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Abstract. If adjacent wires are brought into a simple specific order
of their switching activities, the effect of power optimal wire spacing
can be increased. In this paper we will present this order along with a
prove of this observation. For this purpose, it is shown how to derive
the new power optimal wire positions by solving a geometric program.
Due to their simplicity in implementation, both principles reported sub-
stantially differ from previous approaches. We also quantify the power
optimization potential for wires based on a representative circuit model,
with promising results.

1 Introduction

Today it is widely accepted that one of the new key issues in designing CMOS
circuits at 130, 90 and 65nm technologies is power. We have to work under
power constraints that stem from heat removal, reliability or battery lifetime
limitations. It is not possible to benefit from either the integration complexity
or performance features of a new technology node without optimizing for a low
power consumption at all levels of the design.

Structure of This Document. This section continues with a short overview of
existing work in the field of wire ordering and wire spacing and of our approach.
Also to the Introduction belongs an illustration of CMOS power basics and the
current situation for on-chip wires to an extent we will need in subsequent sec-
tions. The next section is the description of power optimal wire spacing and
ordering. We create a rule for power optimal wire ordering. The rule is mathe-
matically proved in Section 3. All of Section 4 deals with experiments to quantify
the optimization potential of wire spacing and ordering. Section 5 will conclude
the article together with some future remarks.

Related Work and Presented Approach. Wire ordering and spacing both
have a long history in Electronic Design Automation. People attempt to space
and order bus wires for different objectives like power [7], crosstalk [2] [7], area [4],
or timing [8]. The latter work contains a more complete list.

Our approach reveals two basic phenomenons which have not been previously
published. First, the wire spacing problem is written as a geometric program
rather than developing a heuristic or using exhaustive searching. Taking a step
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Fig. 1. Wires: the darker the more active

Fig. 2. P-optimal wire ordering

Fig. 3. Capacitances in a 0.13µm process

forward, a mathematical formulation for a new globally power optimal wire order
is formulated. Figure 1 shows an unoptimized bus (a) with an un-populated
routing track. The idea is to place the wires off-grid (c), so that the unused
space can be exploited: An individual distance is assigned to each wire pair
based on the wire activities. A lower capacitance for highly active wires and vice
versa is the result. If the wires are put into the order (b) indicated by Figure 2
beforehand, the power savings increase.

1.1 CMOS Power Basics

The power consumption of a CMOS gate is usually decomposed into a static and
a dynamic component. The static one is about to reach orders of magnitudes
similar to the dynamic one [11]. However, this paper solely deals with part of
the dynamic component. More precisely, we try to reduce the capacitive power
caused by the edge capacitances to be described shortly. For our purpose we will
reduce the capacitive power formula to κ · C and provide expressions for C and
κ in this subsection.

Capacitance. One widely known fact in integrated system design is that the
average wire capacitances tend to increase when compared to the average gate
capacitances [11][5]. The first address for capacitance minimization should there-
fore be the interconnects.

There has been another important trend in the physics of wires: the demand
for ever higher integration densities and yet acceptable sheet resistances required
a typical on-chip wire to become physically more thick than wide. This implied
that now the edge-to-edge (other terms found in literature: x-coupling, lateral,
sidewall) capacitances within one layer dominate [12], as opposed to the past.

Figure 3 shows a capacitance break down simulated with FastCap [9]. The
test setup was a wire (dotted) on metal2 of a typical 0.13µm process embedded
into a fully crowded proximity. Note that the bottom layer is not shown. The
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ratio between the sum of the two edge capacitances of that wire and all other
capacitances of that wire is almost 78%.

Keeping in mind these observations, it is clear that the edge-to-edge capac-
itances are good candidates for power optimization. We approach the edge-to-
edge capacitance of a circuit node i with the plate capacitor formula:

Cedge to edge,i ∝ li

(
1
di

+
1

di+1

)
, (1)

where li is the length of the wire, and di and di+1 the left and right distances
to the next metal objects, respectively, cf. wire 2 in Figure 1. Note that for the
sake of brevity we assume each net to consist of only one segment. We will also
omit the wire length since this paper only deals with the optimization of the
distances between two wires. A more general disquisition can be found in [14].

Switching Activity et al. The switching activity is a major factor that sep-
arates high- from low-power nets. It can represent a probability based on as-
sumptions. Or, it is derived by a simulation on gate level and is related to the
simulation time interval. It then represents the actual number of toggles of a
node. Since there are more factors which influence the capacitive power, we
want to define a variable κ that captures all these factors. We call it κ because
all factors are invariant after synthesis.

Definition 1. Let α01,i, fi, and VDD,i of a node i be the switching activity or
toggle rate, the frequency of the associated clock domain, and the supply voltage
of the driving gate, respectively. We define a power weighting factor κi for a
node i as

κi := α01,ifiV
2
DD,i (2)

2 Power Optimal Wire Spacing and Ordering

Let us now consider N parallel wires of width w routed on M tracks as in
Figure 1. By combining (1) and (2) into the well-known formula for the capacitive
power dissipation, PC = Cα01fV 2

dd, we get the objective function of a geometric
program:

2.1 Wire Spacing

Pedge to edge,i ∝
N+1∑
n=1

(κn + κn−1)
dn

= min! (3)

dn ≥ dmin ∀n = 1 . . .N + 1 (4)
N+1∑
n=1

dn ≤ β (5)

At this point it should be noted that we model the whole scenario to be
enclosed in between two static wires with the numbers 0 and N + 1 to avoid
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edge effects which could influence the results. The analogon on a chip could be
power or shield wires.

Between the two border wires, now arbitrary wire distances can occur. The
only exception is that no wire pair must get closer than a minimum distance
dmin, cf. (4). The value of this minimum spacing is technology dependent. In
the second constraint (5), β := (M + 1)Dpitch − N · w was introduced to reflect
the chip boundaries. We assume w + dmin = dpitch which is the case for many
processes. Obviously, if there are no more than N tracks availiable between the
above mentioned border wires routed on tracks 0 and M + 1, there will be no
freedom to optimize the distances and thus the power objective. Hence, M > N
is the prerequisite to do wire spacing and shall therefore be true for the remainder
of the document.

2.2 Wire Ordering

Wire ordering is the deliberate assignment between wires and available tracks
in the effort to optimize some objective function. For our case, the non-linearity
induced by 1/d in (3) lets anticipate an influence of the arrangement of (κn) on
the effect of wire spacing for low power.
Definition 2. Given is a set (κ0, κ1, . . . , κN , κN+1) of κ-factors of the N nets
to be routed as defined in (2). For a permutation π of the numbers {1 . . . , N}
we call (κ0, κπ(1), . . . , κπ(N), κN+1) a wire ordering. We denote the set of all
wire orderings by K. A particular wire ordering is called a power optimal wire
ordering if the solution for (3) - (5) is minimal over all wire orderings in K.

An investigation of the problem with different wire orderings revealed the
following observation, cf. Figure 2.
Theorem 1. A wire ordering (qn) ∈ K is a power optimal wire ordering if and
only if it is constructed in the following way:

1. Start with q
(0)
0 := q

(0)
N+1 := 0, K(0) :=

⋃N
i=1{κi}.

2. For s = 1, . . . , N :
(a) Let q

(s−1)
a ≤ q

(s−1)
a+1 be the two greatest elements of (q(s−1)

i ) (in theorem
4 we will prove that these have to be adjacent).

(b) Let c := min K(s−1) and define K(s) := K(s−1)\{c}.
(c) Define (q(s)

i ) by inserting c between q
(s−1)
a and q

(s−1)
a+1 , i.e.

q
(s)
i :=




q
(s−1)
i , for i ≤ a

c, for i = a + 1
q
(s−1)
i−1 , for i ≥ a + 2.

3 Proof of Theorem 1

3.1 Known Results from Convex Programming

We first state a basic results from convex programming that we shall need in our
subsequent considerations. In what is to follow we denote by un the n-th unit
vector and by e the all-ones vector (1, . . . , 1)T .
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Theorem 2. Let P ⊂ Rn be a closed convex subset of the open convex set C
and let f : C → R be a convex differentiable function. Then x∗ ∈ P minimizes
f over P if and only if

−∇f(x∗) ∈ NP (x∗),

where NP (x∗) is the cone of the outer normals in x∗, defined by

NP (x∗) := {c ∈ Rn : max
x∈P

cT x = cT x∗}.

For the proof of this theorem and some background on convex programming, we
refer the reader to [10], theorem 27.4. The next lemma is a simple inequality of
the square root function, which will be essential for the proof of our results.

Lemma 1. Let a ≥ b ≥ 0 and let c > 0. Then
√

a−√
b ≥ √

a + c−√
b + c with

equality if and only if a = b.

Proof. This follows straightforward from the fact that the function x 
→ √
x is

differentiable in (0,∞) and has strictly decreasing slope. �


3.2 Characterization of the Optimal Distances

For ease of notation let us now denote κn + κn−1 by γn. We first consider
the problem of characterizing the optimal d-vector of (3)-(5) for a given wire
ordering.

Theorem 3. Let P := {d ∈ RN+1 : d ≥ dmine ∧ ∑N+1
n=1 dn ≤ β}. Then d∗ ∈ P

is optimal for (3)-(5) if and only if there exists γ̃ > 0 that satisfies both

d∗n = max{γ̃√γn, dmin} ∀n = 1, . . .N + 1

and
N+1∑
n=1

d∗n = β.

Proof. Let d∗ ∈ P and γ̃ as required by the theorem. We have to show that
−∇f(d∗) ∈ NP (d∗). For this purpose let I denote the index set I := {n : d∗n =
dmin}. We need to find λ0, λ1, . . . , λN+1 ≥ 0 such that

−∇f(d∗) =




γ1
d∗
1
2

...
γN+1
d∗

N+1
2


 =

∑
n∈I

λn(−un) + λ0e.

One can easily calcuate λ0 = 1
γ̃2 and λn = 1

γ̃2 − γn

d2
min

for n ∈ I. As γ̃ ≤ dmin√
γn

for
n ∈ I, the λn are all nonnegative, so −∇f(d∗) ∈ NP (d∗) and d∗ is optimal by
theorem 2.

For the converse, suppose d∗ ∈ P is an optimum for (3)-(5). Let m :=
max{ γn

d∗
n

2 : n = 1, . . . , N + 1} and M := {n : γn

d∗
n

2 = m}. According to the-
orem 2 we have −∇f(d∗) ∈ NP (d∗), hence there are λ0, λ1, . . . , λN+1 ≥ 0



The Optimal Wire Order for Low Power CMOS 679

such that −∇f(d∗) =
∑N+1

n=1 λn(−un) + λ0e. Of course ∇f(d∗) �= 0 (because
d∗n ≥ dmin ∀n), so λ0 must attain some value ≥ m (note this implies that
d∗ is on the hyperplane eT d = β, hence

∑N+1
n=1 d∗n = β) and λn = λ0 − γn

d∗
n

2

for n = 1, . . . , N + 1. In case λn > 0 for all n = 1, . . . , N + 1, the vector d∗

would be determined by the intersection of N + 2 hyperplanes with normal
vectors −u1, . . . ,−uN+1 and e, which is clearly impossible as M > N . So at
least one λn must be 0, and this can only be the case if λ0 = m, which means
λn = 0 ⇐⇒ n ∈ M . So for n ∈ M we have d∗n =

√
γn√
m

= γ̃
√

γn with γ̃ = 1√
m

,
whereas for n /∈ M the value of d∗n is determined by the intersection of the hy-
perplanes −uT

nd = dmin with eT d = β, therefore d∗n = dmin for all n /∈ M . Of
course, for i /∈ M and j ∈ M the inequality γi

d2
min

<
γj

(d∗
j )2 = 1

γ̃2 holds, so d∗ is of
the form stated above. �


For the following consideration we assume that the optimal wire spacing d∗

is of the form d∗n = γ̃
√

κn + κn−1. If one or more distances are at their lower
bound, things get a bit more technical, but the result is basically the same. So
the objective function (3) is reduced to

γ̃
N+1∑
n=1

√
κn + κn−1 = min!

3.3 Power Optimal Wire Ordering

Before we prove our main result, we first provide the “building blocks”. The
basic idea is to make use of the inductive nature of the proposed algorithm. The
next theorem provides us with the key ideas for the proof of theorem 1, but first
let us formalize the notion of a unimodal wire ordering.

Definition 3. Let (qn)n=0,...,N+1 ∈ K be a wire ordering of the (κi). If there
exists an index t, 1 < t < N + 1, such that qn−1 ≤ qn ∀ n ≤ t and qn ≥ qn+1

∀ n ≥ t, the wire ordering (qn) is called a unimodal wire ordering with mode t.

Theorem 4. Let (qn)n=0,...,N+1 ∈ K be a power optimal wire ordering. Then
(qn) is unimodal. Furthermore, if we denote by qt ≥ qs ≥ qr the three greatest
elements of (qn), then these can (and in case they are uniquely determined must)
be chosen such that one of them is adjacent to both of the others; if qt > qs, qr,
then qt is located between qr and qs, i.e. either r = t − 1 ∧ s = t + 1 or r =
t + 1 ∧ s = t − 1.

Proof. To avoid some technical details we only prove the case where all elements
of (qn) are pairwise distinct. Similar arguments can be applied for the general
case, but some special instances must be taken care of. We first prove that (qn)
has to be unimodal. To see this, let us assume the existence of a wire ordering (qn)
minimizing (3)-(5) that is not unimodal. Then there exists an index 1 < t < n
such that qt−1 > qt < qt+1, and we choose t to be minimal with that property;
we may w.l.o.g. assume qt−1 ≤ qt+1. Let (pn) be the sequence defined by
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pn :=




qn, for n �= t − 1, t, t + 1
qt, for n = t − 1
qt−1, for n = t

qt+1, for n = t + 1.

Then the objective function for (pn) differs from that of (qn) by
√

qt + qt−2 +
√

qt−1 + qt +
√

qt+1 + qt−1

−√
qt−1 + qt−2 −

√
qt + qt−1 −

√
qt+1 + qt

=
√

qt−1 + qt−2 − (qt−1 − qt) −
√

qt+1 + qt−1 − (qt−1 − qt)

−(
√

qt−1 + qt−2 −
√

qt+1 + qt−1 )

As qt+1 + qt−1 ≥ qt−1 + qt−2 > 0 and qt−1 − qt > 0 we can apply lemma 1 to see
that the objective for (pn) is less than for (qn), an obvious contradiction.

For the second claim of our theorem assume again that (qi) is optimal with
maximal element qt and qs, qr as defined in the theorem. Again, to avoid some
technicalities we assume all elements of (qn) to be pairwise distinct. Now suppose
qt > qr, qs is not located between qs and qr, then due to unimodality both qs and
qr have to be on the same side of qt, we assume w.l.o.g. that s, r > t, therefore
qt−1 ≤ qr ≤ qs ≤ qt. Also due to unimodality, s = t+1, r = t+2 (there can be no
smaller element between them, because qt is the unique mode of the sequence).
Now we can reorder the sequence by changing the places of qt and qs without
destroying unimodality, hence we define (pn) by

pn :=




qn, for n �= t, t + 1
qt+1, for n = t

qt, for n = t + 1.

Then

N+1∑
n=1

√
qn + qn−1 ≤

N+1∑
n=1

√
pn + pn−1

⇐⇒ √
qt + qt−1 +

√
qt+1 + qt +

√
qt+2 + qt+1

≤ √
pt + pt−1 +

√
pt+1 + pt +

√
pt+2 + pt+1

⇐⇒
√

qt+2 + qt − (qt − qt+1) −
√

qt + qt−1 − (qt − qt+1)

≤ √
qt+2 + qt −

√
qt + qt−1,

and we use the same argument as above to obtain a contradiction. Consequently,
qs and qr both have to be adjacent to the maximal element qt. �


From the two statements of theorem 4 we may now deduce our central conclu-
sions. We will prove the induction step separately to make things more concise.
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Theorem 5. A wire ordering (qn) for a problem of size N + 1 is optimal if and
only if the sequence (q′n) defined by removing a maximal element from (qn) is an
optimal wire ordering for the reduced problem of size N .

Proof. First, let (qn) minimize the sum v :=
∑N+1

n=1

√
qn + qn−1 and let c be the

maximal element of the wire ordering, a and b the two elements next in size
which are both adjacent to c by theorem 4. Then by removing c we define a
wire ordering (q′n) with objective value v′ = v−√

a + c−√
c + b +

√
a + b. Now

suppose there is a wire ordering (p′n) with objective value w′ < v′. The elements
a and b are the two greatest elements of (p′n), therefore they have to be adjacent
and we can define a sequence (pi) by inserting c between a and b. The objective
value of (pn) is w = w′ −√

a + b +
√

a + c +
√

c + b, so w < v, contradicting the
optimality of (qn).

To see the other direction, let (qn) be some wire ordering of length N +1 with
objective value v, greatest element c and adjacent elements a and b, such that
(q′n) defined by removing c from (qn) minimizes v′ =

∑N
n=1

√
q′n + q′n−1. Suppose

(qn) is not the optimal wire ordering for length N+1, then there exists a sequence
(pn) with objective value w < v and we can define (p′n) with objective value w′

by removing c from (pi). Again, we know w = w′ +
√

a + c +
√

c + b − √
a + b

and v = v′ +
√

a + c +
√

c + b−√
a + b, so w′ < v′, contradicting the optimality

of (q′n). �

It is now easy to see that the construction provided in theorem 1 simply

formalizes the induction step given in theorem 5. We are finally ready to prove
theorem 1.

Proof (of theorem 1). We proceed by induction. The construction given in the
theorem mimics exactly the statement of theorem 5, so the induction step is
clear. For the induction basis, let us examine the case of n = 3. Here we have
real numbers 0 < d ≤ e ≤ f and the ordering arising from the construction
is either (0, d, f, e, 0) or (0, e, f, d, 0), depending on whether we insert e on the
right or on the left of d. From theorem 4 we know that the optimal solution has
to be unimodal with mode f and d and e have to be adjacent to f , so apart
from the constructed sequences there are no possible solutions. Furthermore, the
objective values of the two possible solutions are equal, so both are optimal. �


4 Experiments

Without proof we propose that there also exists a permutation for which the
power is worse than for any other permutation. This will shed light on the
benefits expected from power optimal wire ordering. In other words, one who
does not consider the actual wire order could abandon power savings anywhere
between 0 and the maximum optimization potential. Note that the effect of wire
spacing [13] alone is not subject of this document.

In our experiments we are considering (κn) to be similar to an industrial
µprocessor [3]. For several values of N , we randomly selected a set of N paral-
lel wires. Each of these sets were permuted three times: for power optimal, for
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power worst, and a for a typical ordering found for buses. The latter distribu-
tion is simply ordered by κ. Buses are typically arranged that way, assuming a
descending toggle rate from the least to the most significant bit. A geometric
program solver [6] is used to find the optimal power optimal values for various
Ms. An outer loop repeated the test some 300,000 times. We related the result-
ing average worst-case power and bus power values to the best-case power for
each N, M combination.

Tables 1 and 2 display the optimization potentials for the worst possible
scenario and the bus scenario, respectively. For example, The edge-to-edge power
for N = 64 wires routed on M = 65 tracks could be up to 3.4% worse if wire
ordering was not cared for. It is interesting to note that this number is almost
the same for any value of N , if M = N + 1. We further remark that most of the
optimization potential can be exploited by adding only limited extra space.

Figure 4 shows the experimental results for N = 64 and M = 65 as histogram
in 1% intervals. For the same parameters we scatter plotted the optimization
potential as a function of the fraction of the highest and lowest κ appearing
in the design, cf. Figure 5. This is an interesting source of information for the
system designer. One can make out an upper optimization limit depending on
only two circuit properties. The CPU-time to optimize an N = 256 (512, 768,
1024) case is 1.2s (15.1s, 41.2s, 113.9s) on a 3GHz PC.

5 Conclusion

Future Remarks. The model does not respect the effect of fringe capacitances
and capacitances to other wires on the same layer. However, the applicability
of the simpler 1/d model for C is shown in [13]. If a more detailed model is
desired, capacitance extractions can be done to find fitting functions for C.
Presuming these fitting functions remain posynomial, a globally optimal solution

Table 1. Max. Reduction potential [%]

N\M N+1 1.25N 1.5N 1.75N

8 3.5 5.8 8.3 9.6
16 3.6 9.3 12.4 13.7
64 3.4 16.5 19.2 19.9

256 3.0 20.3 22.5 22.7

Table 2. Red. potential [%] for buses

N\M N+1 1.25N 1.5N 1.75N

8 2.6 4.3 6.2 7.2
16 2.7 7.4 9.9 10.9
64 2.6 14.4 17.0 17.6

256 2.3 19.0 21.1 21.3
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exists for the newly created problem [1]. Miller-capacitances and hence crosstalk
power and signal integrity issues are not considered in this paper. Furthermore,
the effect on timing of the proposed methodology has not been in the focus of
this contribution. However, with little modifications in the objective function,
targeting the timing problem with the same notion becomes possible.

Summary. In this paper a significant step forward was taken from power op-
timal wire spacing through geometric optimization alone. A proof was given for
the presence of a power optimal order of wires that increases the effect of spac-
ing. The order can be very simply arranged given the sorted power weighting
factors of the involved wires. After ordering, geometric optimization delivers the
globally best possible result without the use of heuristics.

Extensive investigations show the potential of power optimal ordering. On
broad buses, the power values for optimally ordered wires and those for an unop-
timized order can differ by a two-digit percentage. Interesting results are further
the saturating optimization potential for increased space and the dependency of
the expected savings only on the highest and lowest value of κ.
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