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Abstract. Cleavage site prediction is an important issue in molecular biology. 
We present a new method that generates prediction rules for SARS-CoV prote-
ase cleavage sites. Our method includes rule extraction from a trained neural 
network and then enhancing the extracted rules by genetic evolution to improve 
its quality. Experimental results show that the method could generate new rules 
for cleavage site prediction, which are more general and accurate than consen-
sus patterns. 

1   Introduction 

Strong interest in automated identification and prediction of cleavage sites have been 
evoked not only by the huge amount of unprocessed data available but also by the 
commercial need. The identification and prediction problem is domain-specific, and 
machine learning methods such as neural networks have therefore been widely used 
and been successful. In this paper, we present new approaches to rule generation for 
the cleavage site prediction, and the rule is represented in an explicit form such as �if 
L@p2 and R@p3, then cleavage�. Prediction of SARS-CoV protease cleavage site 
was selected as a subject of study. 

The first cases of severe acute respiratory syndrome (SARS) were identified in 
China in November, 2002 and have spread many countries around the world [17]. By 
late June 2003, the World Health Organization (WHO) has recorded more than 8000 
cases of SARS and more than 750 SARS related deaths, and a global alert for the 
illness was issued due to the severity of the disease [20]. Corona virus (CoV) family 
consists of four groups as illustrated in figure 1. SARS-CoV is a mutant virus of CoV 
and belongs to the Group 4. One of the ways to make SARS-CoV incapable is to 
obstruct the increase of the virus by constraining the activity of proteinase (3CLpro), 
which is one of the core viruses of SARS-CoV. Therefore, the analysis of CoV cleav-
age site in the other three groups makes it possible to predict the cleavage site of 
SARS-CoV and tackle the deseases caused by other upcoming CoV mutant viruses. 

SARS-CoV can be incapacitated by restraining the activity of protease (3CLpro), 
which is one of the main proteins consisting SARS-CoV [11]. Several researches 
indicate that virus proliferation can be arrested using specific proteinase inhibitors.  

Consequently, the protease inhibitors that restrains the virus proliferate can be 
found by analysing the cleavage site which cleaved by protease, a main protein, in 
Corona virus. This fact motivated the computational research on the cleavage site 
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prediction and analysis. It reduces time and expense of processes of the pathology 
experiments. The cleavage site analysis enables us to recognize the cleavage candi-
dates and to design the inhibitors of protease [4], [10], [11]. It will assist the cure for 
SARS and for other diseases caused by Corona viruses. 

 

Fig. 1. SARS Corona virus and six other Corona viruses1 

Machine learning approaches including neural networks have been applied to 
cleavage site analysis successfully [1], [3], [4], [8], [15]. They however focused on 
identification or classification of cleavage sites, but not on the explanation of the 
classification. Prediction knowledge or rule in an explicit format will help us to un-
derstand how the sites are classified and provide us with better insights about the 
specific domain. The idea of prediction rule is not new since consensus patterns and 
decision trees were used among biologists. However, the consensus patterns are not 
complete and not accurate enough. Our goal in this paper is to present accurate and 
robust methods to generate prediction rules of good quality. We used the methods of 
rule extraction from neural networks and knowledge-based genetic algorithms in this 
paper. 

2   Materials and Methods 
In the search for potential inhibitors, important issue is to predict which peptides can 
be cleaved by SARS-CoV protease. Even limited in the range of an octapeptide, ex-
perimental test would be very expensive because the number of possible octapeptides 
formed from 20 amino acids runs into 208 = 2.56×1010. Thus, computational methods 
for cleavage site prediction would be very useful.  

2.1   Data Set Preparation 

Twenty-four genomic sequences of coronavirus and the annotation information were 
downloaded from the GenBank database [2], of which 12 are SARS-CoV and 12 are 
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other groups of coronaviruses. Each sequence of coronavirus genome includes 11   
cleavage sites and thus total 264 (= 24×11) sites are available. We eliminated dupli-
cated ones out of the total 264 results and identified final 70 cleavage sites. Each 
cleavage site of octapeptides includes 8 regions (i.e., 8 positions of P4, P3, P2, P1, 
P1', P2', P3', P4'). The position p1 is just before the cleavage site; p4 through p1 is N-
terminal to the cleavage site and p1� through p4� is C-terminal to the cleavage site. 
Each region represents one of the 20 amino acids. 

For a classification problem such as cleavage site classification, both positive and 
negative examples are needed. It searches or induces rules that cover positive exam-
ples as much as possible and negative examples as little as possible. Negative exam-
ples (presumed non-cleavage sites) are created by defining all other Glutamines (Q) 
in the viral polyproteins as non-cleavable sites [11]. Therefore we obtained 70 posi-
tive (i.e., cleavage) and 1267 negative (i.e., non-cleavage) examples in our experi-
mental dataset. Since every site in our dataset has a glutamine (Q) in position P1 (the 
position just before the cleavage site), the position p1 does not play any role in our 
classification experiments and thus the symbol �Q@p1� (i.e., amino acid �Q� at posi-
tion p1) is ignored in the rules generated in our experiments. 

For neural network training, each region value that is one of 20 amino acids is 
converted into 20 binary digits. For example, Alanine(A) among 20 amino acids is 
represented by 20 bits of 10000000000000000000. Thus, each cleavage sites (i.e., 
octapeptides) composed of 8 regions is encoded into 160 bits. Class is encoded into 
either 1 (i.e., cleavage) or 0 (i.e., non-cleavage).  

2.2   Methods 

Analysis of the Cleavage Sites: Sequence Logo and Decision Tree 
Amino acid conservation in multiple sequence alignments may be visualized using 
sequence logo. Sequence logo is useful for a quick examination of the range in which 
a sequence signal is present. From the sequence logo in Figure 2, a very strong con-
sensus is evident around the cleavage site. Three consensus patterns from the se-
quence logo are �LQ�, �LQ[S/A]� and �[T/S/A]X[L/F]Q[S/A/G]� [11].  

Decision tree is one of the best-known classification techniques in symbolic ma-
chine learning. We used C5.0 algorithm and generated the following: �if  L@p2 ^ 
[A/C/G/N/S]@p1�, then cleavage�. 

 

Fig. 2. The sequence logo of SARS-CoV cleavage sites. P1 = N-terminal to cleavage site, P1'= 
C-terminal to cleavage site 
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Feed-Forward Neural Network and Rule Extraction 
Kiemer, et al. used feed-forward neural networks for SARS-CoV cleavage site analy-
sis [11]. They showed that the neural network outperforms three consensus patterns 
in terms of classification performance. However, they used the neural network for 
just cleavage site prediction, but not for expressing the sites in explicit knowledge.  

There have been many studies for efficient extraction of valid and general rules 
from a trained neural network [1], [6], [7], [8], [9], [12], [16], [18], [19]. In this pa-
per, we used the OAS (Ordered-Attribute Search) algorithm to extract if-then rules 
from the neural networks [12]. 

Genetic Algorithm and Knowledge-Based Genetic Algorithm 
GA (Genetic algorithm) can be used for searching generalized rules [5], [13], [14]. 
Individual chromosome in a GA population is a sequence of 8 symbols in which each 
symbol represents an amino acid or `*� (i.e., don�t_care symbol). Then we can say 
that, for example, the chromosome [**LQS***] represents the rule �If L@p2 and 
S@p1�, then cleavage�. We ignore the Q at p1 as mentioned before. Therefore the 
size of rule space is as huge as 218. The GA-based model searches for the best fitted 
set of chromosomes (i.e., rules) among the 218 candidates. One-point crossover is 
used and crossing point is selected randomly. Mutation occurs on each symbol by 1% 
and changes its symbol to one of other 20 symbols. Fitness function for a chromo-
some n is defined as follows. 

( ) 100
1

nt
f n d

nt nf
= × +

+ +  
where nt (or nf) is the number of positive (or negative) instances matched by the 
chromosome rule and d is the number of *s (i.e., don�t_care symbols) in the chromo-
some. 

The GA-based model generates rules, but the performance is not good enough. 
The performance was very sensitive to the initial population of chromosomes which 
was generated by random. Knowledge-based approach to the GA-model is used to 
restrict the random search space. Domain-knowledge was used as an initial popula-
tion and GA-model refines and explores from the initial rules. The knowledge-based 
approach also reduces the GA learning time significantly because it restricts GA 
search space. 

3   Experimental Results 
Our experiment includes the following steps; (1) Rule extraction from a trained neu-
ral network and comparison of the rules with consensus patterns and decision trees; 
(2) Rule generation by GA-based model with initial knowledge from consensus pat-
terns, decision tree and neural network rules; (3) Comparison of the rules from neural 
networks, decision tree and knowledge-based GA. A rule is in the form of "IF condi-
tion, THEN class" where class is either of cleavage or non-cleavage. Performance of 
a rule is evaluated by its coverage and accuracy defined as follows:  

# of examples matched by the condition part

Total # of examples
coverage =
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# of true positive examples

# of examples matched by the condition part
accuracy =

 
A feed-forward neural network was configured with 160 input nodes, 2 hidden 

nodes and 1 output node. The neural network was trained and tested by 3-fold cross-
validation. Generalization of the neural network is as high as 97.9% while training 
accuracy is 99.6%. Then we extracted if-then rules from the trained neural network 
by Kim�s OAS algorithm [12], and compared them with consensus rules and decision 
tree rules.  

Next, GA-based model was used with domain knowledge incorporated initially. 
Domain knowledge was obtained by extracting rules from consensus patterns, deci-
sion tree and neural networks. Our experiment shows that the GA rules from neural 
network knowledge outperform others in terms of the number of quality rules. 

Finally, we compare the rule performances between decision tree, neural network 
and knowledge-based genetic algorithm (KBGA). Table 1 lists the rules with cover-
age greater than 17% and accuracy greater than 60%. Decision Tree generates rules 
no better than consensus patterns, while neural network generates four other useful 
rules in addition to the decision tree rules. The neural network rules were enhanced 
by GA evolution which was initialized with the neural network rules. The new rule, 
[S@p4 ^ S@p1'], discovered only by the KBGA is of good quality with accuracy 
86.6% and the rule was not discovered by any other methods.  

Table 1. The performance of the rules extracted from each classifier algorithm (standard cov-
erage: +17%, standard accuracy: +60%) 

 Positive Rules Coverage(%) Accuracy(%) 
L@p2 ^ S@p1' 36.35 75.76 Consensus rules 
L@p2 ^ A@p1' 26.11 78.26 
L@p2 ^ S@p1' 36.35 75.76 DT(C5.0) rule 
L@p2 ^ A@p1' 26.11 78.26 
L@p2 ^ S@p1'  36.35 75.76 
L@p2 ^ A@p1' 26.11 78.26 
L@p2 ^ E@p3' 21.9 71.43 
V@p4 ^ L@p2 20.71 60.87 
T@p4 ^ L@p2 20.32 77.78 

NN rules 

R@p3 ^ L@p2 17.3 85.71 
L@p2 ^ S@p1' 36.35 75.76 
L@p2 ^ A@p1' 26.11 78.26 
L@p2 ^ E@p3' 21.9 71.43 
V@p4 ^ L@p2  20.71 60.87 
T@p4 ^ L@p2  20.32 77.78 
R@p3 ^ L@p2 17.3 85.71 

KBGA rules 
initialized by NN 

rules 

S@p4 ^ S@p1'  18.73 86.67 

4   Conclusion 
Prediction or classification rules provide us with explanation about the classification 
and thus better insights about a domain. We presented a new method that generates 
rules and improves quality of the rules with the subject of SARS-CoV protease cleav-
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age site prediction. Rules were extracted from a well-trained neural network and then 
enhanced by genetic evolution. Our experiment presents the rules generated by four 
different types of approaches: 

− Consensus patterns 
− Decision Tree 
− Neural networks 
− Genetic Algorithm initialized by neural network rules 

Neural network could generate the rules of high quality that were not discovered 
by decision trees or consensus patterns. Knowledge-Based Genetic Algorithm 
(KBGA) model in which the neural network rules were incorporated initially could 
discover new rules in addition to the neural network rules. The KBGA can be consid-
ered as a hybrid model of neural networks and genetic algorithm since knowledge 
learned by a neural network is enhanced and expanded by GA evolution. The experi-
mental result demonstrates that the hybrid model improves quality of rule generation.  
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