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Towards More Accurate Separation Bounds of
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Faculty of Human Development, Kobe University, Japan
nagasaka@main.h.kobe-u.ac. jp

Abstract. We study the problem of bounding a polyncmial which is
absolutely irreducible, away from polynomials which are not absolutely
irreducible. These separation bounds are useful for testing whether an
empirical polynomial is absolutely irreducible or not, for the given toler-
ance or error bound of its coefficients. In the former paper, we studied
some improvements on Kaltofen and May’s method which finds appli-
cable separation bounds using an absolute irreducibility eriterion due
to Ruppert. In this paper, we study the similar improvements on the
method using the criterion due to Gao and Rodrigues for sparse poly-
nomials satisfying Newton polytope conditions, by which we are able to
find more accurate separation bounds, for such bivariate polynomials.
We also discuss a concept of separation bound continuations for both
dense and sparse polynomials.

1 Introduction

We consider numerical polynomials with certain tolerances, including empirical
polynomials with error bounds on its coefficients, which are useful for applied
computations of polynomials. We have to use completely different algorithms
from the conventional algorithms since we have to take care of their errors on
coefficients and have to guarantee the results within the given tolerances.

In this paper and the former paper [1]. we focus on testing absolute irre-
ducibilities of such polynomials, hence we consider the following problem.

Problem 1. For the given polynomial f € Clz, y] which is absolutely irreducible,
compute the largest value B(f) € IR>¢ such that all f € Clz.y| with || f — fE|2<
B(f) ( and deg(f) < deg(f) ) must remain absolutely irreducible. <

This problem is studied by Kaltofen [2], however its separation bound is too
small. The first applicable bound is given by the author [3], using an absolute
irreducibility criterion due to Sasaki [4], and slightly improved by the author [5].
In ISSAC’03, Kaltofen and May [6] studied an efficient method using an absolute
irreducibility criterion due to Ruppert [7], and a similar criterion due to Gao and
Rodrigues [8] for sparse polynomials. The former paper [1] gave some improve-
ments on Kaltofen and May’s method due to Ruppert. Similar improvements on

' This research is partly helped by Grants-in-Aid of MEXT, JAPAN, #16700016.



their method due to Gao and Rodrigues can be available partly. This is one of
main topics in this paper. Hence, the problem becomes the following.

Problem 2. For the given polynomial f € C[z,y| which is absolutely irreducible,
compute the largest value B(f) € IR.o such that all f € Clz,y] satisfying
P(f) € P(f) with || f = f|lo< B(f) must remain absolutely irreducible, where
P(p) means the Newton polytope of a polynomial p. <

This is better for the case where we limit the changeable terms to being in the
polytope. We note that the Newton polytope of a polynomial p = Zf.f a; jety’
is defined as the convex hull in the Euclidean plane IR? of the exponent vectors
(¢, j) of all the nonzero terms of p.

Example 1. Let f(x.y) be the following irreducible polynomial in « and y.
fla,y) = (@ +ya+2y — 1)(@® + y*2 —y + 7) + 0.2z,

We have B(f)/|| flla= 3.867 x 10~?, by Kaltofen and May’s algorithm. Hence,
any polynomial which is included in e-neighborhood of f(x,y) in 2-norm, is still
absolutely irreducible, where £ = 3.867 x 107°. This bound can be optimized
to 4.247 x 107 by the improved method [1]. We note that this polynomial
can be factored approximately with the backward errors 7.531 x 10~* [3] and
1.025 x 1073 [9]. For the problem 2, we have B(f)/||f|ls= 1.349 x 10~%. We note
that we have B(f) < B(f) for any polynomial f, since the all changeable terms
in the sense of Problem 2 are included in those terms of Problem 1. <

The contribution of this paper is the following two points; 1) refining the
Kaltofen and May’s algorithm due to Gao and Rodrigues and finding more ac-
curate separation bounds, 2) a discussion about a concept of separation bound
continnations for both dense and sparse polynomials.

2 Original Method

Kaltofen and May’s method mainly uses the following absolute irreducibility
criterion due to Ruppert [7]. For the given polynomial, consider the following
differential equation w.r.t. unknown polynomials g and h.
dg af af oh
— —g—=—+h=——f—=0, g.heClz,y, 1
ay gay or o g [ J] ( )
deg, g < deg, f — 1, deg, g < deg,, f, deg, h < deg, f, deg, h < deg, [ — 2.

The criterion is that f(x,y) is absolutely irreducible if and only if this differential
equation (1) does not have any non-trivial solutions.

Their method uses matrix representations of absolute irreducibility criteria,
and check whether those matrices are of certain ranks or not. They use the fol-
lowing matrix, for the above criterion, considering the above differential equation
w.r.t. ¢ and h as a linear system w.r.t. unknown coefficients of g and h.



Fig. 1. Ruppert matrix £(f)
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Let R(f) be the coefficient matrix of the linear system as in the figure 1,
where the block matrices G; and H; are the matrices of sizes 2 x (m + 1) and
2m x (m — 1), respectively, where the given polynomial be

mn m

F=3> ey, a;eC.

i=0 j=0

We call R(f) the Ruppert matrix. The size of Ruppert matrix R(f) is (4nm) x
(2nm +m — 1) where n = deg, (f) and m = deg, (f).

The original expressions of separation bounds in Kaltofen and May's algo-
rithm [6] are the following B,(f) and Bgs(f). We note that B,(f) is a lower
bound of Bj(f) by bounding the largest coefficient of ||R(p)||% in Bs(f), where
[[A]| = denotes the Frobenius norm (the square root of the sum of squares of all
the elements) of matrix A.

a(R(f)) . Bs(f) = a(R(f)) ‘
max{n, m}v2nm—n \/ (the largest coef. of [|R(p)||%)

where R(p) denotes R(f) calculated by treating ¢; ; as variables and o(A) de-
notes the (2nm +m — 1)-th largest singular value of matrix A.

Ba(f) =




3 Previous Work

In the former article [1], we decomposed R(f) to integer matrices and complex
coefficients parts, and gave some improvements using those matrices.
We refer the former results, briefly. The Ruppert matrix can be written as
T L

R(f) - Z Z Ri.__i'c:'._._js R-j_,_j € ‘Z(r-,lmu'r,))((2'”'.1'10—‘,-1'1'1,—1}.| (2)

i=0 j=0

where each elements of I; ; is an integer coefficient generated by differentiating
polynomials, and I7; ; has the same shape as R(f) but whose elements are differ-
ent. Then, the expressions of separation bounds can be refined as the following
expression, by Lemma 1 in the former paper.

B(f) = V6 o(R(f))/v/n(m(m+ D@m+ 1) + (m— D(n+ D2n+1)). (3)

3.1 Improvement Strategy

We refer the strategy of the former paper [1], improving the original method of
Kaltofen and May due to the Ruppert.

The method uses the absolute irreducibility criteria as a necessary condition
which the given polynomial is absolutely irreducible. In the Kaltofen and May’s
algorithm, o(R(f)) is considered as a threshold whether the differential equation
(or the linear system) (1) has non-trivial solutions or not. In this point of view,
to determine that the differential equation does not have non-trivial solutions,
corresponding to that the given polynomial is absolutely irreducible, we do not
need to use all the constraint equations w.r.t. unknown coeflicients of polynomi-
als g and h, since the corresponding linear system is over-determined. We can
lessen the number of constraint equations appeared in the Ruppert matrix R(f),
without decreasing its matrix rank.

We note that removing rows (constraint equations) may decrease the numer-
ator of the expression (3) and may decrease the denominator depending on the
elements of R; ;. Hence, depending on variations of the numerator and denomi-
nator, R2(f) changes and it can be larger if we choose suitable rows.

As in the former paper, we define the following “drop” notations for removing
rows from a matrix, which are corresponding to removing constraint equations.

drop;(A) = (a4, ..., @i1,0,@ip1y0 50,85, )Yy A= (1,001, ax, )t € CF1 ¥k,
RW(f) = dropy, (-~ (drop,, (R(f)))), Ry = dropy, (--- (dropg, (R ))),
where d.....d; are indices of rows removed from the given matrix.

Improving the original method now becomes the following problem.

Problem 3. Find an integer k, row indices d, ..., dj to be removed, and the
following separation bound B®¥)(f) > B(f).

BW(1) = o(R¥($)/ max IR e )



Lemma 1 (Lemma 2 in [1]). We have to remove at least 2 rows (k = 2)
from the Ruppert matriz for finding more accurate separation bounds satisfying
BW)(fy > B(f). For k=2, rows to be removed from the matriz, must satisfy

di =2md; +dy (0<d <n—1Ady=m+1),
d2=2md,+dy (n<d, <2n—1 A dy=m+1)
- dy =2md, +dy (de. =n A 2< dy <m),

dy =2md, +dy, (dy =n A m+2<d, <2m). <

By Lemma 1, the simple algorithm was introduced, which give us about 1.6%
more accurate separation bounds, according to the experimental result in the
former paper. We note that “removing multiple rows” versicns of the algorithm
were also introduced in the paper.

4 Newton Polytope Version

Kaltofen and May also argued briefly the method using the following criterion
due to Gao and Rodrigues [8] which is effective for factoring sparse polynomi-
als. For the given polynomial, consider the following differential equation w.r.t.
unknown polynomials g and h in C[z, y].

of _
Ox

99 Of

%—ga‘kh

oh
f% =0, P(xg) CP(f) and P(yh) CP(f). (4)

The criterion that the given polynomial is absolutely irreducible is a little bit
different from the Ruppert criterion. Let R(f) be the coefficient matrix of the
linear system of the above differential equation (4) w.r.t. unknown coefficients
of polynomials g and h. We call R(f) the sparse Ruppert matrix. Polynomials g
and h do not have the same forms as in the differential equation (1) by Ruppert,
hence, for sparse polynomials, the size of sparse Ruppert matrix R(f) is less
than the size of Ruppert matrix R(f). The figure of the sparse Ruppert matrix
is depending on the Newton polytope of the given polynomial and we can not
show its general form. For easiness of discussions, we define the skeleton of the
sparse Ruppert matrix E’( f). with full terms of g and h, as in the figure 1,
where the block matrices G; and H; are the matrices of sizes 2m x (m + 1) and
2m x m, respectively, as in the figure 2. The size of the skeleton matrix R(f) is
(4nm) x (2nm+n + m). We note that 1) the only difference between R(f) and
R(f) is on the block matrix H;, 2) an actual sparse Ruppert matrix R(f) can be
generated by replacing all elements with zeros, on some columns corresponding
to unnecessary terms of polynomials g and h by the condition due to the Newton
polytope of f(z,y). or by removing such columns.

The criterion is that f(x,y) is absolutely irreducible if and only if the sparse
Ruppert matrix R(f) has the rank p—1, where p denotes the number of unknown
coefficients of polynomials g and /i. We note that Problem 2 is corresponding to
this criterion, and contributions of this paper are mainly for this problem. We



Fig. 2. Block matrices of skeleton matrix R(J)
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have the following separation bound Bﬁ'( f), by the same way of the paper [6].

Bsl(f) = 6(R(f))/\/(t}1e largest coefficient of ||R(¢)||%).

where 5(A) denotes the (p—1)-th largest singular value of matrix A. In the rest
of this paper, we discuss the similar refining of Bz(f) as in the former paper [1].

4.1 Integer Matrices

We decompose R( f) and R(f) to integer matrices and complex coefficients parts,
as in the previous section. These matrices can be written as

n m n m

R =D Rugeiz, BF)=D) ) Rijes

i=0 j=0 i=0 j=0

where each elements of R, ; and R; ; is an integer coefficient generated by dif-
ferentiating polynomials, and R; ; and R;; have the same shape of R(f) and
R(f). respectively. but all the elements are defined as in the figure 3 where §; ;
denotes Kronecker delta. These integer matrices have the following properties
similar to those of the integer matrices of the Ruppert matrix.

Lemma 2. We have
max “Ri.j“%‘: nm((2n+1)(n+1)+(2m+1)(m+1))/6. <
&
Proof. The same way as in Lemma 1 in [1]. O
Corollary 1. We have the following equality.

I'l;lli;:){ ||Ri.j HF="R‘n,m H F=||R71.I)||F=”RU.?" "F'=||EU.U"F' . <



Fig. 3. Integer matrix R; ;
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Remark 1. Using the above lemma and corollary, we can rewrite the expression
Bj(f) as in the former paper, however, it is useless since an actual sparse Rup-
pert matrix which does not have some columns corresponding to unnecessary
terms of polynomials g and h by the Newton polytope of f(z,y), and separation
bounds based on R(f) may be larger than those of an actual sparse Ruppert
matrix R(f). Hence, we have to use the expression Bs(f) still. This is different
from the Ruppert matrix case. q

The following lemma helps us to calculate the largest coefficient of R(2)1%
which is appeared in the denominator of Bs(f).

Lemma 3. We have the following equality.

‘Rr‘].u”p}. q

Rauollry [RomlFs |

mas [Ry = masc{ [Roml| |

Proof. Since we can construct R;; by removing some columns from R;. ; (or
replacing them with zeros). we only have to prove that Corollary 1 is still valid
after removing columns. We focus only on the index j and consider the left hand



side of R, ; formed by block matrices G; and the the right hand side of R;
formed by block matrices H; separately.

For the right hand side, each sum of squares of elements corresponding to an
index j on each column has the same Frobenius norm. Hence, removing colunns
on the right hand side does not allect the equality of Corollary 1. Therelore, we
only have to show that: the largest coefficients of ¢; ,,, and ¢; o of the Frobenius
norm of (; is the largest coefficient among ¢; ; after removing,.

Let Ay g and Ay, be differences between the coefficients of ¢; ¢ and ¢; ,,, and
Cim—r Of [|Gi|% on the k + 1-th column, respectively. We have

Ao =(m—k)? = (m—k—m+k)* = (2k -k —m)(x —m),
Aem=(—k?—(m—k—m+r)? = (2k—K)k.

Let Z be the set of column indices of the rest columns after removing. We suppose
that the lemma is not valid and ¢; ,,,— has the largest coefficient. We have

Z App=I(k—m) Z(Qk —k—m) <0, Z App = 52(2# — k) <O,
kexl keT ke kel

Since £ — m is not positive and & is not negative, we have

Y (@k—k-m)=) (2k—-r)—#Im>0, Y (2k—#r)<0,

keET kel kel

where #7 denotes the number of elements of the set Z. This leads a contradiction.
Therefore the lemma is valid. We note that we can prove for the index i by the
similar way even if it not necessary for the proof. O

By Lemma 3, we have the following separation bound.

B(f) — a'(R(f})/nla‘x{”Rn.m”F' "RFLUHF' "R[Lm.HF'- ”RU.{)”F}-

4.2 Improvement Strategy

For the sparse Ruppert matrix, the improvement strategy of the former paper
is still applicable. Hence, the aim of this subsection is the following problem.

Problem 4. Find an integer k,_indices dy. ..., d; to be removed, and the following
separation bound B¥(f) > B(f).

BW(f) = o (RW (1)) max [RE) e )

- Removing Two Rows - For the sparse Ruppert matrix, we still consider
“removing two rows from the matrix” even though the important corollary in
[1] is not valid and we have only Lemma 3. Because even for such cases, we may
have to remove rows providing that [|R,.mllr. [|[Ruollr, [[Romlr and |Ro.ol#
become smaller and B (f) > B(f). depending on R(f). Therefore, we follow



the same discussion. We consider variations of ||R; ;||#, provided by removing a
(2md, + d,)-th row from I_Z(fj, satisfying 0 <d, <2n—-1and 1 <d, < 2m.

Let Ag be the square of Frobenius norm of variations of the left hand side
part of }_?,-_._.,-, corresponding to G; and Ay be that of the right hand side part of
R j. correspouding to H;. We have

”drcp‘z-md, -i-d,_.(R'i-j)”?F:”RivJ”.z” —Ag — Ay.

By the same way in the former paper, we have the following relations that are
slightly different from those of the Ruppert matrix.

0 (i<n—d;)V 2n—d,—1<i)V
Ag = (<m—=dy+1) VvV 2m+1-dy<j) (5)
(2m +1 —d, — 2j)* otherwise
0 (i<n-—d;) V (2n—d, <i)V
Ay = (j<m-d,+1) V (2m—d, < j) (6)

(2i +d, — 2n)? otherwise

Lemma 4. We may have to remove at least 2 rows (k = 2) from the sparse
Ruppert matriz for finding more accurate separation bound satisfying BW(f) >
B([). For k =2, rows to be removed from the matriz. should satisfy

d[ = der +d]} (U S d;,- S n— ]_ N d.ﬂj = 1m + 1)‘
dp = 2md, +dy (n <dp <2n—1 A dy=m+1)
dy =2md; +dy (de =n A 1<d, <m),

(

. dy =2md; +d, (de =n A m+1<d, <2m). <

Proof. The same way as in Lemma 2 in [1]. O

We note that removing only one row has possibility to satisfy BV (f) > B(f),
since we have only Lemma 3 for the sparse Ruppert matrix. However, the above
lemma guarantees that removing such two rows must decrease max; ; ||Ri ;|
= max{||Runml 7 |Ruollr: Romlr: |Roollr}-

By Lemma 4, we have the following simple algorithm which give us about
1.3% more accurate separation bounds, according to our experimental result.

Algorithm 1. (Removing Two Rows Sparse Version) B
Input: a bivariate polynomial f(z.y), Output: a separation bound B(f)

Step 1 Construct sparse Ruppert matrix R(f).

Step 2 For all index pairs d; and d2 in Lemma 4, compute separation bounds,
and let the best separation bound be B (f).

Step 3 Output the separation bound B?)(f) and finish the algorithm. 4

- Removing Multiple Rows - For the Ruppert matrix, in the former paper,
by the lemma which guarantees Lemma 3 after removing rows, the algorithms
removing multiple rows were introduced. For the sparse Ruppert matrix, such
a lemma does not exist since an actual sparse Ruppert matrix does not have a
lots of columns and removing rows easily breaks Lemma 3. However, we can use
the similar algorithms though they are not effective as before.



Algorithm 2. (Early Termination Algorithm Sparse Version)

Input: a bivariate polynomial f(x.y), Output: a separation bound B(f)

Step 1 Construct sparse Ruppert matrix R(f) and put & = 1.

Step 2 Compute contributing ratios of each rows of R(f).

Step 3 Construct all the index pairs doj.—1 and dyy as in Lemina 4.

Step 4 For each index pairs constructed in Step 3, compute separation bounds
with dy,ds, ..., dsy, by ascending order of sums of contributing ratios, until
an index pair for which a separation bound does not become better than that

of a previous group twice, and let the best separation bound be B fzk)( £).
Step 5 If B®*~2)(f) < B@¥)(f) then put k = k + 1 and goto Step 3.
Step 6 Output the separation bound B®*=2)(f) and finish the algorithm. <

We use Euclidean norms of corresponding row vectors of the Moore-Penrose type
pseudo inverse of the transpose of R(f) as the contributing ratios (see [1]).

Ezample 2. For the polynomial in the example 1, the algorithms 1 and 2 output
B(f) = 1.420 x 10~ and B(f) = 1.427 x 10~*, respectively. which are slightly
better than the results in the beginning example. <

5 Separation Bound Continuation

In this section, we consider another way to enlarge separation bounds. The key
idea is that the separation bound defines a kind of e-neighborhood of the given
polynomial f(z,y). From this point of view, we consider to continuate one neigh-
borhood to others like analytic continuations.

For the given f(z,y) and 0 < b € IR, let Ay(f) be the set of all f € €[,y
with ||j"—f||g< b and deg(f) < deg(f). Hence Ap(y)([) denotes a s-neighborhood
of the given f(z,y), in which all polynomials must remain absolutely irreducible.

Definition 1. Let By(f) = B(f) and B;(f) € IR (i = 1,...) be the mazimum
value satisfying
Ap.n(f) € U Ap(g)(9)-

9€EAL,_(n(f)

We call B;(f) (i > 0) and B.o(f) a continuated separation bound and the mazx-
imum continueted separation bound, of f(x,y), respectively. <

One may think that “Does the given polynomial have an approximate fac-
torization with tolerance B..(f)?". The author thinks that the answer is “No”
since separation bounds by the known methods are far from backward tolerances
with which the given polynomials have approximate factorizations. However, this
continuation helps us to enlarge separation bounds as follows.

For the problem 1, let £ be a arbitrary positive real number and A, b € IR be

A=B(f)/vVin+1(m+1)—e, b= min B(f + kAz'y)).

0<i<n,0<j<m.k=—1,1
For the problem 2, let & be a arbitrary positive real number and A, b € R be

A=B(f)/V#M—¢, b= min B(f + kAx'y'),

rigie M k=—1,1



where M denotes the set of all the monomials x:'y/ satisfying P(xiyd) C P(f).

Lemma 5. Vb2 + A2 and \/b? + A2 are also separation bounds B(f) and B(f)

of f(x.y). respectively, and they may be better than the original bounds. <

Proof. We give the following proof only for vb? + A? since that for v/ b2 + A?
is proved by the same way. Let a polynomial f € A grzs(f) be

f= Z(C&,j + & 5)aty’
i

By the definition of B(f), we have that f is absolutely irreducible if |7 i<gA
for all ¢ and j. Hence, we suppose that one of yariations of coefficients of f from
f is larger than A and such the term be ' 47 . We rewrite f be

Fe= Z((‘i‘j +éi,}-)x"yj + k.ﬂ.r“’y-"’, (k=—-1orl).

i

| f = fli3= X, 161? + 2/é0 9]A + A < b? + A? which means
. |é:.412 < ¥2. Therefore, we have f e Au(f + kﬁ;‘r’j{yj f meaning f remains
L% ] J

absolutely irreducible, and the lemma is valid. O

We have

Using the lemma, we define partial continuated separation bounds of f(x,y),
Be(f) = max{B(f), Vb2 + A?} and Be(f) = max{B(f), v'b? + A?}.

Ezxample 3. For the polynomial in the example 1, the algorithm using the above
lemma (let it be Algorithm C) outputs Be(f) = 4.068 x 107° and Be(f) =
1.467 x 10~%, which are slightly better though it is very time-consuming. <

6 Numerical Experiment and Remarks

We have generated 100 bivariate sparse polynomials of degrees 6 and 5 w.r.t. x
and y, respectively, with coefficients randomly chosen in the real interval [—1, 1],
where each sample is irreducible and about 25% of coefficients are non-zero.
With those polynomials, we have tested the new algorithm 1, 2 and C. using our
preliminary implementations. We note that the results of our experiments are
small so we have to take care of precisions. Basically, we have tested it using the
same way in the paper [3] (bounding errors of singular values). The upper part
of the table 1 shows the results. According to the results, our improvements give
us more accurate separation bounds.

Moreover, we have generated 100 bivariate reducible polynomials. Each poly-
nomial is a produect of two dense polynomials of total-degrees 5 and 4, respec-
tively, with coefficients randomly chosen in the integer interval [—5,5]. Using
those polynomials, we have generated 100 approximately reducible polynomials.
Each polynomial is a sum of a reducible polynomial and a polynomial which
has the same degree as the reducible polynomial, about 25% as many terms and
coefficients randomly chosen in the real interval [-107%,10%].



With those polynomials, we have tested the new algorithms except for the

algorithm C . The lower part of the table 1 shows the results. According to the
results, our improvements give us more accurate separation bounds. Although we
could not use the algorithm C for all the generated polynomials due to its time-
complexity, it gave us better results. We note that an average of backward errors
of those approximately reducible polynomials by the method [9] is 2.829 x 104,

Table 1. Experimental results

| [ || Algorithm [B(f)/ IIf]l or B(f)/ |If]l|Ratio to KMO03’s|

Irr. || B(f)|[IKMO3 1.412 x 10~* -

Algorithm 2 in [1] 1.463 x 10~ 1.036

Algorithm C 1.473 x 10—~ 1.043
B(f)||IKXMO03 (Polytope) 1.639 x 10~ -

Algorithm 1 1.661 x 10~ 1.013

Algorithm 2 1.680 x 10~* 1.024

Algorithm C 1.703 x 10~ 1.038
Red.||B(f)|{IKXMO03 1.074 x 10~° —

Algorithm 2 in [1] 1.083 x 10°° 1.008
B(f)||[KM03 (Polytope) 2.145 x 10 © =

Algorithm 1 2urrx10 1.015

Algorithm 2 2.204 x 10°° 1.027

The methods revised by the former and this, are more time-consuming than

the originals though their separation bounds are better. The reason is that we
have to compute singular values after deleting unnecessary rows. Furthermore,
the author wishes to thank the anonymous referees for their suggestions.
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