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Towards More Accura t e Separa tion Bounds of 
Empirical Polynomials II 

Kosaku Nagasak..1. 

Faculty of 1·luman Development, Kobe University, J apan 
nagasakaOma i n .h .kobe-u.ac . j p 

A b s t ract . VVe study the problem of bounding a polynom ial which is 
absolutely irreducible, away from polynomials which arc not absolutely 
irreducible. These separation bounds arc useful for testing whether an 
empirical polynomial is absolutely irreducible or not, for t he given toler­
a nce or error bound of its coefficie nts. [n the former paper, we studied 
some improvements on I<altofen a nd r-,'!ay 's method which finds appli­
cable separation bounds usi ug an absol ute irreducibility criterion due 
to Ruppert. In this paper, we study the similar improvements on the 
method using t he criterion due to Gao aud Rodrigues for sparse poly­
nomials satisfying Newton polytope conditions, by which we are able to 
find more accurate separation bounds, for such bivaria tE polynomials. 
\ Ve also discuss a cOllcept of separation bound continuations for both 
dense a mI sparse polynomials. 

1 Introduction 

\:Ve consider numerical polynomials with certain tolerances, including empirical 
polynomials with error bou nds on its coefficients, which are useful for applied 
computat ions of polynomials. We have to lISC completcly different algori thms 
from the conventional algorithms since we have to take care of t heir el"l"OI'S on 
coefficients and have to guarantee the rC!:iults within the given tolerances. 

In this paper and Lite former paper [1], we focus on testing absolute itTe­
ducibil ities of such polynomials, hence we consider the following problem. 

Problem. 1. For the given polynomial 1 E (; [x, y] which is absolutely ilTooucible, 
compute the largest value 8(f) E Ul>o such that a ll 1 E (; [x , y] with 111 - 111 2< 
8(f) ( and deg(]) S deg(f) ) must remain absolutely ilTooucible. <l 

T his problem is studied by I<altofen [2], however its separation bound is too 
small. T he first ap plicable bound is given by the author [3J, using an absolute 
irreduci bility criter ion due to Sasaki [4], and slightly improved by t he author [5]. 
In ISSAC'03, Kaltofen and ]\.'Iay [6J studied au efficieut method using an absolute 
irreduci bi lity criterion due to Ruppert [7], and a similar criterion due to Gao and 
Rodrigues (8] for sparse polynomials. The fonner paper [1] gave some impt"Ovc­
ments on Kaltofen and 1\-lay's method d ue to Ruppert. Similar impt"Ovements on 
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their method due to Gao and Rodrigues can be m'uilable partly. This is one of 
main topics in t his paper. Hence, the problem becomes the following. 

Problem 2. For t hc given polynomial 1 E (; [x, yl which is absolutely irreducible, 
compute the largest valuc tJU) E lR.>o such that all j E (; [x, yl satisfying 
p (]) ~ P(f) with 111 - 1112 < 8(f) must remain absolutely irreducible, where 
P (p) means the Ncwton polytope of a polynomial p. <J 

T his i8 better for t he case where we limit the changeable tenll8 to being in the 
polytope. We note that t he Newton polytope of a poly nomial p = L i.j (/.; ,jxiyi 

is defined as the convex hull in the Euclidean plane m? of the exponent vectors 
(i,j) of all the nOllzero terms of p . 

Example 1. Let l(x, y) be the following irreducible polynomial in x and y. 

l(x, y) = (x2 + y:r; + 2y - 1){3P + y2x - Y + 7) + 0.2x . 

We have B(1)/1I1112= 3.867 x 10- 5 , by Kaltofell and r.,'iay's algorithm. Hence, 
any polynomial which is included in e-neighborhood of 1(x,y) in 2-nol'ln, is still 
absolutely irreducible, where e = 3.867 x 10- 5 . T his bound can be optimized 
to 4.247 x 10- 5 by the improved method [1] . We note that this polynomial 
can be factored approximately with the backward errors 7.531 x 10- 4 [31 mId 
1.025 x 10- 3 [91. For the problem 2, we have 8(1)/111 112 = 1. 349 x 10- 4 • \\le note 
that we have 8 (f) S 8 U) for any polynomial j , since the all changeable terms 
in the sense of Problem 2 are included in those terms of Problem 1. <J 

The contribution of this pape r is t he foliowiJlg two points; 1) refin ing the 
Kaltofen and May's algori thm d ue to Gao and Rodrigues and finding more ac­
curate separation bounds, 2) a discussion about a concept of separat.ion bound 
continuat. ions fot' both dense and sparse polynom.ials. 

2 Orig inal M ethod 

Kaltofen and t-.'Iay 's method mainly uses t he following absolute irreducibility 
criterion d ue to Ruppert [71 . For the given polynomial , collSider the following 
differential equation W.r.t. unknown polynomials 9 and h. 

og 8f {)f 8h 
j ~ - 9'"i} + h-;::l - 1 ~ = 0, 9, h E (f; [x, y], 

uy uy u x uX 
(1 ) 

degz g S deg.,1- 1, degy 9 ::; degyj, degzh S degz j , degyh S degy1 - 2. 

The criterion is that f(x, y) is absolutely ineducible if and only if this differential 
equat ion (1) does not havc any non-trivial solutions. 

Theil' metbod uses matrix representations of absolute irreducibility c rite ria) 
and check whether those matrices a re of certain ranks 0\' not. They use t.he fol­
lowing mat rix, for t he above criterion, considering the above differential equation 
\V.r.t. 9 and II. as a linear system W.l'.L. unknown coefficients of 9 and h. 



Fig. 1. Rupper t matrix R(f ) 
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Let R(J) be the coefficient matrix of the linear system 1\8 in the figure 1, 
where the block llwtrices G; and H ; are the mat.rices of sizes 2m. x (m + 1) and 
2m. x (m - I ), respectively, where the given polynomial be 

" '" 
f ~ L L C;"x;';, C;,j E 11;, 

;=0 j=O 

We call n (f) the Ruppert matrix. The size of Ruppert matrix n(f ) is (4nm) x 

(2nm. + m - 1) where n = degx(f) and Tn = deg!,U). 
The original expressions of separation bounds in I< altofen and May's algo­

rithm [61 are the following Bo(/) and B{J (/). We nole tha.t Bo(/) is a lower 
bound of Bp(f) by bounding the largest coefficient of ]I n(lP)ll} in BfJ(f), where 
IIAIIF denotes the Frobenius nonn (the square root of the sli m of squares of all 
the elements) of mat.rix A. 

8
0 
(f) ~ a(n(f)) 

max {n, m} J2nm 
a(R(f )) 

, 8p(f) ~ , 
n v (the Im'gcst cocL of IIRCI") II } ) 

where R(ip) denotes RU) calculated by treating c;,] as variables and a(A) de­
notes the (2nm. + m - I )-t.h largest singular vallie of matrix A. 



3 Previous Work 

In the former article [1], we decomposed RU) to integer ma.trices and complex 
coefficients parts, and gave some improvements using those matrices. 

\Ve refer the fOl'mer rcsults, briefly. The Ruppert matrix can bc writtcn as 

R(f) = '\" '""' n, ·c· , n· ' E z:- (4nrn j x {2"m+", - I ) L.... L.... ,., ' ,1' ' ,1 , (2) 
; = 0 j=O 

where each clements of R ;,j is an integer coefficie,nt generated by differentiating 
polynomials, and R .i.j has the same shape as n(J) but whose elements are differ­
ent. Then, the expressions of separation bounds can be refined as the following 
expression, by Lemma I in the fonner paper. 

8U) ~ J6 J(RU» / yln(m(m + 1)(2m + I) + (m I)(n + 1)(2'1 + I». (3) 

3.1 Improvement Strategy 

We refer the stmtegy of t.he former paper [1], improving t.he original method of 
Kalt.ofen and May due to the Ruppert. 

The method uses the absolute irreducibility criteria as a necessary condition 
which the given polynomial is absolmely irreducib le. In the Kaltofen and t\llay's 
algorithm, CT(R(f) is considered as a t hreshold whether tlw differential equatioll 
(or t.he linear system) (1) has nOll-trivial solutiollS or not. In this point of view , 
to det.e rmille that the differential equation does not have non-t.rivial solutions, 
corresponding to that the given polynomial is absolutely irreducible, we do not 
need to use all the constraint equations w.r.t. unknown coefficients of polynomi­
als g and h, since the corresponding linear system is over-determined. We can 
lessen the lIumber of constra int €(luat.iolls appeared in the Ruppert matrix R(J) , 
without decreasing its matrix rank. 

\Ve note that removing rows (constraint equations) may decrease the numer­
ator of the expression (3) and may decrease t he denominat01' depending Oil the 
elements of Ri,j . Hence, depending on variations of the numerator and denomi­
nator, n (J) changes and it can be larger if we choose suitable rows. 

As in the fonner paper, we define the following "drop" notations for removing 
rows from 11 matrix , which arc correspondillg to removing constraint equations. 

R( ~· ) (f) = drop;IJ .. (droPd, (R(J) ))), RI'J = droPd~ (. , . (droPd, (Rid) )), 

where d l , ... ,dl; are indices of rows removed from the given matrix. 
Im proving t.he original methml now Iwcomes the following prohlem. 

Pmblem 3. Find an integer k, row indices ell , ... , ell; to be remo\'ed , and the 
following separation hound 8 (1.: )(f) > B(f). 



Le mma 1 (Lemma 2 in [1]) . We have to n1nove at least 2 rows (k = 2) 
f1YJm the Ruppert matrix for finding more accurate sqxJ:mtion bounds satisfying 
B(k)(J) > B(1) , For k = 2, rows to be removed from the matrix, must satisfy 

{ 

cil = 2md", + ely (0 ::5 (4, ::5 n. ~] 1\ ely = m + 1) , 
dz = 2md..< + ely (n S d", S 2n ~ I II dll = m + I ) 

or d l = 2md", + dy (d", = n II 2 ::5 dy :s: m ), 
liz = 2md", + dll (d", = n II m + 2 :S: riy :s: 2m). 

By Lemma 1, the simple algol"i~hm was in~l"Odticed, which give tiS about 1.6% 
more accurate separation bounds , according to the ex perimental result ill the 
former paper. We note that "removing multiple rows" versions of ~he algorithm 
were also introouced in the paper. 

4 Newton Polyt ope Ver sion 

Kal~ofen and May also argued briefly the method using the followillg criterion 
due to Cao and Rodrigues [8] which is effective for factoring sparse polynomi­
als. For the given polynomial, consider the following d ifferential equation W.l".t . 
unknown polynomials 9 and h in <C [x, y}. 

[Jg [Jf [Jf [Jh 
1 -a - 9-a + I.-a - I-a ~ 0, P(xg) (; P(f) and P(yh) (; P(f). (4) 

Y !J x x 

The criterion that the givcn polynomial is absolutely irreducible is a little bit 
different from the Ruppert criterion. Let RU) be the coefficient matrix of the 
linear system of the above differential €(Iuation (4) w.r.t. unknown coefficients 
of polynomials g and h. We call R U) the spm-se Ruppert matrix. Polynomials 9 
and II. do not have the same forms as in the differential €(Iuation (l) by Ruppert, 
hence, for sparse polynomials, the size of sparse Ruppert matrix "RU) is less 
than the size of Ruppert matrix R(J). The figure of the sparse Ruppert matrix 
is depending on the Newton polytope of the given polynomial and we can not 
show its general form. For easiness of discllssions, we define the skeleton of the 
sparse Ruppert mat r ix RU), with full terms of 9 and h, as in the figure 1, 
where the block nmtrices G i and H i are the matrices of sizes 2m x (m + L) and 
2m x "In, respcctively, as in the figure 2. The size of the skeleton matrix RU) is 
(4nm) x (2n.m+ n + "In). We note that I) the only difference between R(f) and 
R(f) is on the block matrix Hi, 2) all actual sparse Ruppert matrix RU) can be 
generated by replacing all elements with zeros, 011 some columns corresponding 
to unnecessary terms of polynomials 9 and h by the conditiOIl due to t he Newton 
polytope of f(x , y) , or by removing such columns. 

