Skip to main content

Classifier Fusion to Predict Breast Cancer Tumors Based on Microarray Gene Expression Data

  • Conference paper
Book cover Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3684))

Abstract

Classifiers are often data dependent as they perform better on one type of data, but fail to perform well for another data set. There is a need for robust classification algorithms which exhibit performance stability for multiple types of data. This problem can be addressed if different classifiers are fused to identify a particular class. In this paper, we have implemented the idea of classifier fusion using six different classifiers to classify the microarray gene expression data of breast cancer patients. The paper uses two classifier fusion models: majority voting and random bagging to improve the accuracy of the classifiers. Our experimental results have shown that the new proposed classifiers fusion methodology have outperforms single classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miki, Y., et al.: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182), 66–71 (1994)

    Article  Google Scholar 

  2. Perou, C.M., et al.: Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)

    Article  Google Scholar 

  3. Hedenfalk, I., et al.: Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548 (2001)

    Article  Google Scholar 

  4. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  5. Ross, D.T., et al.: Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines. Nature Genetics 24, 227–234 (2000)

    Article  Google Scholar 

  6. http://linus.nci.nih.gov

  7. Radmacher, et al.: A Paradigm for Class Prediction using Gene Expression Profiles. J. Comp. Bio. 9(3), 505–511 (2002)

    Article  Google Scholar 

  8. Cooper, C.S.: Applications of microarray technology in breast cancer research. Breast Cancer Res. 3(3), 158–175 (2001)

    Article  Google Scholar 

  9. Heilhaber, et al.: Bayesian Estimation of Fold-Changes in the Analysis of Gene Expression: The PFOLD Algorithm. J. Com. Bio. 8(6), 585–614 (2001)

    Article  Google Scholar 

  10. David, et al.: The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 3, 17 (2002)

    Article  Google Scholar 

  11. Welcsh, et al.: BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. PNAS 99(11), 7560–7565 (2002)

    Article  Google Scholar 

  12. Dobbin, K., Simon, R.: Comparison of microarray designs for class comparison and class discovery. Bioinformatics 18(11), 1438–1445 (2002)

    Article  Google Scholar 

  13. Wright, G., Simon, R.: The random variance model for finding differentially expressed genes. Bioinformatics 19, 2448–2455 (2003)

    Article  Google Scholar 

  14. Baldi, P., Long, A.D.: A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509–519 (2001)

    Article  Google Scholar 

  15. http://www.csie.ntu.edu.tw/~cjlin/libsvm

  16. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stone, M.: Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, B 36(1), 111–147 (1974)

    MATH  Google Scholar 

  18. Vapnik, V., Chapelle, O.: Bounds on error expectation for SVM. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, ch. 14, pp. 261–280 (2000)

    Google Scholar 

  19. Chapelle, C., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning (2002)

    Google Scholar 

  20. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference “Machine Learning”, pp. 148–156 (1996)

    Google Scholar 

  21. Breiman, L.: Half&Half bagging and hard boundary points. Technical report 534, Statistics Departament, University of California, Berkeley, www.stat.berkley.edu/users/breiman (1998)

  22. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91, 1641–1650 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raza, M., Gondal, I., Green, D., Coppel, R.L. (2005). Classifier Fusion to Predict Breast Cancer Tumors Based on Microarray Gene Expression Data. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554028_121

Download citation

  • DOI: https://doi.org/10.1007/11554028_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28897-8

  • Online ISBN: 978-3-540-31997-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics