Skip to main content

The Good Symbiont

  • Conference paper
Book cover Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

A self-reproducing cycle has the fundamental organization, \(A+X \longrightarrow 2A\), and is autocatalytic, i.e. the products catalyze the formation of the products. The rate of increase of A is proportional to A, i.e. exponential. Asexual living entities often grow exponentially when resources are abundant, and decay exponentially when resources are scarce, according to autocatalytic kinetics. If two previously independently replicating autocatalytic entities can form a physical union that is still capable of autocatalysis but with a reduced decay rate, then the symbiosis can be viable in an environment in which resources have been depleted, even if the symbiont has a lower growth rate than either of its component particles. A good symbiont possesses the following features: i. low steric hindrance between components, ii. policing of defection or cheating by symbiont components. iii. low decay rate back to components. iv. absence of emergence of active sites susceptible to decay reactions. v. high rate of the final reproductive step. Failure to form stable symbiosis can result from deficits in any of these features, and is a problem central to the origin of both metabolism and template replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, G.A.M.: Autocatalysis. Chem. Soc. Rev. 7, 297–316 (1978)

    Article  Google Scholar 

  2. King, G.A.M.: Recycling, Reproduction and Lifes Origins. Biosystems 15, 89–97 (1982)

    Article  Google Scholar 

  3. King, G.A.M.: Symbiosis and the Origin of Life. Origins Life 8, 39–53 (1976)

    Article  Google Scholar 

  4. Ganti, T.: The Principles of Life. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  5. Ganti, T.: Chemoton Theory Vol I and II. Kluwer, Dordrecht (2004)

    Google Scholar 

  6. Maynard-Smith, J., Szathmary, E.: The Major Transitions in Evolution. Oxford University Press, Oxford (1995)

    Google Scholar 

  7. Kauffman, S.: Autocatalytic Sets of Proteins. J. Theoret. Bio. 119, 1–24 (1986)

    Article  Google Scholar 

  8. Farmer, J.D., Kauffman, S.A., Norman, H.: Packard Autocatalytic replication Polymers. Physica D 22, 50–67 (1986)

    Article  MathSciNet  Google Scholar 

  9. Stadler, B.M.R., Stadler, P.F.: Molecular Replicator Dynamics Adv. Complex Systems 6, 47–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eigen, M., Schuster, P.: The Hypercycle: A principle of natural self-organization. Springer, Berlin (1979)

    Google Scholar 

  11. Richard, E.: Michod Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality. Princeton University Press, Princeton (1999)

    Google Scholar 

  12. Breslow, R.: Tetrahedron. Letters 21, 22–26 (1959)

    Google Scholar 

  13. Decker, P., Schwoer, H., Pohlmann, R.: Bioids. Journal of Chromatography 224, 281–291 (1982)

    Google Scholar 

  14. Wachterschauser, G.: Microbiol. Rev. 52, 452–484 (1988)

    Google Scholar 

  15. Smith, E., Morowitz, H.J.: Universality in Intermediary Metabolism. PNAS 101(36), 13168–13173 (2004)

    Article  Google Scholar 

  16. Mossel, E., Steel, M.: Random Biochemical Networks: the probability of self-sustaining autocatalysis. Journal of Theoretical Biology (forthcoming)

    Google Scholar 

  17. Taming Combinatorial Explosion. PNAS 97(14), 7678–7680 (2000)

    Google Scholar 

  18. Szathmary, E.: The Evolution of Replicators. Philos. Trans. R. Soc. Lond B. Biol Sci. 29(355), 1669–1676 (2000)

    Google Scholar 

  19. Szathmary, E., Santos, M., Fernando, C.: Evolutionary Potential and Requirements for Minimal Protocells Topics in Chemistry (forthcoming)

    Google Scholar 

  20. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

    MATH  Google Scholar 

  21. Margulis, L.: Symbiosis in Cell Evolution, 2nd edn. Freeman, New York (1993)

    Google Scholar 

  22. Lovelock, J.E.: Gaia: A New Look at Life on Earth. Oxford University Press, Oxford (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernando, C. (2005). The Good Symbiont. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_70

Download citation

  • DOI: https://doi.org/10.1007/11553090_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics