Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3728))

  • 1296 Accesses

Abstract

The time taken for a CMOS logic gate output to change after one or more inputs have changed is called the output delay of the gate. A conventional multi-input CMOS gate is designed to have the same input to output delay irrespective of which input caused the output to change. A gate which can offer different delays for different input-output paths through it, is known as a variable input delay(VID) gate and the maximum difference in delay between any two paths through the same gate is known as “u b ”. These gates can be used for minimizing the active power of a digital CMOS circuit using a previosuly described technique called variable input delay(VID) logic. This previous publication proposed three different designs for implementating the VID gate.

In this paper, we describe a technique for transistor sizing of these three flavors of the VID gate for a given delay requirement. We also describe techniques for calculating the u b of each flavor. We outline an algorithm for quick determination of the transistor sizes for a gate for a given load capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, V.D.: Low Power Design by Hazard Filtering. In: Proc. of the International Conference on VLSI Design, pp. 193–197 (1997)

    Google Scholar 

  2. Agrawal, V.D., Bushnell, M.L., Parthasarathy, G., Ramadoss, R.: Digital Circuit Design for Minimum Transient Energy and Linear Programming Method. In: Proc. of the International Conference on VLSI Design, pp. 434–439 (1999)

    Google Scholar 

  3. Berkelaar, M., Jacobs, E.: Using Gate Sizing to Reduce Glitch Power. In: Proc. of the ProRISC Workshop on Circuits, Systems and Signal Processing, Mierlo, The Netherlands, pp. 183–188 (1996)

    Google Scholar 

  4. Berkelaar, M., Buurman, P., Jess, J.: Computing Entire Area/Power Consumption Versus Delay Trade-off Curve for Gate Sizing Using a Piecewise Linear Simulator. IEEE Transactions on Circuits and Systems 15, 1424–1434 (1996)

    Google Scholar 

  5. Berkelaar, M., Jess, J.A.G.: Transistor Sizing in MOS Digital Circuits with Linear Programming. In: Proc. of the European Design Automation Conference, Mierlo, The Netherlands, pp. 217–221 (1990)

    Google Scholar 

  6. Berkelaar, M., Jacobs, E.T.A.F.: Gate Sizing Using a Statistical Delay Model. In: Proc. of the Design Automation and Test in Europe Conference, Paris, France, pp. 283–290 (2000)

    Google Scholar 

  7. Sathyamurthy, H., Sapatnekar, S.S., Fishburn, J.P.: Speeding up pipelined circuits through a combination of gate sizing and clock skew optimization. In: Proc. of the International Conference on Computer-Aided Design, pp. 467–470 (1995)

    Google Scholar 

  8. Benini, L., DeMicheli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: Glitch power minimization by gate freezing. In: Proc. of the Design Automation and Test in Europe Conference, p. 36 (1999)

    Google Scholar 

  9. Kim, S., Kim, J., Hwang, S.Y.: New Path Balancing Algorithm for Glitch Power Reduction. IEE Proceedings: Circuits, Devices and Systems 148, 151–156 (2001)

    Article  Google Scholar 

  10. Raja, T., Agrawal, V.D., Bushnell, M.L.: Minimum Dynamic Power CMOS Circuit Design by a Reduced Constraint Set Linear Program. In: Proc. of the International Conference on VLSI Design, pp. 527–532 (2003)

    Google Scholar 

  11. Raja, T., Agrawal, V.D., Bushnell, M.L.: CMOS Circuit design for Minimum Dynamic Power and Highest Speed. In: Proc. of the International Conference on VLSI Design, pp. 1035–1040 (2004)

    Google Scholar 

  12. Raja, T., Agrawal, V.D., Bushnell, M.L.: Variable Input Delay Logic and Its Application to Low Power Design. In: Proc. of the International Conference on VLSI Design, pp. 598–605 (2005)

    Google Scholar 

  13. Raja, T.: Minimum Dynamic Power Design with Variable Input Delay Logic. PhD thesis, Rutgers University, Dept. of ECE, Piscataway, New Jersey (2004)

    Google Scholar 

  14. Datta, S., Nag, S., Roy, K.: ASAP: A Transistor Sizing Tool for Area, Delay and Power Optimization of CMOS Circuits. In: Proc. of the IEEE International Symposium on Circuits and Systems, pp. 61–64 (1994)

    Google Scholar 

  15. Musoll, E., Cortadella, J.: Optimizing cmos circuits for low power using transistor reordering. In: Proc. of the European Design Automation Conference, pp. 219–223 (1995)

    Google Scholar 

  16. Hashimoto, M., Onodera, H., Tamaru, K.: A Practical Gate Resizing Technique Considering Glitch Reduction for Low Power Design. In: Proc. of the Design Automation Conference, pp. 446–451 (1999)

    Google Scholar 

  17. Chandrakasan, A.P., Brodersen, R.W.: Low Power Digital CMOS Design. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  18. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low Power CMOS Digital Design. IEEE Journal of Solid-State Circuits 27, 473–484 (1992)

    Article  Google Scholar 

  19. Chandrakasan, A., Brodersen, R. (eds.): Low-Power CMOS Design. IEEE Press, New York (1998)

    Google Scholar 

  20. Nebel, W., Mermet, J.: Low Power Design in Deep Submicron Electronics. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  21. Rabaey, J.M., Pedram, M. (eds.): Low Power Design Methodologies. Kluwer Academic Publishers, Boston (1996)

    Google Scholar 

  22. Rabaey, J.M., Pedram, M.: Low Power Design Methodologies. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  23. Roy, K., Prasad, S.C.: Low-Power CMOS VLSI Circuit Design. Wiley Interscience Publications, New York (2000)

    Google Scholar 

  24. Yeap, G.: Practical Low Power Digital VLSI Design. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  25. Rabaey, J., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design Perspective. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  26. Weste, N., Eshraghian, K.: Principles of CMOS VLSI Design: A Systems Approach. Addison Wesley Publications, Reading (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raja, T., Agrawal, V.D., Bushnell, M. (2005). Design of Variable Input Delay Gates for Low Dynamic Power Circuits. In: Paliouras, V., Vounckx, J., Verkest, D. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2005. Lecture Notes in Computer Science, vol 3728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556930_45

Download citation

  • DOI: https://doi.org/10.1007/11556930_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29013-1

  • Online ISBN: 978-3-540-32080-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics