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Abstract. Whether common ancestors of eukaryotes and prokaryotes
had introns is one of the oldest unanswered questions in molecular evo-
lution. Recently completed genome sequences have been used for compre-
hensive analyses of exon-intron organization in orthologous genes of di-
verse organisms, leading to more refined work on intron evolution. Large
sets of intron presence-absence data require rigorous theoretical frame-
works in which different hypotheses can be compared and validated. We
describe a probabilistic model for intron gains and losses along an evolu-
tionary tree. The model parameters are estimated using maximum likeli-
hood. We propose a method for estimating the number of introns lost or
unobserved in all extant organisms in a study, and show how to calculate
counts of intron gains and losses along the branches by using posterior
probabilities. The methods are used to analyze the most comprehensive
intron data set available presently, consisting of 7236 intron sites from
eight eukaryotic organisms. The analysis shows a dynamic history with
frequent intron losses and gains, and fairly — albeit not as greatly as
previously postulated — intron-rich ancestral organisms.

1 Introduction

A major difference between eukaryotic and prokaryotic gene organization is that
many eukaryotic genes have a mosaic structure: coding sequences are separated
by intervening non-coding sequences, known as introns. Francis Crick’s 1979
comment [1] on the evolutionary origins of spliceosomal introns — “I have no-
ticed that this question has an extraordinary fascination for almost everybody
concerned with the problem” — could have been said yesterday. The problem
is still not completely resolved [2]. The question of whether or not the most
recent common ancestor of eukaryotes and prokaryotes had introns, known as
the “introns early/late” debate [3], is one of the oldest unanswered questions in
molecular evolution. Recent advances [4–8] rely on whole-genome sequences for
diverse organisms. It has become clear that introns have been gained and lost in
different lineages at various rates. In this context it is of particular interest to
estimate the intron densities in early eukaryotic organisms, as well as rates and
patterns of intron loss and gain along different evolutionary lineages. The aim
of this article is to describe a probabilistic model which allows for a maximum
likelihood (ML) analysis of rates and scenarios. We describe some methods to



this end and apply them to a data set of 7236 introns from eight fully sequenced
eukaryotic organisms.

2 A probabilistic model for intron evolution

In order to model the evolution of introns along an evolutionary tree, we use a
Markov model that permits varying rates along different branches, described as
follows. Let T be a phylogenetic tree T over a set of species X: T is a rooted
tree in which the leaves are bijectively labeled by the elements of X. Let E(T )
denote the set of edges (directed away from the root), and let V (T ) denote the
node set of the tree. Throughout the paper, intron presence is encoded by the
value 1, and intron absence is encoded by the value 0. Along each edge e ∈ E(T ),
introns are generated by a two-state continuous-time Markov process with gain
and loss rates λe, µe ≥ 0, respectively. The length of an edge e is denoted by te. In
addition, the root is associated with the root probabilities π0, π1 with π0+π1 = 1.
The tree T with its parameters defines a stochastic evolution model for the
state χ̃(u) of an intron site at every tree node u ∈ V (T ) in the following manner.
The intron is present at the root with probability π1. The intron state evolves
along the tree edges from the root towards the leaves, and changes on each edge
according to the transition probabilities. For every child node v and its parent u,
P
{

χ̃(v) = j
∣∣∣ χ̃(u) = i

}
= pi→j(uv), where pi→j are determined by the edge

parameters, which we discuss shortly. The values at the leaves form the character
χ = (χ̃(u) : u ∈ X). The input data set (or sample) consists of independent and
identically distributed (iid) characters: D = (χi : i = 1, . . . , n).

Using standard results [9], the transition probabilities along the edge e with
rates λe = λ, µe = µ and length t can be written as

p0→0(e) =
µ

λ + µ
+

λ

λ + µ
e−t(λ+µ) p0→1(e) =

λ

λ + µ
− λ
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e−t(λ+µ)
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µ
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− µ

λ + µ
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λ

λ + µ
+

µ

λ + µ
e−t(λ+µ).

In the absence of independent edge length estimates, we fix the scaling for the
edge lengths in such a way that λe + µe = 1.

A somewhat more complicated model of intron evolution was used by Rzhet-
sky et al. [10], who also accounted for possible intron sliding [11], whereby orthol-
ogous intron sites may differ by a few positions with respect to the underlying
coding sequence in different organisms. In our case, the orthology criterion incor-
porates intron sliding a priori. Some other authors (e.g., [5]) imposed a reversible
Markov model with identical rates across different branches, which is not entirely
realistic for intron evolution, but nevertheless can result in important insights
already.



3 ML estimation of parameters and scenarios

3.1 Unobserved intron sites

Our goal is to design a maximum likelihood approach to estimate the model
parameters on a given tree T , and to calculate likely scenarios of intron gains
and losses along the edges. The described probabilistic model is fairly simple,
and the parameters can be estimated from a data set by usual optimization
techniques [12]. There is, however, an inherent difficulty in analyzing an intron
absence/presence data set: there is no obvious evidence of introns lost in all
extant organisms in the study. Consequently, one has access only to a sample of
iid characters from which the all-0 characters (“unobserved introns”) have been
removed. Maximizing the likelihood without the all-0 characters introduces a
bias. At the same time, it is not possible to estimate the number of missing
all-0 characters by maximizing either the likelihood (every added all-0 character
decreases it), or the average likelihood (an unbounded number of all-0 characters
can be added if their likelihood is large enough). It is therefore necessary to
separate the estimation of unobserved sites from likelihood maximization.

The problem of augmenting the data set with a certain number of all-0 char-
acters has a particular relevance for the complexity of ML estimation of phylo-
genies. Tuffley and Steel [13] showed that ML and maximum parsimony (MP)
yield the same optimal tree topology when enough all-0 characters are added
to the data set in a symmetric binary model. Their result was employed very
recently [14, 15] to demonstrate the NP-hardness of ML optimization for phy-
logenies. The theoretical connection between ML and MP established by the
addition of all-0 characters has direct practical consequences in the case of in-
tron data sets. For instance, the analyses of the same sample carried out by
two groups of researchers [4, 16–18], using ML and MP, arrived at different con-
clusions concerning intron gain/loss rates and ancient intron density. Some of
the disagreements can be attributed to different assumptions about unobserved
sites, instead of methodological issues.

For a formal discussion, define the following notions. An extension χ̃ of a
character χ is an assignment of states to every tree node that agrees with χ at
the leaves. Let H(χ) denote the set of all extensions of χ. The likelihood of a
character χ is the probability

fχ =
∑

χ̃∈H(χ)

πχ̃(root)

∏
uv∈E(T )

pχ̃(u)→χ̃(v)(uv).

The likelihood of a complete data set D = (χi : i = 1, . . . , n) is simply L(D) =∏n
i=1 fχi

. Let f0 denote the likelihood of the all-0 character 0|X|. The expected
number of all-0 characters in a data set of size n is nf0. Accordingly, the expected
number of unobserved sites given that there are n̄ observed ones (non-all-0 char-
acters in the data set), is

n̂0 = n̄
f0

1− f0
. (1)



(The distribution of the number of unobserved sites is a negative binomial dis-
tribution with parameters n̄ and (1− f0).)

Let D̄ = (χi : i = 1, . . . , n̄) denote the observed sample, without the all-0
characters, and n0 = n− n̄ denote the true number of unobserved sites. Figure 1
sketches the algorithm Guess-the-sample for ML estimation of model param-
eters using a guess for n0. The guess is used to optimize the model parameters
and then to compute the expected number of unobserved sites using Eq. (1).
Line G4 compares the latter with the original guess and if they differ too much,
it rejects the optimized parameters. The exact definition of “too much” can rely
on the concentration properties of n0: for a given sample size n, it is binomi-
ally distributed with parameters n and f0 with a variance of nf0(1 − f0). For
example, the guess Z can be rejected if

|n̂0 − Z| > c
√

(n̄ + Z)f0(1− f0),

where c is a constant determining the desired confidence level. Figure 3 shows
the behavior of this difference for a data set analyzed in Section 4. Notice that
the plot suggests that n0 could be estimated by an iterative technique, in which
two steps are alternating: (1) estimation of the number of intron sites, based on
model parameters, and observed introns, and (2) maximization of the likelihood
given the estimated number of intron sites. In other words, n̂0 can be fed back to
the algorithm in Line G4 in lieu of rejection, until convergence is reached. Based
on the plot of Fig. 3, however, the convergence is very slow, and there is nothing
gained over trying basically all possible values for n0. (There is an upper bound
given by the length of sequences from which D̄ was obtained.)

Algorithm Guess-the-sample
Input A guess Z for n0, observed sample D̄ = (χ1 : i = 1, . . . , n̄)

G1 Set D′ = (χ′
i : i = 1, . . . , n̄ + Z) with χ′

i = χi for i ≤ n̄ and χ′
i = 0|X| for i > n̄.

G2 Optimize the model parameters on the augmented sample D′.
G3 Calculate n̂0 by using the optimized model parameters in Eq. (1).
G4 Reject if n̂0 differs from Z by too much.

Fig. 1. ML parameter estimation with unknown number n0 of unobserved sites.

3.2 Patterns of intron gain and loss along tree edges

Once the number of unobserved intron sites is estimated and the model param-
eters are optimized, the model can be used to infer likely scenarios of intron
evolution. In particular, exact posterior probabilities for intron presence can be
calculated at each node, or for intron loss and gain on each branch. Define the



lower conditional likelihood for every node u, site i, and state x ∈ {0, 1} by:

L
(x)
i (u) = I{x = χi(u)} when u is a leaf,

L
(x)
i (u) =

∏
v∈children(u)

( ∑
y∈{0,1}

px→y(uv)L(y)
i (v)

)
when u is not a leaf,

where I{A} is the indicator function: I{A} = 1 if A is true, otherwise I{A} = 0.
The value L

(x)
i (u) is the probability of observing the states from character χi at

the leaves of the subtree Tu rooted at u, given that u is in state x.
We also need the upper conditional likelihood U

(x)
i (u), which is the probability

of observing the states from character χi at leaves that are not in the subtree Tu,
given that u is in state x. The upper conditional likelihoods can be computed by
dynamic programming, using the following recursions in a breadth-first traversal.

U
(x)
i (root) = 1

U
(x)
i (u) =

∑
y∈{0,1}

py→x(vu)U (y)
i (v)

∏
w∈siblings(v)

( ∑
z∈{0,1}

py→z(vw)L(z)
i (w)

)
,

where v is the parent of u.
The posterior probability that node u is in state x at site i equals

q
(x)
i (u) ∝ U

(x)
i (u)L(x)

i (u).

Usual posterior calculations of ancestral states described in, e.g., [19, 12] apply to
reversible mutation models, when the tree can be rerooted at u and then L(x)(u)
can be used directly. Here we need the additional technicality of computing
upper conditional likelihoods. One can also compute the posterior probability of
site i undergoing a x → y transition on the edge leading to the node v from its
parent u as

q
(x→y)
i (uv) ∝ U

(x)
i (u)px→y(uv)L(y)

i (v).

Working with posterior probabilities instead of the single most likely extension
has the advantage that posterior probabilities can be summed to obtain expected
counts for intron gains and losses. The posterior mean counts of states at a
node u, or state transitions (x → y) on an edge uv are computed as

n(x)(u) =
n∑

i=1

q
(x)
i (u),

n(x→y)(uv) =
n∑

i=1

q
(x→y)
i (uv),

(2)

respectively. (Notice that the sums include the unobserved intron sites.) In par-
ticular, n(1)(u) is the expected number of introns present at node u, given the
model parameters and the observed data. Similarly, n(0→1)(uv) is the expected
number of introns gained, and n(1→0)(uv) is the expected number of introns lost
along the edge uv.
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Fig. 2. Phylogenetic tree for the data set in Section 4, showing taxon names and
intron counts. P. falciparum serves as an outgroup. Only the solid edges were used
in the computations. The edge that connects P. falciparum to the tree accounts for
changes between the Opisthokont node, and the most recent common ancestor (MRCA)
of plants, animals, fungi, and apicomplexans, as well as for those leading from that
MRCA to P. falciparum.

4 Intron evolution in eukaryotes

Rogozin et al. [4] compiled a data set based on orthologous protein groups
in eukaryotic organisms. They aligned protein sequences with the genome se-
quences of eight fully sequenced organisms, and defined orthologous intron po-
sitions based on conserved regions in the alignments. The data set (downloaded
from ftp://ftp.ncbi.nlm.nih.gov/pub/koonin/intron_evolution) consists
of 7236 orthologous intron positions, from 684 protein groups. Figure 2 shows
the organisms involved in the study, as well as the number of introns for each
organism.

We note in passing that there is some ongoing debate [20–23] as to whether
the phylogenetic tree of Fig. 2 is correct, namely, whether Ecdysozoa are mono-
phyletic. Philippe et al. [22] argue that they are, and that support for other
hypotheses are due to long branch attraction phenomena. Roy and Gilbert [21]
also argue for an ecdysozoan clade, based on the intron data set of [4]. We con-
sider only one phylogenetic tree, and leave further analysis to a more complete
version of this abstract.

We implemented a Java package for the analysis of intron data sets, which
performs parameter optimization and posterior calculations. As we indicated in
§3.1, it is necessary to estimate the number of unobserved intron sites before
proceeding to likelihood maximization. Figure 3 shows the estimation procedure
applied to the data at hand. The estimation reaches a fix point at around 35
thousand unobserved characters, i.e., likelihood optimization with that many
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Fig. 3. Estimation of unobserved intron sites. The X axis shows the guess Z with which
algorithm Guess-the-sample is invoked, and the Y axis shows the difference n̂0 − Z
calculated after parameter optimization. The dotted lines delineate the region in which
the difference is below twice the standard deviation.

all-0 characters gives an equal expectation (within integer rounding) for the
number of unobserved characters. Allowing for some statistical error, about 20–
80 thousand unobserved characters give an expectation that is within twice the
standard error after parameter optimization.

Using 35000 unobserved characters, we proceeded to parameter optimization,
and then to the estimation of intron loss and gain patterns. Rogozin et al. [4]
computed losses and gains using Dollo parsimony [24, 25], assuming that every
intron arose only once along the tree.

Roy and Gilbert [16, 17] estimated transition probabilities and intron counts
using “local” optimization, independently for each edge. (A similar method was
used in [6].) Their principal technique is a tree contraction, in which a whole sub-
tree is replaced by a single branch, and the corresponding characters are derived
by computing a logical OR over the intron states at the subtree leaves. They
provide separate sets of formulas for analyzing exterior and interior branches.
In the case of exterior branches, three-leaf star trees are formed, in which the
original edge is preserved, a second edge is contracted from the sibling subtree,
and the third edge is contracted from the rest of the tree. In the case of in-
ternal branches, they contract the subtrees for the four neighbors of the edge
endpoints to form a quartet. (The method applies only to binary trees.) The
methods of [16, 17] estimate a larger number of parameters than our likelihood
optimization: in addition to the probabilities of intron inheritance, various intron
loss and gain counts are independently estimated on each branch. It is plausible
that by not enforcing consistency between different estimates that depend on the
same parameter (for instance, the same edge transition probabilities should ap-
pear in many different contractions), the results may get distorted. In addition,
the Roy-Gilbert formulas do not account for the possibility of introns arising
more than once.

Multiple origins of introns in an orthologous position are explicitly forbid-
den by Dollo parsimony. Parallel gains are allowed in our probabilistic model,
and may in truth account for a number of shared introns between eukaryotic



kingdoms [5, 18]. Even if one disregards for a moment the question of parallel
gains, Dollo parsimony still has its own shortcomings when used for reconstruct-
ing plausible histories. If intron gains are much less probable than intron losses,
Dollo parsimony retrieves the most likely extension for every single character.
It is not suitable, however, for determining cumulative values such as ancestral
intron counts, since then the contribution of second, third, etc. most probable
histories cannot be neglected. In particular, there is a chance that an intron is
lost in such a pattern that its origin will be placed at a more recent inner node
in the tree. For example, if an intron first appears in the MRCA for Ecdysozoa
(similar example can be constructed for any phylogeny), it is possible that it
is lost in D. melanogaster and A. gambiae and is only present in C. elegans.
Then Dollo parsimony puts the origin of that intron onto the edge leading to
C. elegans. Conversely, if the intron is lost in C. elegans, then Dollo parsimony
places its origin at the node for Diptera. All methods agree (cf. Table 1) that
such events cannot be too rare because many introns are lost on the branches
leading to the insects and the worm. Another case in point are the 197 introns
that are unique to S. pombe (44% of its introns). Dollo parsimony concludes that
they were gained on that branch, which is doubtful.
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Fig. 4. Likelihoods for gains, losses, and presence at Crown for different characters.
Columns correspond to characters: only those that occur at least seven times are shown.
Character frequencies are displayed on top of the columns. Rectangles show the intron
presence (shaded) or absence (empty) for each character. Shaded triangles show gain
and loss posterior probabilities for each edge, and the posterior probabilities of intron
presence/absence at the Crown taxon.



For characters that appear frequently in the data, Fig. 4 depicts probabilities
for different scenarios. In some cases, the history is clear: if an intron is shared
between D. melanogaster and A. gambiae, then there is a high probability of gain
on the branch leading to Diptera, somewhat smaller one on the exterior branches
leading to the two species, and some very small probabilities for gaining it earlier.
In some cases, the posteriors show a mixture of possible histories: if an intron
is present in D. melanogaster and A. thaliana (there are ten such cases), then it
may have been gained more than once, or lost on several branches — which is
not a surprising conclusion, but it illustrates the difficulty of choosing between
such possibilities based on the intron presence/absence data alone. Notice also
that the all-0 characters have no exciting history: most probably, they never had
an intron present. Nevertheless, the small probabilities of gain and loss events
associated with them add up to visible effects in the mean counts.

(a) Intron counts at interior nodes
Method Diptera Ecdysozoa Bilateria Ascomycota Opisthokont Crown

Dollo parsimony (DP) 732 1081 1613 254 1046 978
Local likelihood (LL) 968 2305 3321 667 1903 1967
Posteriors (P) 895 1762 2380 554 1239 1064
P: 95% confidence 824–962 1484–1972 2055–2669 108–880 965–1450 692–1333

(b) Intron gains and losses on external branches

D.mel. A.gam. C.ele. H.sap. S.pom. S.cer. A.tha.
Method gain loss gain loss gain loss gain loss gain loss gain loss gain loss

DP 147 156 137 194 798 411 1844 112 197 1 15 247 2001 46
LL 90 335 91 384 719 1555 849 825 0 167 14 656 1726 760
P 116 288 111 329 855 1150 1163 200 0 104 15 546 2157 286

conf. ±27 ±54 ±24 ±57 ±46 ±235 ±239 ±153 0 0–226 ±3 102–871 ±169 42–487

(c) Intron gains and losses on internal branches

Diptera Ecdysozoa Bilateria Ascomycota Opisthokont
Method gain loss gain loss gain loss gain loss gain loss

DP 87 436 36 568 594 27 3 795 92 24
LL 134 1470 0 1005 1452 35 308 1536 169 232
P 159 1024 141 752 1216 73 274 953 207 32

conf. ±60 187–618 0–256 ±307 ±286 0–151 0–553 ±297 0–413 0–72

Table 1. Intron evolution according to different methods. Values in the first row of
each table are computed by Dollo parsimony, those in the second are computed by the
formulas of Roy and Gilbert. The third row gives the posterior mean counts, computed
via Eq. (2) assuming 35000 unobserved intron sites. The fourth row gives 95% confi-
dence intervals for the posterior counts computed in a Monte Carlo procedure (see main
text). Tree edges are identified by the nodes they lead to. Edges with a pronounced
imbalance (at least 50%) towards gain or loss are emphasized in boldface.

Table 1 compares three optimization criteria. Our estimates for intron counts,
gains, and losses are mostly between the two previous estimates. Our likelihood-



based approach gives only slightly more introns at the Crown than parsimony.
The branch leading to C. elegans has more balanced gains and losses, which
result in a net loss that is more modest than in [17]. The H. sapiens branch
has almost six times as many gains than losses, as opposed to the likelihood
calculations of [17] showing a balance. The branch leading to A. thaliana has
a net gain predicted by all three methods. While we predict more gains on
that branch than any of the other methods, the net change is close to what
is computed by parsimony, due to more losses. Among the interior branches,
we predict a significant net gain over the branch leading to the Opisthokont
node, in agreement with parsimony, whereas [17] posit a modest net loss. As for
pronounced biases towards gain or loss, our numbers agree with [17] concerning
a tendency towards mass losses on a number of edges. At the same time, the
mean counts tend to agree with parsimony regarding mass gains. In summary,
our mean counts show more changes along the branches than parsimony, but are
generally less extreme, and picture less intron-rich ancestral species than [17].

In order to assess the accuracy of the predictions in Table 1, we simulated
intron evolution by the Markov model using the parameters optimized on the
original data set. The methods were applied to the simulated data sets to es-
timate intron counts, gains and losses, which could be compared to the exact
values observed in the simulation. We generated 1000 synthetic data sets with
the same number of observed intron sites in order to assess the estimation er-
ror of different methods in our probabilistic model. Figure 5 plots the results
of these experiments for some nodes. (For economy, only 100 experiments are
shown: 1000 points would require a separate graph for every method at every
node.) Our posterior counts generally perform better than the other two meth-
ods, which is not surprising in the case of Dollo parsimony (since its assumptions
are decidedly different from those of our Markov model), but is more so for the
formulas of Roy and Gilbert [16, 17]. These latter usually underestimate intron
gains and systematically overestimate the number of ancestral introns. It is also
noteworthy that the formulas may sometime result in negative values, which need
to be corrected to 0 manually. Dollo parsimony also tends to be biased against
gains on internal edges but may overestimate them on external edges (Bilateria-
H. sapiens edge in particular). It usually underestimates the number of ancestral
introns. Aside from their bias, parsimony-based estimates have remarkably low
variance. (In the simulations, the vector of ancestral intron counts is distributed
multinomially with parameters depending on the likelihood of different charac-
ters. The same holds for the vector of intron gains or the vector of intron losses.
The estimates of the other two methods have more complex distributions.) Our
posterior counts do not seem to have any bias. For ancestral intron counts, the
estimates deviate by at most a few hundred from their real values. Specifically,
the number of ancestral introns at the common ancestor of animals, plants, and
fungi is estimated with an error between (-372) and (+269) in 95% of the cases
and a median error of (+11), whereas Dollo parsimony underestimates it by 85
on average (42–134 in 95% of the cases), and the formulas of [17] overestimate
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it by 1100 on average (710–1670 in 95% of the cases). The differences observed
in the simulations are in fact very similar to those in Table 1.

D.mel. C.ele. H.sap. A.tha.
Method gain loss gain loss gain loss gain loss

RG 0.7–0.9 1.4–2.0 3.4–4.8 1.6–2.2 2.4–3.3 0.4–0.5 2.2–2.9 0.2–0.3
This paper 17–53 3.3–4.0 33–80 1.4–2.0 140–840 0.6–1.5 44–200 0.3–0.7

(scaled) (1.4–4.5) (2.8–6.9) (11.8–72.8) (3.8–17)

Table 2. Rates of intron gain/loss on some external branches estimated by two meth-
ods: Roy and Gilbert [17] (RG) and our optimization. Rates for gains are given in units
of 10−12, while losses are in units of 10−9 per year. The branch lengths (same as in [17]
to permit comparisons) are as follows: D. melanogaster 250–300 million years (MY),
C. elegans 500–700 MY, H. sapiens 600–800 MY, A. thaliana 1500–2000 MY. The gain
rates in the RG row are based on an assumption of as many intron sites as nucleotide
positions: around 480 thousand, while our calculations are based on the assumption of
35000 unobserved intron sites. This difference amounts to a factor of about 12 between
the two gain rate estimates: in parentheses we give numbers scaled to 480 thousand
intron sites to permit direct comparison.

Table 2 shows actual intron gain/loss rates calculated by optimization. Us-
ing the same actual time estimates for branch lengths as in [17], we computed
the gain and loss rates in units of year−1. Our ranges combine the uncertainty
of branch lengths in years with 95% confidence intervals, calculated using the
parametrized bootstrap procedure mentioned above, involving 1000 simulated
data sets. Loss rates are comparable between previous and current estimates,
but gain rates tend to be higher in our model. Most notably, gain rate on the
branch leading from the MRCA of Bilateria to humans is by at least one mag-
nitude higher than what was estimated in [17].

The Markov model enables predictions about intron dynamics in the future.
Figure 6 compares current intron counts to the stationary probabilities for the
appropriate branches: the Markov process on edge e converges to a ratio of µe : λe

of intron absence:presence. D. melanogaster, A. gambiae, and S. cerevisiae are
very close to equilibrium, but other organisms are farther from it. C. elegans
is still within 50% of its stationary distribution, but S. pombe is losing introns,
while humans and thale cress are heading toward much higher intron densities
(six and four times as many introns as now, respectively).

5 Conclusion

We described probabilistic techniques for analyzing intron evolution, and applied
them to a large data set. The probabilistic analysis assumes a Markov model of
intron evolution, in which every intron site evolves independently, obeying the
same rates, but the rates may be different on different branches. It is essential to
allow for varying rates on branches because the mechanisms underlying intron
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gain and loss are fundamentally different, and their intensities vary between dif-
ferent organisms. We demonstrated that the model parameters can be estimated
well from observing introns that evolved according to the model, and that the
parameters provide sound estimates of ancestral intron counts. We described
how posterior estimates can be computed exactly for ancestral intron counts
and for gain and loss events. In contrast, Qiu et al. [5], relied on a reversible
Markov model in which intron gain and loss rates are constant (for a particular
gene family) across all branches of the tree. They further employed Markov chain
Monte Carlo techniques to estimate posterior distributions.

Our analysis shows a dynamic history of introns, with frequent losses and
gains in the course of eukaryotic evolution. We proposed a procedure for esti-
mating unobserved intron sites. This procedure yields a more sound likelihood
framework than what was used previously. Applied to the data set, which has
7236 orthologous intron sites, an additional 35000 unobserved intron sites were
postulated to explain gains and losses. This equates to an intron site density
of about one in every 12 nucleotides, which may characterize preferential in-
tron insertion sites (such as exonic sequence motifs [5] enclosing the intron). All
but 28 of 1064 introns present at the eukaryotic Crown node survived in at least
one extant species, which means that about one seventh all introns predate the
MRCA of animals, plants, and fungi, and the rest were gained more recently.
Our counts show that about one third of human introns were gained after the
split with Ecdysozoa, another third between that split and the split with fungi,
and the rest mostly predate the MRCA of plants and animals.

It is conceivable that our model’s assumptions of identical distribution and
independence should be replaced by more realistic ones. We plan on explor-
ing richer models in the future by enabling dependence between intron sites in
the same gene, and by permitting varying rates among sites. Furthermore, by



combining data analyzed here with new sequences, especially in light of recent
analyses of introns in fungi [6] and nematoda [7], one can produce more nuanced
results concerning intron evolution by better sampling the phylogenetic tree.
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