Skip to main content

Defining and Detecting Emergence in Complex Networks

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Abstract

Emergence is seen as the most significant feature discriminating “complex” from “non complex” systems. Nevertheless, no standard definition of emergence is currently available in the literature. This lack of a shared view affects the development of tools to detect and model emergence for both scientific and engineering applications. Here we review some definitions of emergence with the aim to describe how they can be implemented in algorithms to detect and model emergence in sensor and communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickhard, M.H.: Emergence. In: Andersen, P.B., Emmeche, C., Finnemann, N.O., Christiansen, P.V. (eds.) Downward Causation, pp. 322–348. University of Aarhus Press, Aarhus, Denmark (2000)

    Google Scholar 

  2. Chaitin, G.: MetaMath!, e-book (2004) (To be published Sept. 2005 by Pantheon Books, NY), http://www.cs.auckland.ac.nz/CDMTCS/chaitin/omega.html

  3. Crutchfield, J.: The Calculi of Emergence: Computation, Dynamics, and Induction. Physica D 75, 11–54 (1994)

    Article  MATH  Google Scholar 

  4. Crutchfield, J., Gornerup, O.: Objects ThatMake Objects: The Population Dynamics of Structural Complexity, Santa Fe Institute Working Paper 04-06-020 (2004), arxiv.org e-print adap-org/0406XXX

    Google Scholar 

  5. Erdös, P., Rényi, A.: On the strength of connectedness of random graphs. Acta Mathematica Scientia 12, 261–267 (1961)

    MATH  Google Scholar 

  6. Goldstein, J.: The Singular Nature of Emergent Levels: Suggestions for a Theory of Emergence. Nonlinear Dynamics, Psychology, and Life Sciences 6(4) (2002)

    Google Scholar 

  7. Heylighen, F.: Modelling Emergence, World Futures. Journal of General Evolution, special issue on creative evolution, G. Kampis, ed. (1991)

    Google Scholar 

  8. Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)

    Google Scholar 

  9. Hooker, C.: British Journal for the Philosophy of Science 55(3), 435–479(45) (2004)

    Google Scholar 

  10. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Tracking Information Flow through the Environment: Simple Cases of Stigmergy. In: Proceedings of the 9th International Conference on the Simulation and Synthesis of Living Systems (ALIFE9), Boston, USA (2004)

    Google Scholar 

  11. Kubic, A.: Toward a Formalization of Emergence. Artificial Life 9(1), 41–65 (2003)

    Article  Google Scholar 

  12. Kugler, P.N., Turvey, M.T.: Information, Natural Law, and the Self-Assembly of Rhythmic Movement. Lawrence Erlbaum, Mahwah (1987)

    Google Scholar 

  13. Langton, C.: Life at the Edge of Chaos. In: Proceedings of the 2nd Conference on Artificial Life (1991)

    Google Scholar 

  14. Laughlin, R., Pines, D.: The Theory of Everything. Proceedings of the National Academy of Science 97(1), 28–31 (2000)

    Article  MathSciNet  Google Scholar 

  15. Minati, G.: Emergence And Ergodicity: A Line Of Research. In: Minati, G., Pessa, E. (eds.) Emergence in Complex Cognitive, Social and Biological Systems, Kluwer, Dordrecht (2002)

    Google Scholar 

  16. Mitchell, M., Crutchfield, J.P., Das, R.: Evolving cellular automata to perform computations. In: Back, T., Fogel, D., Michalewicz, Z. (eds.) Hand-book of Evolutionary Computation, Oxford University Press, Oxford (1998)

    Google Scholar 

  17. Pattee, H.H.: Causation, Control, and the Evolution of Complexity. In: Anderson, P.B., Christiansen, P.V., Emmeche, C., Finnemann, N.O. (eds.) Downward Causation (1997) (in press)

    Google Scholar 

  18. Parunak, H.V.D., Brueckner, S.: Entropy and self-organization in multi-agent systems. In: Proceedings of the 5th International Conference on Autonomous agents, Montreal (2001)

    Google Scholar 

  19. Prokopenko, M., Wang, P.: Evaluating Team Performance at the Edge of Chaos. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Prokopenko, M., Wang, P.: On Self-referential Shape Replication in Robust Aerospace Vehicles. In: Proceedings of the 9th International Conference on the Simulation and Synthesis of Living Systems (ALIFE9), Boston, USA (2004)

    Google Scholar 

  21. Prokopenko, M., Wang, P., Price, D.: Complexity Metrics for Self-monitoring Impact Sensing Networks. Accepted by 2005 NASA/DoD Conference on Evolvable Hardware, Washington, D.C., USA (2005)

    Google Scholar 

  22. Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Selforganizing Hierarchies in Sensor and Communication Networks. In: Accepted by Artificial Life Journal, Special Issue on Dynamic Hierarchies (2005) (to appear)

    Google Scholar 

  23. Rosen, R.: Anticipatory Systems. Pergamon Press, Oxford (1985)

    Google Scholar 

  24. Shalizi, C., Shalizi, K., Crutchfield, J.: An Algorithm for Pattern Discovery in Time Series. Journal of Machine Learning Research (2003)

    Google Scholar 

  25. Shalizi, C.: Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata, PhD Thesis (2001), http://www.cscs.umich.edu/crshalizi/thesis/

  26. Solé, R.V., Valverde, S.: Information theory of complex networks: On evolution and architectural constraints. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Lecture Notes in Physics, vol. 650, pp. 189–210. Springer, Berlin (2004)

    Google Scholar 

  27. Wang, P., Prokopenko, M.: Evolvable recovery membranes in self-monitoring aerospace vehicles. In: Proceedings of the Eighth International Conference on Simulation of Adaptive Behaviour, Los Angeles, pp. 509–518 (2004)

    Google Scholar 

  28. Wiedermann, J., van Leeuwen, J.: The Emergent Computational Potential of Evolving Artificial Living Systems. AI Communications 15, 205–215 (2003)

    Google Scholar 

  29. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  30. Wuensche, A.: Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boschetti, F., Prokopenko, M., Macreadie, I., Grisogono, AM. (2005). Defining and Detecting Emergence in Complex Networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554028_79

Download citation

  • DOI: https://doi.org/10.1007/11554028_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28897-8

  • Online ISBN: 978-3-540-31997-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics