segmentation obtained from the SOM is 
not optimal, since a part of information is lost during the first stage (dimensionality 
reduction). 
We propose here a new unsupervised learning algorithm (DS2L-SOM) which learns 
simultaneously the structure of the data and its segmentation using both distance and 
density information. 

  
2.1 Principle
Kohonen SOM (Kohonen, 1984, 2001) can be defined as a competitive unsupervised learning 
neural network. When an observation is recognized, the activation of an output cell - 
competition layer - inhibits the activation of other neurons and reinforces itself. It is said that 
it follows the so called “Winner Takes All” rule. Actually, neurons are specialized in the 
recognition of one kind of observation. A SOM consists in a two dimensional map of 
neurons which are connected to n inputs according to n weights connections 
w(i)=(w0(i),…,wn(i)) and to their neighbors with topological links. The training set is used to 
organize these maps under topological constraints of the input space. Thus, a mapping 
between the input space and the network space is constructed; two close observations in the 
input space would activate two close units of the SOM. An optimal spatial organization is 
determined by the SOM from the input data, and when the dimension of the input space is 

lower than three, both position of weights vectors and direct neighborhood relations 
between cells can be represented visually. Thus, a visual inspection of the map provides 
qualitative information about the map and the choice of its architecture. The winner neuron 
updates its prototype vector, making it more sensitive for later presentation of that type of 
input. This allows different cells to be trained for different types of data. To achieve a 
topological mapping, the neighbors of the winner neuron can adjust their prototype vector 
towards the input vector as well, but at a lesser degree, depending on how far away they are 
from the winner. Usually a radial symmetric Gaussian neighborhood function Kij is used for 
this purpose. 

  
2.2 DS2L-SOM algorithm
Connectionist learning algorithms are often presented as a minimization of a cost function. 
In our case, it will correspond to the minimization of the distance between the input samples 
and the map prototypes, weighted by a neighborhood function Kij. To do that, we use a 
gradient algorithm. The cost function to be minimized is defined by: 
 

 
 

N represents the number of learning samples, M the number of neurons in the map, u*(x(k)) 
is the index of the neuron whose weight vector is the closest to the input pattern x(k) (the 
best match unit: BMU), and Kij is a positive symmetric kernel function: the neighborhood 
function. The relative importance of a neuron i compared to a neuron j is weighted by the 
value of the kernel function Kij which can be defined as:  
 

  
 
λ(t) is the temperature function modeling the topological neighborhood extent, defined as:  
 

  
 
λi and λf are respectively the initial and the final temperature (for example λi = 2, λf = 0.5). 
tmax is the maximum number allotted to the time (number of iterations for the x learning 
sample). d1(i,j) is the Manhattan distance defined between two neurons i and j on the map 
grid, with the coordinates (k,m) and (r,s) respectively:  
 
 d1(i,j) = | r – k | + | s  –  m | 
 
The DS2L-SOM algorithm is an adaptation of the S2L-SOM algorithm (Cabanes & Bennani, 
2007). In S2L-SOM, each neighborhood connection is associated with a real value v which 
indicates the relevance of the connected neurons. The value of this connection is adapted 
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The remainder of this chapter is organized as follows. Section 2 presents the DS2L-SOM 
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validation databases and experimental protocol. In section 4 we show validation results and 
their evaluation. Conclusion and future work perspectives are given in Section 5. 

  
2. Local Density-based Simultaneous Two-Level Clustering
  

High dimension data may be sparse (the curse of dimensionality), making it difficult for a 
clustering algorithm to find any structure in the data. Indeed, when dimensionality 
increases, data become increasingly sparse. Definitions of density and distance between 
objects, which is critical for clustering and outliers detection, become less meaningful. To 
improve the solution for this problem, a large number of dimension reduction approaches 
have been developed and tested in different application domains and research communities. 
The main idea behind these techniques is to map each pattern into a lower dimensional 
space that preserves the topology of data. The reduced data present at the lower 
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interesting than the traditional approaches, the data segmentation obtained from the SOM is 
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input space would activate two close units of the SOM. An optimal spatial organization is 
determined by the SOM from the input data, and when the dimension of the input space is 

lower than three, both position of weights vectors and direct neighborhood relations 
between cells can be represented visually. Thus, a visual inspection of the map provides 
qualitative information about the map and the choice of its architecture. The winner neuron 
updates its prototype vector, making it more sensitive for later presentation of that type of 
input. This allows different cells to be trained for different types of data. To achieve a 
topological mapping, the neighbors of the winner neuron can adjust their prototype vector 
towards the input vector as well, but at a lesser degree, depending on how far away they are 
from the winner. Usually a radial symmetric Gaussian neighborhood function Kij is used for 
this purpose. 

  
2.2 DS2L-SOM algorithm
Connectionist learning algorithms are often presented as a minimization of a cost function. 
In our case, it will correspond to the minimization of the distance between the input samples 
and the map prototypes, weighted by a neighborhood function Kij. To do that, we use a 
gradient algorithm. The cost function to be minimized is defined by: 
 

 
 

N represents the number of learning samples, M the number of neurons in the map, u*(x(k)) 
is the index of the neuron whose weight vector is the closest to the input pattern x(k) (the 
best match unit: BMU), and Kij is a positive symmetric kernel function: the neighborhood 
function. The relative importance of a neuron i compared to a neuron j is weighted by the 
value of the kernel function Kij which can be defined as:  
 

  
 
λ(t) is the temperature function modeling the topological neighborhood extent, defined as:  
 

  
 
λi and λf are respectively the initial and the final temperature (for example λi = 2, λf = 0.5). 
tmax is the maximum number allotted to the time (number of iterations for the x learning 
sample). d1(i,j) is the Manhattan distance defined between two neurons i and j on the map 
grid, with the coordinates (k,m) and (r,s) respectively:  
 
 d1(i,j) = | r – k | + | s  –  m | 
 
The DS2L-SOM algorithm is an adaptation of the S2L-SOM algorithm (Cabanes & Bennani, 
2007). In S2L-SOM, each neighborhood connection is associated with a real value v which 
indicates the relevance of the connected neurons. The value of this connection is adapted 
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during learning process. It was proved by Martinetz (Martinetz, 1993) that the so generated 
graph is optimally topology-preserving in a very general sense. In particular each edge of 
this graph belongs to the Delaunay triangulation corresponding to the given set of reference 
vectors. For each data, both best close prototypes are linked by a topological connection. The 
value of this connection will be increased, whereas the value of all other connections from 
the best match unit will be reduced. Thus, at the end of the training, the set of inter-
connected prototypes will be an artificial image of well separated sub-groups of the whole 
data set. Indeed, S2L-SOM can only detect borders defined by large inter cluster distances. 
However, the core part of a cluster can be defined as a region with high density and, in most 
cases, the cluster borders are defined either by an “empty” region between clusters (i.e. large 
inter-cluster distances) or by a low density region (Ultsch, 2005). In the DS2L-SOM 
algorithm, we propose also to associate each unit i to an estimate of the local data density 
D(i), so as to detect local fluctuations of density, which define the borders of touching 
clusters (low density regions). For each data, this density value will be increased for all 
units, as a function of the Euclidean distance between the related prototype w(i) and the 
data. This method of evaluation is similar to the one proposed by Pamudurthy et al. (2007). 
Silverman (1986) has shown that when the number of data points tends to infinity, the 
estimator D converges asymptotically to the true density function. One can notice that, in 
the DS2L-SOM algorithm, the estimation of the local density data is made during the 
training of the map, i.e. it is not necessary to keep the data in memory. 
The DS2L-SOM learning algorithm proceeds essentially in three phases: 

Input:  
• Data X = {x(i)}i=1..N. 
• SOM with M prototypes {w(i)}i=1..M.  
• tmax : maximum number of iterations.  
Output:  
• A partition P = {Ci}i=1..L sets of inter-connected units.  
• Density values {D(i)}i=1..M associated to each unit.  
1. Initialization phase:  

• Initialize all neighborhood connections values v to zero.  
• Initialize all unit density values D(i) to zero  

2. Competition phase :  
• Present an input pattern x(k) to the SOM.  
• Choose the first BMU u* and the second BMU u**: 

u*(x) = argmin1 ≤ i ≤ M ║x(k)  - w(i)║² 
u**(x) = argmini ≠ u*(x) ║x(k)  - w(i)║² 

3. Adaptation phase:  
• Update prototype vectors w(i) of each unit i according to the learning rate ε(t):  

 
• Increase local density value D(i) for each unit i : 
 

 
with 

  
 

• Let   (u*) be the topological neighborhood of the first BMU; update the 
neighborhood connections values v according to the following rules: 

 

 
and  
 

 
 

where |    (u*)|  is the number of unit in |    (u*)|.  
 

4. Repeat steps 2 and 3 until t=tmax.  
5. Extract all clusters : Let P = {Ci}i=1..L the set of the L groups of linked units such as 

v>0 (see Fig.1(b)).  
6. Return P = {Ci}i=1..L.  

At the end of the learning process, we use a refinement algorithm, which exploits 
connection and density information to detect clusters: 

Input: P and {D(i)}i=1..M. 
Output: The refined clusters. 
1. For each Ck∈P do: 

• Find the set M(Ck) of density maxima (i.e. density mode, see Fig. 1(c)).  
 

  
 

• Determine the threshold matrix:  
 

 
with 

 
 

• For all unit i∈Ck, label the unit i with one element label(i) of M(Ck), according 
to an ascending density gradient along the topological connections. Each 
label represents a sub-cluster (Fig. 1(d)). 
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• For each pair of neighbors unit (i,j) in Ck, if label(i) ≠ label(j) and if both 
D(i)>S(label(i),label(j)) and D(j)>S(label(i),label(j)) then merge the two sub-
clusters (Fig. 1(e)). 

 
2. Return refined clusters. 
 

 
Fig. 1. Example of a sequence of the different stages of the refinement algorithm. 

At the end of the learning process, the prototypes linked together by neighborhood 
connections having value v>0 define well separate clusters. Thus, we use a “Watersheds” 
method (see Vincent & Soille (1991)) on the density map of each of these clusters to find low 
density area inside well separate clusters, in order to characterize density defined sub-
clusters. For each pair of adjacent subgroups we use a density-dependent index (Yue et al., 
2004) to check if a low density area is a reliable indicator of the data structure, or whether it 
should be regarded as a random fluctuation in the density. This process is very fast because 
of the small number of prototypes. The combined use of these two types of group definition 
can achieve good results despite the low number of prototypes in the map. This allows 
different cells to be trained for different types of data. To achieve a topological mapping, the 
neighbors of the winner neuron can adjust their prototype vector towards the input vector 
as well, but at a lesser degree, depending on how far away they are from the winner. 
Usually a radial symmetric Gaussian neighborhood function Kij is used for this purpose. 

3. Experiments
  

3.1 Databases description
To demonstrate the effectiveness of the proposed two-level clustering method, the 
performances of the DS2L-SOM algorithm have been tested on 10 databases presenting 
various clustering difficulties (see Fig.2).  
 

“Rings”                           “Spirals “

“Chainlink”                           “Atom” 

“Twodiamonds”                 “Hepta”  

“Engytime”                     “Wingnut” 
 

Fig. 2. Data visualizations. 
 
The databases “Hepta”, “Chainlink”, “Atom”, “Twodiamonds”, “Engytime” and 
“Wingnut” come from the Fundamental Clustering Problem Suite (FCPS: Ultsch (2005)). We 
also generated four other interesting data bases (“Rings”, “Spirals”, “HighDim” and 
“Random”). “Rings” is made up of 3 groups in 2 dimensions not linearly separable with 
different densities and variances: a ring of radius 1 with 700 points (strong density), a ring of 
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radius 3 with 300 points (low density) and a ring of radius 5 with 1500 points (average 
density). “HighDim” consists of 9 quite separate groups of 100 points each one in a 15 
dimensions space. “Random” is a random generation of 1000 points in 8 dimensions space. 
Finally “Spirals” consists of two parallel spirals of 1000 points each one in rings of 3000 
points. The density of points in the spirals decreases with the radius. 

  
3.2 Experimental protocol
We compared the performances of the DS2L-SOM algorithm, in term of segmentation 
quality and stability, to S2L-SOM  (Cabanes & Bennani, 2007), and to the traditional two 
levels methods. The selected algorithms for comparison are K-means and SingleLinkage 
applied to the prototypes of the trained SOM. The Davies-Bouldin index  (Davies & Bouldin, 
1979) is used to determine the best cutting of the dendrogram (SingleLinkage) or the optimal 
number K of centroids for K-means. This index, suggested by Davies and Bouldin (Davies & 
Bouldin, 1979) for different values k (cluster number), is defined as in the following, in order 
to combine the concepts of cluster separation (denominator) and cluster compactness 
(numerator):  

 
 
being si the square root of the average error (within-cluster variance) of cluster i with the 
centroid ci. S2L-SOM and DS2L-SOM determine the number of clusters automatically and 
do not need to use this index. 
For the single link hierarchical clustering, the proximity of two clusters is defined as the 
minimum of the distance between any two objects in the two different clusters. The single 
link technique is good at handling non-elliptical shapes, but is sensitive to noise and 
outliers. 
In this paper the quality of the clustering has been evaluated using external criteria (Overlap 
Indices Rand and Jaccard) frequently used (Halkidi et al., 2001, 2002) :  

 

 
 
Where a11 denotes the number of object pairs belonging to the same label and to the same 
cluster, a10 denotes the number of pairs that belong to the same label but different clusters, 
and a01 denotes the pairs in the same cluster but with different labels. Finally, a00 denotes the 
number of object pairs sharing neither label nor cluster. 
Indeed, if data-independent labels (categories) are available, the question may be asked of 
how well a given cluster solution corresponds to these external labels. 

The concept of cluster stability is also used as an indicator for assessing the validity of data 
partitioning found by different algorithms. In order to evaluate the stability of the various 
algorithms, we use sub-sampling based method for each data bases  (Ben-Hur et al., 2002). 
We then compute the difference between two different segmentations using the Jaccard 
index. We repeat this procedure several times to averaging the repeated index values. This 
average is regarded as a reliable estimate of the clustering stability. 

 
4. Results
 

The results for the external indices show that for all the databases DS2L-SOM is able to find 
without any error the expected data segmentation and the right number of clusters. This is 
not the case of the other algorithms, when the groups have an arbitrary form, or when there 
is no structure in the data or the groups are in contact (see Table 1 and Fig. 3). 

 
Data SSL SKM S2L-SOM DS2L-SOM True 

HighDim 4 9 9 9 9 
Chainlink 2 11 2 2 2 

Atom 6 6 2 2 2 
Twodiamonds 2 2 2 2 2 

Rings 7 13 3 3 3 
Spirals 12 10 3 3 3 
Hepta 5 7 7 7 7 

Random 10 15 1 1 1 
Wingnut 6 11 1 2 2 
Engytime 10 10 1 2 2 

Table 1. Number of clusters obtained by various clustering methods (SSL = 
SOM+SingleLinkage, SKM = SOM+K-means). 

    

 

Fig. 3. Clustering quality using the Jaccard index for each algorithm on each database. 
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radius 3 with 300 points (low density) and a ring of radius 5 with 1500 points (average 
density). “HighDim” consists of 9 quite separate groups of 100 points each one in a 15 
dimensions space. “Random” is a random generation of 1000 points in 8 dimensions space. 
Finally “Spirals” consists of two parallel spirals of 1000 points each one in rings of 3000 
points. The density of points in the spirals decreases with the radius. 

  
3.2 Experimental protocol
We compared the performances of the DS2L-SOM algorithm, in term of segmentation 
quality and stability, to S2L-SOM  (Cabanes & Bennani, 2007), and to the traditional two 
levels methods. The selected algorithms for comparison are K-means and SingleLinkage 
applied to the prototypes of the trained SOM. The Davies-Bouldin index  (Davies & Bouldin, 
1979) is used to determine the best cutting of the dendrogram (SingleLinkage) or the optimal 
number K of centroids for K-means. This index, suggested by Davies and Bouldin (Davies & 
Bouldin, 1979) for different values k (cluster number), is defined as in the following, in order 
to combine the concepts of cluster separation (denominator) and cluster compactness 
(numerator):  

 
 
being si the square root of the average error (within-cluster variance) of cluster i with the 
centroid ci. S2L-SOM and DS2L-SOM determine the number of clusters automatically and 
do not need to use this index. 
For the single link hierarchical clustering, the proximity of two clusters is defined as the 
minimum of the distance between any two objects in the two different clusters. The single 
link technique is good at handling non-elliptical shapes, but is sensitive to noise and 
outliers. 
In this paper the quality of the clustering has been evaluated using external criteria (Overlap 
Indices Rand and Jaccard) frequently used (Halkidi et al., 2001, 2002) :  

 

 
 
Where a11 denotes the number of object pairs belonging to the same label and to the same 
cluster, a10 denotes the number of pairs that belong to the same label but different clusters, 
and a01 denotes the pairs in the same cluster but with different labels. Finally, a00 denotes the 
number of object pairs sharing neither label nor cluster. 
Indeed, if data-independent labels (categories) are available, the question may be asked of 
how well a given cluster solution corresponds to these external labels. 

The concept of cluster stability is also used as an indicator for assessing the validity of data 
partitioning found by different algorithms. In order to evaluate the stability of the various 
algorithms, we use sub-sampling based method for each data bases  (Ben-Hur et al., 2002). 
We then compute the difference between two different segmentations using the Jaccard 
index. We repeat this procedure several times to averaging the repeated index values. This 
average is regarded as a reliable estimate of the clustering stability. 

 
4. Results
 

The results for the external indices show that for all the databases DS2L-SOM is able to find 
without any error the expected data segmentation and the right number of clusters. This is 
not the case of the other algorithms, when the groups have an arbitrary form, or when there 
is no structure in the data or the groups are in contact (see Table 1 and Fig. 3). 

 
Data SSL SKM S2L-SOM DS2L-SOM True 

HighDim 4 9 9 9 9 
Chainlink 2 11 2 2 2 

Atom 6 6 2 2 2 
Twodiamonds 2 2 2 2 2 

Rings 7 13 3 3 3 
Spirals 12 10 3 3 3 
Hepta 5 7 7 7 7 

Random 10 15 1 1 1 
Wingnut 6 11 1 2 2 
Engytime 10 10 1 2 2 

Table 1. Number of clusters obtained by various clustering methods (SSL = 
SOM+SingleLinkage, SKM = SOM+K-means). 

    

 

Fig. 3. Clustering quality using the Jaccard index for each algorithm on each database. 
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Considering the stability, the DS2L-SOM algorithm, like the S2L-SOM algorithm, shows 
excellent results for the data grouped in hyperspheric clusters, whatever the dimension 
(“Hepta” and “HighDim”), and also in the cases where the groups have arbitrary forms in 
two dimensions (“Rings” and “Spirals”) and when the data are not structured (“Random”). 
It is worth noticing that in this last case the segmentation obtained by the most traditional 
methods is extremely unstable (Fig. 4). 
 

  
 

Fig. 4. Stability index for each algorithm on each database. 
 
When the data are not linearly separable in dimensions higher than two (“Atom” and 
“Chainlink”), S2L-SOM and DS2L-SOM are limited by the topological constraint in two 
dimensions of the SOM network. Consequently, the stability of the segmentation is not 
maximum. However one can note that even in this case the DS2L-SOM algorithm remains 
more stable than the other methods. Moreover, when the clusters are defined only by the 
density (“Twodiamonds”, “Engytime”, “Wingnut”), sub-sampling may smooth the 
fluctuations of data density. This reduces the stability of the segmentation. In this case S2L-
SOM is more stable than DS2L-SOM, because it can’t separate this kind of groups and alway 
finds one group in each sub-sample. 
The results are also confirmed by visual inspection. Indeed, the DS2L-SOM clustering 
algorithm is a powerful tool for visualization of the obtained segmentation in two 
dimensions. Clusters are easily and clearly identifiable, as well as regions without data 
(unconnected neurons). As one can notice it from figures 5 to 9, the results obtained by the 
DS2L-SOM algorithm are closer to reality than those found by the other algorithms. Figures 
7 and 8 show that DS2L-SOM is able to detect density-defined clusters. 
In these figures, each hexagon represents a prototype of the SOM together with its 
associated data. Hexagons showing the same color are in the same cluster. White hexagons 
are not part of any cluster. 

Fig. 5. Clustering of “Rings” data. 
 
 

Fig. 6. Clustering of “Spirals” data. 
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Fig. 7. Clustering of “Engytime” data. 
 

Fig. 8. Clustering of “Wingnut” data. 

Fig. 9. Clustering of “Random” data. Data visualization is a two-dimensional projection of 
the “Random” database.  

 
5. Conclusion
  

We proposed here a density-based simultaneous two-level clustering method. It uses SOM 
as dimensionality reduction technique and achieves an improved final clustering in the 
second level, using both distance and density information. The proposed algorithm DS2L-
SOM locates regions of high density that are separated from one another by regions of low 
density. The performance of DS2L-SOM have been evaluated on a set of critical clustering 
problems, and compared to other two-level clustering algorithms. The experimental results 
demonstrate that the proposed clustering method achieves a better clustering quality than 
classical approaches. The results also demonstrate that DS2L-SOM is able to discover 
irregular and intertwined clusters, while conventional partitional clustering algorithms can 
deal with convex clusters only. Finally, the number of clusters in our approach is 
determined automatically during the learning process, i.e., no a priori hypothesis for the 
number of clusters is required. In the future we plan to incorporate in the DS2L-SOM 
algorithm some plasticity property, to evaluate its impact on the cluster quality and 
stability. 
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