The criterion is that f(x , y) is absolutely ir["€(lucible if and only if the sparse 
Ruppert matrix RU) has the rank p~ 1, where p denotes the number of unknown 
coefficients of polynomials g and h . \\Fe note that P roblem 2 is corresponding to 
this criterion, and contributions of this paper are mainly for this problem. We 



Fig. 2. Block matrices or skeleton matrix 11(j) 
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have the following separation bound BpU) , by the same wa}' of the paper [6]. 

Bp(f) = fi(RU)) ! J(the largest coemcien~ of II 'R(~) II ~ )' 

where a(A) denotes the (p - I )-th largest singular value of matrix A. In the rest 
of this paper, we discuss the similar refining of B{3 U) as in t.he former paper [I ]. 

4.1 Int eger Matrices 

We decompose RU) and nu) to integer matrices and complex coefficients parts, 
as in the previous section. T hese ma~rices can be wriuen as 

" '" " '" 

i= O ;=0 . = 0 ;=0 

where each clcments of R i .] and It,; is an integer coefficient generated by d if­
ferentiating polynomials, and 'Ri.; and R.i.; have the same shape of nu) and 
nu), respect.ively, but. all the elements arc defined as in the figure 3 where iS i.; 
denotes Kronecker delta.. T hese integer matrices have the following properties 
similar to those of the integer mat ric(,'S of the Ruppert matrix. 

Lemma 2. Hre have 

llla;-: II R;.;II ~' = nm,«2n+ l ){n+ 1)+(2m+ 1){m,+ 1)) / 6. 
" 

Pwuj. The salllc way as ill Lcmma 1 ill ]I ]. o 
Corollary 1. We have the following equality. 

m= IIR; ,;lI p ~II R",,,, lI p~ IIR;,,ollp~IIRo,,,, lI p ~IIRo,o Il F' 
'" 



F ig.3. Integer matrix R •. i 
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o 

Remm·k 1. Using the above lemma and corollary, we can rewrite the expression 
B{J (f) as in the former paper, however, it is useless since an actual sparse R up­
pert matrix which docs not have some t:olumns corresponding to unnecessary 
terms of polynomials 9 and h by the Newton polytope of f(x , V) , and separation 
bounds based on n(f) may be larger than those of an actual sparse Ruppert 
matrix 'R.(f) . Henco, we have to usc the expression 8 {J (f) still. This is different 
from the Ruppert matrix case. <J 

The following lemma helps us to calculate the largest coefficient of 1I 'R.(rp)l l} 
which is appeared in t he denominator of B(j (f). 

Le mma 3. We have the following equality. 

1l"!il:X II 'R.;.J IIF= max{II'R.". ", II F, 1I 'R. .. ,oIl F, lI 'Ro.", IIF, II 'R.o.oIIF}. <l '., 

Proof. Since we can constl"llct 'R. i .j by removing some col umns from ft.; (or 
replacing them wit h zeros), we only have to prove that Corollary I is still valid 
after removing columns. We foctls only on the index j and consider the left hand 



side of H;,; formed by block matrices G j and t he the r ight hand side of Ji ;; 
formed by block matrices H i sepa.rately. 

For the right hand side, each sum of squares of clements corresponding to an 
index j on each column has the same Frobenius norm. Hence, removing columns 
au t ile rig,llt 11cUld side liut,'S llUL affect tile L"tjllali ty of Curolla ry 1. T llerefure, we 
only have to show that: the largest coefficients of C; ,m and c.: ,o of the Frobenius 
norm of G; is the largest coefficient among C;,j after removing. 

Let d k.O and dk. m be d ifferences between the coefficients of C;.o and C;.m and 
C;.m_" of II Gdl~- on the k + I-th column, respectively. We ha.ve 

d~ .. o := (m. - k)2 - (m - k - m + 11:)2 = (21.: - fi, - m)(fi, - m) , 
d k,m = (_1.;)2 - (m - k - m + fi,)2 = (21.: - fi,)fi,. 

Let 7 be the set of column indices of the rest columns after removing. We suppose 
that the lemma is not valid and Co.m - " has the largest coefficient. We have 

2: d~ .. o = (fi,- m) 2: (21.: - fi,-m) < 0, 
k €I k€I kEI k €I 

Since,.., - 'In is llot positive and fi, is not negative, we have 

where #7 denotes the number of elements of the set 7. T his leads a contradiction. 
T herefore the lemma is valid . We note that we can prove for the index i by the 
s imilar way even if it not ncccssaJ'y for the proof. D 

By Lemma 3, we have the following separation bound . 

B(f) ~ &CR(f))/max{ II1<".mlle, IIR",oIIF, IIRo.mll e, IIRo.o lld· 

4.2 Improvement Strategy 

For the sparse Ruppert matrix , t he improvement strategy of the forlller paper 
is still npplicable. I'lence, the aim of this subsection is the fo llowing problcm. 

Problem 4. Find an integer 1.:, indi ces til , ... , dk to be removed , and the following 
separat ion bound f3(k)U) > f3 (f), 

f3(k}(f) = a(n (k)(f))/ n~a,x IIR~~)II F . 
'., 

- Removing Two Rows - For the sparse Ruppert matrix , we still consider 
"removing two rows from the matrix" even though the important corollary in 
[1] is not valid and \\'e have only Lemma 3. Because even for such cases, \\'e may 
have to remove rows providing that IIR",,,, II F, WR",o Il F, IlRo,m Il F and IIRo.oIIF 
become smaller and l3(k)(J) > B(J) , depending on n(f). Therefore, we follow 



the same discllssion. We consider variations of lI .it.;lI p, provided by removing a 
(2md", + dy)-th row from flU), satisfying 0 :5 d:r. ::; 2n - I and 1 ::; dy ::; 2m. 

Let d e be the square of Frobenius norm of variations of the left hand side 
part of R i .;, corresponding to G i and Ll n be that of the right hand side part of 
R;.j, corresponding to Hi' We have 

- 2 - 2 
II droP2""iz +dM(R;,j)IIF= IIR;,jIlF - Lle - LlJ/. 

By the same way in the fonner pHper , we have the followi ng rela tions that arc 
slightly d ifferent from those of t he Ruppert matrix. 

{ 

0 U<n-d:r.) V (2n -d.,- I <i)V 
Lle = (j < m - dy + 1) V (2m + I - d.y < j) 

(2m + 1 - dy - 2j )2 otherwise 
(5) 

{ 

0 (i<n- d:r.) V (2n - (!:r.< ·i)V 
LlH = (j < 111. - dy + I) V (2m - dy < j) 

(2-i + d:r. - 2n)2 otherwise 
(6) 

Lemma 4. We may have to remove at least 2 rows (k = 2) from the sparse 
Ruppert mat7ixfor finding more accurate sqx17ution bound satisfying 8 (k)( f) > 
8 (1) . For k = 2, rows to be removed from the matrix, shou.ld satisfy 

t
tll = 2md:r. +dy (0 ::; d",::; n- 1 1\ d y = m. + 1), 
d 2 = 2md", + dy (n::; d",::; 2n - I A (ly =m+ \) 

or d l = 20u1", + dy (d", = n 1\ I ::; ely ::; m ), 
(l2 = 2md", + dy (d", =n 1\ 111.+ I ::;(ly::; 2m) . 

Pmof. T he same way as in Lemma 2 in [lJ. 0 

We note that removing only one row has possibility to satisfy 8{1)(I) > 8(1) , 
s ince we have only Lemma 3 for the sparse Ruppert matrix. However, the above 
lemma guamntees t.hat removing such two rows must decrease ma.,"xi,j WR i,j II /0' 

~ ",ax{ IIR",,,,II,,, IIR",oIlF, IIRo,,,,IIF, IlRo,ollp}, 
By Lemma 4, we have the following simple algorithm wh ich give us about 

1.3% mom accUl'ate separation bounds, according t.o our experimental result . 

Algorithm 1. (Removing Two Rows Sparse Version) 
Input: a bivariate polynomial f (x,y) . Output: a separation bound B(J) 

Ste p 1 Construct sparse Ruppert matrix 'R(J) . 
Step 2 For all index pairs li l and (/2 in Lemma 4 , compute separation bounds, 

and let the best separation bound be 8 (2)(1) . 
Step 3 Output t he separation bound 8 (2)(1) and fini sh the algorithm. <c 

- Removing Multiple Rows - For the Ruppert matrix , in the former paper , 
by the lemma which guurantc(:s Lemma 3 after removing rows, the algori thms 
removing multi ple rows were introduced. For the sparse Ruppert matrix , such 
a lemma does not exist since an actual sparse Rupper t. matrix does not have a 
lots of columns ilnd removing rows easily breaks Lemma 3. However, we can lL';e 
the similar algorithms though they are not effective as before. 



Algorithm 2. (Early Termination Algorithm Sparse Version) 
Inpu.t: a bivariate p olynomial f(x,y), Output: a !Separation bound S(f) 

Ste p 1 Construct sparse Ruppert matrix 'R(j) and put k = l. 
Ste p 2 Compute contributing rat.ios of each rows of nUl. 
Step 3 Constl'Uct a ll the index pairs d 2k _ l and (iZk as in Lemma 4. 
Ste p 4 For each index pairs constructed in Step 3, compute separation bounds 

with d], d2 , .. . , dZk , by ascend ing order of sums of contri buting ratios, until 
an index pair for which a separation bound does not become bettcr than that 
of a prc'yio,lIs group t~icel and let the best separation bound be fJ (2~' ) (f). 

Step 5 If B(2"-2 ){f) $ B (2k (f) then l2ut k = k + I and gOl D Step 3. 
Ste p 6 Outpu t. the separation bound B(21;-2 ) (1) and finish the algorithm. <0 

\Ve usc Euclidean norms of corrcsponding row vectors of t he ~'Ioore-Penrose type 
pseudo inverse of the transpose of n(1) as t.he comributing ratios (see [1]). 

Exam1J/e 2. For the polynomial in the example 1, the algorithms 1 and 2out.put 
B(1) = 1.420 )( 10-4 and i3(1) = 1.427 )( 10-<1, respectively, which are slightly 
better than the results in the beginning example. <0 

5 Separation Bound Continuation 

In this section . we consider another way to enlarge separation bounds. The key 
idea is that t he sep aration bound defines a kind of E-neighborhood of t.he given 
polynomial f( x , y) . From this point of view, we consider to continuate one neigh­
borhood to others like analytic conti nuations. 

For t he given f(x , y) and 0 < bE 1R, let AbU) be the set of all j E G:: [x , y] 
with II ! - 111 2< band deg(/) ::; deg(1). Hence A8(j )(1) denotes a c-neighbol'hood 
of the given f(x , y) , in which all polynomials must remain absolutely irreducible. 

D efinition 1. Let 8 0(1) = 8(1) and 8;(1) E IR (i = 1, ... ) be the maximum 
value satisfying 

u 
gEAn, _ I(f) (f ) 

We call 8 i (1) (i > 0) and 8 00 (1) a continuated separation i10ulld and the max­
imum cOlltinuaied se]Jamtion bound, of f(x, y), respectively. 4 

One may think that "Does t he given polynomial have an approximate fac­
torizat.ion with tolerance 8 00 (1)'1". T he aut.hor thinks that the answer is "No" 
since separation bounds by the known methods are far £l'om backward tolerances 
with which the given polynomials have approximate fac torizations. However, this 
cominua~ion helps us to en large separation bounds as follows. 

For the problem I , let e be a ru'bitrary positive real number and Ll , b E III be 

Ll = 8 (J) / /(n + 1)(1n + 1) - e, b = . n~in B(J + kLlx iyi). 
0 :0:;, :0:; ".O :O:;J :O:;"' ,"'= -I , 1 

For the problem 2, let e be a arbitrary positive real number and Li, b E III be 

ii ~ BU)I J#M - £, b ~ .. m;n B(f + .'iix'yi), 
"' yJE M ,k =- I , 1 



where M dCllotes the set of all the monomials 7/ yi satisfying p {xiyi) t;;::; P(f). 

Lemma 5. v'~2 + .:::12 and v'~2 + .:::12 are also separation bounds 8(1) and B (f) 
of f(x , y) , respectively, and they may be better than the original bounds. <0 

P1Y)0f. We give the following proof only for ";/)2 + .12 since th<lt for vI? + .12 

is proved by the same way. Let a polynomial 1 E A~(f) be 

j = ~..)Ci,j +Ci.j)Xiy.i . 
;.i 

By the defin it ion of BU), we have that 1 is absolutely irred ucible if lei.il :::; .1 
for all -i aud j. HCllce, we suppose that one of variations of coefficients of j from 
f is larger than .1 and such the term be Xi' yj'. 'vVe rewrite 1 be 

1 = 2:)e;,j + Ci,j)x iyi + kLlxi' yi', (k = - l or I). 
i,i 

We have II f - j 1i §= 2: i.i II\.jI2 + 2Ic;',rILl + .12 < b2 + .12 which means 

L i,i le,:,j 12 < b2
. Therefore, we have 1 E A bU + kLlx i ' vi') meaning 1 remains 

absolutely irreducible, and the lemma is valid . 0 

Using t he lemma, we define part.ial continuated separation bounds of f (x, y ), 

Bc (J) ~ max(B(J), vb' + Ll'} and Sc (J } ~ max(S(J), v'b' + il'} . 

Example 3. For t he polynomial ill the example 1, the algorithm using ~he above 
lemma (let it be Algorithm C) outputs Bc U) = 4.068 x lO- s and BcU) 
1.467 x 10- 4 , which are slightly better though it is very timCo-consuming. <l 

6 N umerical Ex periment and Remarks 

\,ye have generated 100 bivariate sparse polynomials of degrees 6 and 5 \V .f.t . x 
and y , respectively, with coefficients randomly chosen in the real interval [-1 , 1]' 
where each sample is irreducible and about 25% of coefficients are non-zero. 
Wi th those polynomials, we have tested t he new algorithm 1, 2 and C, using our 
preliminary implementat ions. \Ve note that the results of our experiments are 
small so \\'e have to take care of precisiolls. Basically, we ha.ve tested it using the 
same way in the paper [31 (bounding errors of s ingular values). T he upper part 
of the table 1 shows the results. According to the results, our improvements give 
us morc accurate separation bounds. 

rvloreover, we have generated 100 bivariate reducible polynomials. Each poly­
nomial is a. product of two dense polynomials of total-degrees 5 and 'I, respec­
tively, with coefficients randomly chosen in the integer interval [-5, 5] . Using 
t hose polynomials, we have generated 100 appl"Oximately reducible polynomials. 
Each polynomial is a sum of a reducible polynomial and a polynomial which 
has the same degree as the reducible polynomial, about 25% as many terms and 
coefficients randomly chosen in the real interval [_ 10-'1, 10- 4

]. 



Wi t h t.hose polynomials, we have test.ed the new algorithms except fo r the 
algorithm C . The lower part of the table 1 shows the results. According to the 
results, our improvements give us mOl'e accurate separation bounds. Although we 
could not usc the algorithm C for all the generated polynomials due to its time­
cOin ple~x i t.y, it. gave us bct.ter resu lts. \-\le nole t.ha t. an average of backward errors 
of those approxima tely reducible polynomials by the method [9] is 2.829 x 10- 4 . 

Table 1. Experi mental results 

I ~ I II II I ~ ,. 
I , i .. II II , x 1.036 

B(n I I ' x -
x 1.01: 

, 2 ,,10 1.024 
I .703 x 10 1.038 

:M03 1.074 x 10 -
, 2 i .. III 1.083 x 10 1.008 

Be I" M03 I I 2.145 x 10 -

, I 2." x 10- 1.015 
,2 2.204 x 10 1.027 

The 11Iet.hods revised by the former and th is, are more t. ime-consuming than 
the originals though their separat.ion bounds are better. T he reason is t hat we 
have to compute s ingular values after deleting unnecessary rows. Furthermore, 
the author wishes to thank the anonymOllS referees for their suggest ions. 
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