Skip to main content

Towards a Biomathematical Model of Intentional Autonomous Multiagent Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3643))

Abstract

The objective of this contribution is to establish a 1-1 correspondence between an existing biological model of so-called tripartite synapses in biological brains and a corresponding autonomous multiagent system (MAS) in an unexplored environment. The logical part of the mMAS model is based on the concept of logical fiberings – systems of distributed logics for MAS. Two important notions, intention and rejection, will be subject of the development of a suitable mathematical formalization – the notion of space- and time dependent logical formulas will play a basic role. Our new general model for MAS is based on category theory and general categorical semantics. Of further basic interest in MAS is the issue of learning with respect to artificial neural network applications to agent systems and robotics. According to the cybernetic principle of feasibility, it is in the center of our work to achieve implementations of autonomous robots based on the proposed biomimetic MAS model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Günther, G.: Cybernetic Ontology and Transjunctional Operations. Biological Computer Lab. Publ., vol. 68 (Urbana, Ill.), publ. in Self-organizing Systems 1962, Spartan Books, Washington, pp. 313–392 (1962)

    Google Scholar 

  2. McCulloch, W., Iberall, A.: The organizing principle of complex living systems. Transactions of the ASME 6, 290–294 (1969)

    Google Scholar 

  3. Mitterauer, B.: An interdisciplinary approach towards a theory of consciousness. BioSystems 45, 99–121 (1998)

    Article  Google Scholar 

  4. Mitterauer, B.: Some principles for conscious robots. Journal of Intelligent Systems 10, 27–56 (2000)

    Google Scholar 

  5. Mitterauer, B.: The loss of self-boundaries: towards a neuromolecular theory of schizophrenia. BioSystems 72, 209–215 (2003)

    Article  Google Scholar 

  6. Mitterauer, B., Kopp, C.: The self-composing brain: Towards a glial-neuronal brain theory. Brain and Cognition 51, 357–367 (2003)

    Article  Google Scholar 

  7. Mitterauer, B., Leitgeb, H., Reitboeck, H.: The neuro-glial synchronization hypothesis. Recent Research Development in Biological Cybernetics 1, 137–155 (1996)

    Google Scholar 

  8. Pfalzgraf, J.: On a general notion of a hull. In: Pfalzgraf, J., Wang, D. (eds.) Automated Practical Reasoning. Texts and Monographs in Symbolic Computation. Springer, Wien (1994)

    Google Scholar 

  9. Pfalzgraf, J.: On geometric and topological reasoning in robotics. Annals of Mathematics and Artificial Intelligence 19, 279–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pfalzgraf, J.: The concept of logical fiberings and fibered logical controllers. In: Dubois, D.M. (ed.) Proceedings CASYS 2000, Liège, Belgium, August 7-12. American Institute of Physics. AIP Conference Proceedings, vol. 573, pp. 683–693 (2001)

    Google Scholar 

  11. Pfalzgraf, J.: Modeling connectionist networks: categorical, geometric aspects (towards homomorphic learning). In: Dubois, D.M. (ed.) Proceedings CASYS 2003, Liège, Belgium, August 11-16. American Institute of Physics. AIP Conference Proceedings, vol. 718 (2004)

    Google Scholar 

  12. Pfalzgraf, J.: On Logical Fiberings and Automated Deduction in Many-valued Logics Using Gröbner Bases. Revista Real Academia de Ciencias, Serie A de Matemáticas, RACSAM 98 (2004)

    Google Scholar 

  13. Pfalzgraf, J.: On categorical and logical modeling in multiagent systems. In: Lasker, G.E., Dubois, D. (eds.) Anticipative and Predictive Models in Systems Science, vol. 1, pp. 93–98. IIAS, Windsor (2005) ISBN 1894613-49-X

    Google Scholar 

  14. Smit, A., Syed, N., Schaap, D.: A glial-derived acetylcholin-binding protein that modulates synaptic transmission. Nature 411, 261–268 (2001)

    Article  Google Scholar 

  15. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfalzgraf, J., Mitterauer, B. (2005). Towards a Biomathematical Model of Intentional Autonomous Multiagent Systems. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2005. EUROCAST 2005. Lecture Notes in Computer Science, vol 3643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556985_76

Download citation

  • DOI: https://doi.org/10.1007/11556985_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29002-5

  • Online ISBN: 978-3-540-31829-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics